JOURNAL

ATHEMATIQUES

PURES ET APPLIQUEES

FONDE EN 1836 ET PUBLIE JUSQU'EN 1874

Par Joserns LIOUVILLE

GEORGES VALIRON

Sur les singularités de certaines fonctions holomorphes

et de leurs inverses

Journal de mathématiques pures et appliquées 9° série, tome 15 (1936), p. 423-435.
<http://www.numdam.org/item?id=JMPA_1936_9 15_ 423 0>

gallica NUuMDAM

Article numérisé dans le cadre du programme
Gallica de la Bibliotheque nationale de France
http:// gallica.bnf.fr/

et catalogué par Mathdoc
dans le cadre du pole associé BnF/Mathdoc
http:// www.numdam.org/journals/ JMPA


http://www.numdam.org/item?id=JMPA_1936_9_15__423_0
http://gallica.bnf.fr/
http://www.numdam.org/
http://gallica.bnf.fr/
http://www.bnf.fr/
http://gallica.bnf.fr/
http://www.mathdoc.fr/
http://www.numdam.org/journals/JMPA

SINGULARITES DE CERTAINES FONCTIONS HOLOMORPHES. [[23

Sur les singularités de certaines fonctions holomorphes
et de leurs inverses ;

Par Georces VALIRON.

1. Dans son Mémoire Sur les équations fonctionnelles, P. Fatou a
étudié d'une fagon approfondie la fonction de Kcenigs des substitu-
tions & cercle fondamental invariant, | 3| <1, et a montré que, dans
le cas des substitutions de premiére espéce ayant un point double de
multiplicateur non nul au centre du cercle, cette fonction K(3), holo-
morphe dans ce cercle, est d’ordre fini (au sens d’'Hadamard) sur la
circonférence, et tend vers 'infini lorsque | z| tend vers 1 a 'extérieur
de petiles régions entourant les zéros (*). D'une facon précise, si grand
que soit A, les points en lesquels |K(z)| > A forment un domaine de
connexion infinie A(A) que I'on obtient en supprimant d’'un domaine
de forme coronale limité par | z| <1 et par une courbe intérieure des
domaines en nombre infini limités par des courbes sans points communs
avec [3|=1, la somme des longueurs de ces courbes tendant vers

zéro avec%- A(A) contient, cn outre, des lignes fermées I" de longueur

bornée entourant I'origine, sur lesquelles | 5| > a, si proche que « soit
de 1. La dérivée de K(3) jouit de propriétés analogues et, tout au
moins dans certains cas, | K(z) |+ | K'(z)| tend vers I'infini lorsque | 5 |
tend vers 1 (?), ce qui établit directement que w = o qui est le seul
point critique transcendant de la surface de Riemann décrite par

(") Bull. Soc. math., 58, 1920, p. 262-273.
(?) Voir les pages 63-64 du Mémoire de H. Cartan, Bull. Sciences math.,
93, 1931.
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w = K (3) est aussi le seul point limite des points critiques algébriques.

Des exemples de cas analogues sont fournis par les fonctions cons-
truites par Lusin et Priwalof ('), fonctions qui jouissent des pro-
priétés énumérées pour K(z) (avec la circonstance que parmi les
courbes I' figurent des cercles de centre origine, alors qu’on ne sait
pas s'il en est ainsi pour les fonctions considérées par Fatou) mais
pour lesquelles I’étude de la dérivée n’est pas faite.

D’une facon générale, supposons que w = F(3) soit holomorphe et
non bornée pour |3| <1 et que, si grand que soit A, les points
ou |w| > A forment un seul domaine A(A) obtenu en enlevant d’un
domaine de forme coronale dont |3| =1 est I'une des deux courbes
frontiéres une infinité de régions fermées toutes intérieures a |3| <1.
Alors w= = est le seul point critique transcendant de la fonction
inverse 3 = ¢(w) de F(3) et c’est un point limite de points critiques
algébriques. Car, en faisant croitre A, on voit qu'il existe des A pour
lesquels la frontiére extérieure de A(A) (autre que | 3| =1) a un point
commun avec une région enlevée; les valeurs correspondantes de w
fournissent des points critiques algébriques de ¢(w) tendant vers
I'infini.

