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SINGULARITÉS DE CERTAINES FONCTIONS nor.ouoneuns. 423  
Sur les singularités de certaines fonctions holomorphes

et de leurs inverses,-

PAR GEORGES VALIRON .

1. Dans son Mémoire Sur les équations fonctionnelles, P. Fatou a
étudié d’une façon approfondie la fonction de Kœnigs des substitu-
tions à cercle fondamental invariant, |z | < 1, et a montré que, dans
le cas des substitutions de première espèce ayant un point double de
multiplicateur non nul au centre du cercle, cette fonction K(z), holo—
morphe dans ce cercle, est d’ordre fini (au sens d’Hadamard) sur la
circonférence,et tend vers l’infini lorsque |z| tend vers 1 à l’extérieur
de petites régions entourant les zéros('). D’une façon précise, si grand
que soit A, les points en lesquels

|
h(z)| > A forment un domaine de

connexion infinie A(A) que l’on obtient en supprimant d’un domaine
de forme coronale limité par |z | < r et par une courbe intérieure des
domaines en nombre infini limités par des courbessans points communs
avec |z|=1, la somme des longueurs de ces courbes tendant vers
zéro avecâ- A(A) contient, en outre, des lignes fermées F de longueur
bornée entourant l’origine, sur lesquelles |: | > a, si proche que et soit
de 1. La dérivée de K(z) jouit de propriétés analogues et, tout au
moinsdans certains cas, |K(z) | + | K’(z)| tend vers l’infini lorsque

| z|
tend vers 1 (’), ce qui établit directement que w = 00 qui est le seul
point critique transcendant de la surface de Riemann décrite par 

(') Bull. Soc. mat/t., 58, 1920, p. 269-273.
(2) Voir les pages 63-65 du Mémoire de Il. CARTAN, Bull. Sciences math.,

55, 1931.
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w = K(z) est aussi le seul point limite des points critiques algébriques.
Des exemples de cas analogues sont fournis par les fonctions cons-

truites par Lusin et Priwalof (‘), fonctions qui jouissent des pro-
priétés énumérées pour K(z) (avec la circonstance que parmi les
courbes F figurent des cercles de centre origine, alors qu’on ne sait
pas s’il en est ainsi pour les fonctions considérées par Fatou) mais
pour lesquelles l’étude de la dérivée n’est pas faite.

D’une façon générale, supposons que w = F(z) soit holomorphe et
non bornée pour |z|<1 et que, si grand que soit A, les points
où |w| > A forment un seul domaine A(A) obtenu en enlevant d’un
domaine déforme coronale dont |z| = 1 est l’une des deux courbes
frontières une infinité de régions fermées toutes intérieures à |z | < 1 .

Alors w= ce est le seul point critique transcendant de la fonction
inverse z = cp(w) de F(z) et c’est un point limite de points critiques
algébriques. Car, en faisant croître A, on voit qu’il existe des A pour
lesquels la frontière extérieure de A(A) (autreque |z |

= I) a un point
commun avec une région enlevée; les valeurs correspondantes de w
fournissent des points critiques algébriques de cp(w) tendant vers
l’infini.

La surface de Riemann, du type hyperbolique, décrite par w est
donc à rapprocher des surfaces du type parabolique décrites par
w= F(z) lorsque F(z) est une fonction entière dont le module tend
vers l’infini quand | z | tend vers l’infini sur une suite de courbesentou- -

rant l’origine (fonctionsd’ordre inférieur à 0,5 et autres).

Une surface de Riemann simplement connexe qui ne possède qu’une
seule singularité transcendante peut être du type hyperbolique, même si
cette singularité est isolée.

Considérons une telle surface et supposons, ce qui est loisible, la
singularité transcendante à l’infini. Si w=F(z) est la fonction
inverse d’une fonction z=cp(w) représentant conformément cette
surface sur |z | < 1, le domaine défini par |w| > A doit être simple-
ment connexe dès que A est assez grand et doit admettre tous les
points de la circonférence |z |

= 1 pour points limites de ses points. 
(‘) Annales École Norm., 3° série, 112, 1925.
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Les domaines les plus simples jouissant de cette propriété semblent
être ceux qui s’enroulent autour de la circonférence |z |

= 1. On est
ainsi amené à étudier les fonctions holomorphes et non bornées
pour |z| < 1 qui restent bornées sur des courbes spiraliques asymp-
totesà|zl=r. ,

2. J’ai déjà indiqué (‘) comment on peut construire des fonctions
de l’espèce cherchée. En modifiant légèrement ce procédé on peut
opérer comme suit. Soit

F(ë) =Zanz"
0

une fonction entière, à coefficients positifs, de E: a + irc. Pour
Chaque a positif, nous appelons n(a) la valeur minimum de n pour
laquelle a,, a" est maximum. Nous supposonsque n(o) est assez régu—
lière pour que tous les a assez grands soient des valeurs ordinaires (“‘).
Alors les sauts de n(a) sont égaux à 1 pour a assez grand. On sait que

logF(a) f\J V(a):] n(w) %’
a& nl_a)

.(!) F(E)m<-Ë) F(a) sn |E—a|<h———,
a n(a)

11 étant donné arbitrairement grand (loc. cit., 29, p. 101).
F(a‘+ir)rv e“° F(a)

|

si m=rn—(Ï—)<[n(a)]m.… |F«ç+iæ)]…$F(«) «
 

\ ° 9
"(G) ANous supposerons encore que, a partir d une valeur de 0', T cront;

(3) V(a)>[n(a)]“, o<a<r,
. n(a) _“” 22‘1m —°'

La condition (4) impose à F(c) une croissance assez rapide, les
autres sont alors toutes des conditions de régularité vérifiées
lorsque n(a) est une fonction simple. 

) Comptes rendus, 198, 1934, p. 2065-2067.
)

(i
(2 Voir Lectures on the general theory of integral functions, Chap. IV.
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Si N(c) désigne la fonction linéaire en a entre deux valeurs c’, a”

consécutives_de a pour lesquelles n(a) est discontinue, et égale
. N .
a n(a) pour c’ et a”, & est encore crorssant pour a assez grand.I . a
En vertu de (2), & étant donné positif et arbitrairement petit et p
étant entier positif ou nul, le module de

…,=em,
est supérieur à e…“, [:= k(e)> 0, lorsque E s’éloigne indéfiniment
dans les domaines

31r 571:(5) Î+2p1r+e a<N(a)r<a<Î+zpn—e),
et tend vers zéro plus rapidement que e‘”“°’ lorsque E s’éloigne dans

(6) (g+2pn+s)a<N(c)r<a<ï+2p1r—e>.
Considérons le domaine D défini par

<Ë+E>U<N(0)T<0(