La surface de Riemann, du type hyperbolique, décrite par w est
donc a rapprocher des surfaces du type parabolique décrites par
w = F(3) lorsque F(3) est une fonction entiére dont le module tend
vers |'infini quand | 3| tend vers l'infini sur une suite de courbes entou- -
rant’origine (fonctions d’ordre inférieur a 0,5 et autres).

Une surface de Riemann simplement connexe qui ne posséde qu’une
seule singularité transcendante peut étre du type hyperbolique, méme st
cette singularité est isolée.

Considérons une telle surface et supposons, ce qui est loisible, la
singularité transcendante a l'infini. Si w=UF(z) est la fonction
inverse d’une fonction 3= ¢(w) représentant conformément cette
surface sur | 3| <1, le domaine défini par |w'| > A doit étre simple-
ment connexe dés que A est assez grand et doit admettre tous les
points de la circonférence |3| =1 pour points limites de ses points.

(1) Annales Ecole Norm., 3° série, 42, 1925.
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Les domaines les plus simples jouissant de cette propriété semblent
étre ceux qui s'enroulent autour de la circonférence |z|=1. On est
ainsi amené & étudier les fonctions holomorphes et non bornées
pour | 3| <1 qui restent bornées sur des courbes spiraliques asymp-
totes a |5|=1. :

2. J’ai déja indiqué (') comment on peut construire des fonctions
de I'espéce cherchée. En modifiant légérement ce procédé on peut
opérer comme suit. Soit

F(2)=a%"
]

une fonction entiére, a coefficients positifs, de £=o -+ i<. Pour
chaque o positif, nous appelons r(s) la valeur minimum de » pour
laquelle a,0" est maximum. Nous supposons que n(c) est assez régu-
liére pour que tous les o assez grands saient des valeurs ordinaires ().
Alors les sauts de n( o) sont égaux a 1 pour ¢ assez grand. On sait que

[ d’
logF (a) ~ V(g) :f n(x);“f,
g

(1) Na~(%”%w> S (E—o|<h-—Z,

g n(o)

h étant donné arbitrairement grand (loc. cit., 29, p. 101),

F(e+it)~ e F(a) \
(2) si m:rn—(o—f‘—)<[n(a)]'_“'.

|F(o+ i) |~ "D F(s)

N . n(c
Nous supposerons encore que, a partir d’'une valeur de g, % croit;

(3) V(o) >[n(e)]n, o<a<i,
(4) lim —2(2)

—— —o0.
c== N(T + 2T)

La condition (4) impose & F(5) une croissance assez rapide, les
autres sont alors toutes des conditions de régularité vérifiées
lorsque n(s) est une fonction simple.

(') Comptes rendus, 198, 1934, p. 2065-2067.
(*) Voir Lectures on the general theory of integral functions, Chap. IV.
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Si N(o) désigne la fonction linéaire en o entre deux valeurs ¢, ¢”
consécutives de o pour lesquelles n(c) est discontinue, et égale
N (o)

4 n(o) pour o et ¢", —— est encore croissant pour c assez grand.

En vertu de (2), ¢ étant donné positif et arbitrairement petit et p
étant entier positif ou nul, le module de

D(E) =
est supérieur & ¢ k= £k(e) > o, lorsque & s'éloigne indéfiniment
dans les domaines
3n 5n
(5) -, tapme O’<N(0‘)T<O’<7 +2p1r—e),
et tend vers zéro plus rapidement que ¢~**® lorsque & s’éloigne dans
(6) (g+2p1r+£>a'<1\'(¢7)1‘<0'<3?1r+2p1r—e>.
Considérons le domaine D défini par
(;—T—;—e)c<N(o’)‘r<a(3%r +»2q1r—s>, c>0a,,
ol ¢ est un entier positif et g, donné assez grand. Eu égard 4 la condi-
tion (4), la transformation
(7) s=ef, Et=o+it

fait correspondre biunivoquement 2 D un domaine spiralique A
contenu dans |z|<{1 et asymptote a la circonférence. l.a fonc-
tion W(z)=®(&) est holomorphe dans A. Au contour y(c, d) du
plan & défini par

ca':'z'N(a'),A c2d 3
[2(g +1)T —c]e=1N(0o), c>d ’;—t—i—az<c<?.’r - &,
ca<tN(e)<[2(g +1)n — ¢]a, og—=d

correspond un contour I'(c, d) du plan des z intérieur & A. Etant
donnée la rapidité de la décroissance de ®(£), conséquence de (3)
et (4), lorsque & s’éloigne indéfiniment sur y(¢, d), I'intégrale

8) f LGRS
(e, Yd)
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dz

existe. Comme Z

tend vers 1 lorsqu’on s’éloigne dans D, on voit que

;_f ) 4,
21T F(c’d’u—y

prise dans le sens direct par rapport 4 'extérieur de I'(e, d) définit
une fonction f(z) holomorphe pour |5 |< 1 et z extérieur & T'(¢, d)
et une fonction f,(3) holomorphe pour z intérieur 4 I'(¢c, d). D’aprés
la convergence de (8), f(3)et £, (3) restent inférieurs 4 un nombre M ()
lorsque |z| tend vers 1 en restant & l'extérieur des deux bandes
balayées par I'(¢/, d) lorsque d étant fixe, ¢’ varieentre c — e et ¢+ «.
On peut prolonger f(z) pour tout z de module inférieur & 1 en faisant
croitre d. f(z) étant ainsi défini, si z est intérieur au domaine
primitif I'(c, d), on a '

l'intégrale

J(3)=fi(5) + ¥ (z).

Comme enfin f(z) ne change pas si ¢ varie entre les limites fixées,
le comportement de cette fonction est connu, a une fonction bornée
prés, lorsque |s| tend vers 1. |f(3)—W(3)| est borné dans A,
| f(3)| est borné partout ailleurs. Dans A I'étude de f(z) est ramenée
a celle de f(e*) qui ne différe de ®(£) que par une fonction restant
bornée. Donc, dans les ¢ domaines spiraliques correspondant a (5),
f(3) tend vers l'infini lorsque | 3 | tend vers 1. D’autre part, en suppo-
sant A assez grand, (1) montre que le domaine riemannien décrit par

Z =F (&) lorsque £ décritla portion de D appartenant a |§ — 6| < Ni}(%j

est une couronne tournant ¢ fois autour de 1'origine (c’est la I’origine
du théoréme de Bloch). Il s’ensuit que, si L est un chemin de déter-
mination infinie de f(z) compris entre deux domaines consécutifs A, , A,
correspondant respectivement a (5) et (6), et si L’ est un chemin de
détermination infinie appartenant a A,, | f(3)| tend encore vers
I'infini lorsque | 3| tend vers 1 dans le domaine limité par L et 1.’ et
ne contenant pas A,. On a un résultat analogue pour les chemins de
détermination infinie compris entre la frontiére de A et un des deux
domaines correspondant & (5) et voisins de cette frontiére. Ainsi,
tout chemin de détermination infinie de f(z) est complétement
conligu a ceux appartenant 4 I'un des domaines correspondant a(5).
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On voit de méme que si |f(3)| reste bornée sur deux  chemins
asymptotes 4 | 3| =1 compris entre deux domaines consécutifs corres-
pondant & (5), | f(z)]| est uniformément bornée entre ces deux che-
mins. Les résultats de Lindelof (') s’appliquent : si f(z) tend vers
des limites sur deux tels chemins, ces limites sont les mémes. Donc :

La fonction w= f(3) posséde q valeurs asymptotiques infinies
distinctes et q valeurs asymptotiques finies distinctes au plus; la fonc-
tion inverse 3 = @(w) posséde q singularités transcendantes a U'infini et
au plus q singularités transcendantes a distance finie. Les singularités
transcendantes & U'tnfini sont isolées des singularités algébriques.

Pour établir le dernier point, observons que les singularités algé-
briques de ¢(w) sont les valeurs de f(z) correspondant a f'(3)=o.
Dans A, on a f/(3) = f,(3) + W'(3), f,(3) est donné par

W(u
QIﬂf ( )—f 1(” il:')‘, u, )
T(e )

donc est borné dans les conditions indiquées pour f,(z) puisque (8)
converge, | f,(3)| est borné dans les portions de A o1 [ f(3)|> A dés
que A est pris assez grand. Au contraire

W(s) =@ (5) %

est asymptotiquement égal a
E) =0 F () =Y(=)F(E)=Lf(2) = f1(5)]F' (D).

D’aprés (2), F'(§) tend vers I'infini lorsque £ tend vers l'infini
dans D, donc lorsque | 5 | tend vers 1 dans A, f,(z) est borné dans les
portions de A ot | /(5)| > A. Il s’ensuit que f’(z)ne s’annule pas aux
points 3 pour lesquels f(5) est assez grand.

3. Supposons ici ¢=1. Si f(z) n’a pas de valeur asymptotique
finie, la surface de Riemann décrite par w= f(3) est de l'espéce
envisagée au n° 1: singularité transcendante unique et isolée. Suppo-

() Acta Soc. sc. Fennica, 46, n° &, 1915.



SINGULARITES DE CERTAINES FONCTIONS HOLOMORPHES. 429

sons que f(3) posséde un chemin de détermination finie (') tendant
vers | 3| = 1, soit L ce chemin. Introduisons la fonction

k(z)=f(2) + g(2),

ot g'(3) est bornée pour | 3] <1 et admet | 3| =1 comme ligne singu-
liére. On sait, d’aprés un théoréme de Fatou et Riesz que, pour
presque tous les 6, g(re®) tend vers une limite lorsque r tend vers 1 et
que ces limites forment un ensemble non dénombrable. La fonc-
tion k(z) admet les mémes chemins de détermination infinie que f(3)
mais elle n’a pas de chemins de détermination fine tendant vers |z |=1.
Supposons en effet qu’il existe un tel chemin L’. On peut supposer
que L et L’ sont des lignes polygonales. Si L' n’appartient pas au
domaine A’ obtenu en supprimant A de |3| <1, on peut trouver un
domaine A” contenant tous les points de A’, tel que tous les points
de L' appartiennent 4 A” ou a sa frontiére et dans lequel k(z) est
bornée. De méme si L n’appartient pas a A”, on peut trouver un
domaine A” contenant tous les points de A” et tel que L appartienne
a A” ou a sa frontiére, £(z) étant borné dans A”. Dans A” et en ses
points frontiéres appartenant a |3]| <1, points qui sont tous acces-
sibles, | f(3)| et |£(z)|sont bornés par un nombre M. Représentons
conformément A” sur un cercle |¢| < 1; les chemins tendant dans A"
vers | 3| =1 auront pour images des chemins aboutissant a un point
unique de |¢|=1 qu’on peut supposer étre v=1. A f(3) et k(3)
correspondent des fonctions F(¢) et K(¢) de module moindre que M;
K(v) tend vers une limite finie lorsque ¢ tend vers 1 sur un certain
chemin, donc d’aprés un théoréme de Lindelof (loc. cit.) tend vers
cette méme limite lorsque ¢ tend vers 1 par valeurs réelles. On a le
méme résultat pour F(¢). En revenant & f(z) et k(z) on voit que ces
deux fonctions tendraient respectivement vers des limites finies
lorsque 3 tendrait vers 1 sur un méme chemin spirale, ce qui n’est pas
possible puisque leur différence g(3) est indéterminée sur ce chemin.
Donc :

L’une au moins des fonctions w = f(3) ou w = f(3)+ g(z) définit

(') Je ne sais pas si cetle circonstance peut se présenter.

Journ. de Math., tome XV. — Fasc. IV, 1a36. 55
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une surface de Riemann ayant une seule singularité transcendante qui
est isolée des singularités algébriques.

4. Supposons q > 1. Ici encore, il est possible, a priori, que l'inverse
de f(z) admette g singularités transcendantes & distance finie. Mais,
comme ci-dessus, on peut trouver une fonction g(z) telle que f(3)+ g(5)
n’ait plus de valeurs asymptotiques finies. On peut, en effet, trouver
g1 fonctions g'(z), j=1, 2, ..., ¢g+1 bornées pour |z|<1,
admettant |z| =1 comme ligne singuliére et telles que toutes les
différences g;(z) — g.(z) jouissent de la méme propriété. Il suffit de
définir les g;(3) par les g + 1 séries de Taylor formées par les termes
pris de g+ 1 en ¢+ 1 dans une série telle que Zn—*z". D’aprés le
raisonnement précédent, dans chacun desq domaines limités par deux
domaines consécutifs correspondant a (5), une seule des ¢ + 1 fonc-
tions f(z)+ g;(3) peut admettre un chemin de détermination finie;
il existe une fonction f(3)— g,(3) qui n'a pas de valeur asympto-
tique finie. On a ainsi des exemples de fonction qui restent bornées sur
un chemin spiralique et dont les valeurs décrivent une surface de Riemann
admettant q singularités transcendantes & U'tnfini, toutes isolées des sin-
gularités algébriques.

8. Au contraire (1) ou (2) montre que la fonction inverse de ¢/
admet une infinité de singularités transcendantes a l'infini et &
l'origine. Elle fournit un exemple de fonction F(z), holomorphe pour
| 5| < 1, qui tend uniformément vers zéro sur une suite de courbes T, T,
tendant uniformément vers la circonférence |z|=1 ('). On sait (*)
qu’une fonction F(z) jouissant de cette propriété et qui serait bornée serait
tdentiquement nulle; i1 en de méme d’une fonction pour laquelle la
moyenne m(r, F) de Nevanlinna serait bornée. Car elle serait le quotient
de deux fonctions holomorphes bornées, le théoréme de Fatou et
Riesz sur les valeurs limites radiales s’appliquerait (*), la fonction ne
pourrait tendre vers une limite sur des courbes tendant vers un arc

(1) Comparer Bigsersacr, Funktionentheorie, Bd. 2, 2¢ édition, p. 153.
(*) Voir par exemple MontEL, Lecons sur les familles normales, p. 107.
(®) F. et R. NevANLINNA, Acta Soc. sc. Fennice, 50, n° 5, 1g22.
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fini de la circonférence sans étre constante. Les fonctions e/ consi-
dérées ici sont d'ordre de croissance infini dans le cercle unité
(voir n* 7); la question se pose de savoir si, en bornant I'ordre, on
pourrait étendre la proposition relative aux fonctions & m(r, F)
borné.

6. Considérons ici la classe générale des fonctions w = F(3) holo-
morphes et non bornées pour |z| <1 telles que chaque F(3z) est bornée
sur un chemin simple, mais quelconque, L[=L(F)]:3 = 3(t), t2o,
avec lim|z(t)|=1, tout point de |z|=1 étant point limite des

==

valeurs 3(t). Il est loisible de supposer que L est une ligne polygonale
et que [3(2)| > %-

Représentons conformément sur |£}< 1 le domaine formé par les
points de | 2] <1 n’appartenant pas 4 L. A L correspond la circonfé-
rence |£| =1 privée d'un de ses points qu’on peut supposer étre £ =1;
a tout chemin asymptote 4 | 3| =1 et ne coupant pas L correspond un
chemin aboutissant & £ =1 et inversement. F(z) est transformé
en O(%), holomorphe pour |§|<1 et continue pour |§|=1, sauf
enf=1; on a |®(&)|<M pour |§| =1, sauf en £ =1. Comme O(£)
n'est pas bornée, les raisonnements qui montrent qu’une fonction
entiére posséde des chemins de détermination infinie (') prouvent
qu'il existe dans |§| <1 un chemin A’ aboutissant & § =1 sur lequel
|©(E) | tend vers I'infini. Il existe donc dans |z| <1 un chemin poly-
gonal L’ ne coupant pas L, jouissant des propriétés de L et sur
lequel |F(z)| tend vers l'infini. On peut représenter sur un cercle
In| <1 le cercle | z| <1 privé des points de L’ (4 partir d'un point
arbitraire de L), L’ fournissant les points de |[v|=1, sauf n=1.
F(3) est transformée en y (7). Il s’ensuit que :

Dans toute couronner < |z| < 1, la fonction F(3) s’approche d’autant
qu’on veut de toute valeur.

On peut le voir en observant que, w étant donné fini, si F(z) —w
ne s'annule pas dans une telle couronne et si P(z) est le polynome

(*) Voir Vaumon, Comptes rendus, 166, 1918, p. 382.
RA
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P(z
#‘) est
holomorphe pour |z | < 1; F,() n’est pas bornée pour |z| <1, car si
elle I'était, elle devrait étre identiquement nulle d’aprés le théoréme
rappelé au n° 3 puisqu’elle tend vers zéro sur L. F, (z) n’est donc pas
bornée, ce qui établit la proposition.

On peut aussi dire que la moyenne m(r, F) n’est pas bornée
d’aprés ce qui a été dit au n° 5, donc, d’aprés un théoréme de
Ahlfors ('), F(z) prend une infinité de fois toutes les valeurs, sauf
au plus celles d’un ensemble de mesure linéaire nulle (sur la sphére).

o étant un nombre fini donné et e positif arbitraire, considérons
I'un des domaines D (w, ¢) dans lesquels | F(z) — | <e. SiD(w, €) est
complétement intérieur au cercle |3|< 1, F(z) prend la valeur o
dans D(w, ¢). Dans le cas contraire, on peut considérer la fonc-
tiony () correspondant a une portion de L' surlaquelle| F(z)| > |w|+e.
A D(w, ) correspond un domaine A(w, ¢) dans lequel |y () — | <e
et sur la frontiére duquel, sauf pour =1, on a |y(n) —ow|=c«.
Il s’ensuit que, si y(v)) ne prend pas la valeur w dans A(w, €), cette
fonction tend vers w lorsque v tend vers 1. Donc, dans tout domaine
D(w, ¢), F(z) prend la valeur » ou s’en approche d’autant qu’on
veut (*). De méme, tout domaine dans lequel |[F(z)|™> A contient
un chemin sur lequel | F(z)|tend vers l'infini.

Le théoréme de M. Iversen sur les fonctions inverses des fonctions
méromorphes en tout point a distance finie (*) s’étend donc aux
fonctions de la classe envisagée :

formé avec les zéros de F(z)— w, la fonction F,(z) =

Soit W la surface de Riemann décrite par w = F(z). Toute portion
connexe de W qui se projette & U'tntérieur (ou a Uextérieur) d’un
cercle C du plan simple des w contient des lignes dont la projection sur
ce plan simple est aussi voisine que l’on veut d’une ligne donnée arbi-
trairement dans C (ou a Uextérieur de C).

7. Revenons a la fonction f(z)du n° 2. Si petit que soit le nombre

(1) Comm. Soc. sc. Fennice, 5, 1931, n° 16.

() Les théorémes de Gross (Math. Z., 2, 1918), permettent d’affirmer davan-
tage.

(*) These, Helsingfors, 1915.



SINGULARITES DE CERTAINES FONCTIONS HOLOMORPHES. 433

positif ¢, il existe des valeurs de o aussi grandes que I’on veut pour

lesquelles
V(o) >[n(a)]"=.

Car supposer que l'inégalité contraire
Vta)é [eV/(a)]—*
serait vérifiée & partir d’'une valeur de o conduirait 4 un résultat
absurde. On déduit de la que
—— loglogF (o)

,}l:n:, logn(e) ~—
et en tenant compte des propriétés de ®(&) dans les domaines (5)
et de la transformation (7) qui fait passer a f(z), on voit que,

M(r, f) étant le maximum de | f(3)| pour |3|=r,0ona

— log. M(r, f) —1.

lim
I

1—r

S (z) est d’ordre infini dans le cercle. Son ordre ne dépend pas de la
rapidité de la croissance de n(g), c’est-a-dire de la rapidité de la
convergence vers |z | =1 des chemins sur lesquels | f(z)| reste borné.
On obtiendrait des fonctions d’ordre plus élevé en faisant au préalable
une représentation conforme de la bande D sur une autre définie par
une fonction N(c) différente de celle fournie par F(&); on reviendrait
ainsi a la méthode de ma Note citée des Comptes rendus qui peut fournir
une grande variété d’exemples.

Nous allons établir, en ce qui concerne l'ordre, la réciproque
suivante :

St w =F(z) n’est pas bornée dans le cercle | 3| < 1, mais reste bornée
sur un chemin continu T', asymptote & |3|=1 et tel que lorsqu’on le
décrit, l'une au moins des limites d’indétermination de I’argument soit
infinie, on a

mlOgth(’;a F) >1.
r=i1

logl_r

Pour le démontrer, on supposera toujours que I' est une ligne
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polygonale, la portion connexe I de I' qui est extérieure au cercle
1 o . 1 .

r=|z|=, délimite dans la couronne ; <r<1 un domaine D.

La transformation (7) représente D sur un domaine A limité par la
droite T=1log2 et par deux courbes vy, Y’ appartenant & la bande
0 <1< log2; ¥ sedéduit de y par une translation de 27 ; y est asymp-
tote au moins & un point a l'infini de 'axe des g, on supposera, pour
fixer les idées, que c’est au point + o (il peut se faire que tout point
de P’axe des o ou d’une demi-droite de cet axe soit point limite des
points de ).

On applique la méthode de Carleman () 4 la transformée H(§)
de F(3), transformée qui est holomorphe dans A et bornée i distance
finie sur sa frontiére. Si A’ est une portion connexe de A définie
par log |H(%)| > K, K étant supérieur a la bornede log| H(§) | sur la
frontiére de A, on rendra A’ simplement connexe en lui adjoignant s'il
y a lieu des régions bornées dans lesquelles on a log|H(&)<K;
on obtient ainsi un domaine A”. Soit {,= 6, ¢1, un point de A”.
Pour chaque o supérieur a a,, la droite 6 =const. définie par ce
nombre détermine dans A” un nombre fini ou infini de domaines, I'un
d’eux contient &,, j'appelle M(¢) le maximum de |H(&)| dans ce
domaine. M(c) est une fonction indéfiniment croissante, qui aura,
en général, des discontinuités isolées, sa valeur & droite M(c+0)a
une dérivée & droite, j'appellerai simplement M(o) et M'(c) cette
valeur & droite et sa dérivée, et je poserai '

U(o) =logM(o), U'(o) =

Si |H(o+it)| =M(o), on applique la méthode de Carleman au
domaine connexe contenant ce point ¢ + 7, situé 4 gauche de ladroite
d’abscisse o+ ¢, et dans lequel |H(¥')| > yM(a). On obtient donc

(*) Arkiv fiar Mat., Bd. 15, n° 10, 1920. La méthode de M. Carleman
présente ici I'avantage de conduire de suite a la relation différentielle qui résout
la question. Elle donnerait de méme des résultats dans I'étude de I'extension des
domaines o1 une fonction est trés grande (Comparer MiLLovx, Acta math., 61,

1933, p. 105).
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(form. (8) de Carleman)
Ue) ,_ 4 |
U(e)— LU ™

ou h(c) est la somme des longueurs de segments d’abscisse .o aux

extrémités desquels | H(E)| = yM(o).
Ainsi, pour chaque ¢ assez grand, nous avons un point ¢+ i7,
avec
. I 2U(o)
! > 217,
log[l{(a+zr)]§2U(a'), ran,(a)
Comme U () croit indéfiniment, il existe des o aussi grands que 'on
veut pour lesquels, si petit que soit le nombre positif «, on a
Ul(a) +%
Tlo) <[logU (o)}**+>.
Car, si I’on avait
U'(9) >
U() [logU(a)]*+= =7

o >0y,

on en déduirait que, les o, étant les points de discontinuités de U,

1 ) | I I
TogUGIF ~ Tos U — o2y [uogu @IF  [logUGy— o)]“] 2ale—a,

ce qui est absurde. Finalement, on a des points ¢+ i pour lesquels

2

} I
o >- 2=
log| H(e +i7) |2 > U(o), ' Tz n[logU(a’)]‘+“’

il s’ensuit que
,m_lognlﬂ(o'—i—l'r)l >1,
=

log ‘%

ce qui entraine le théoréme énoncé.



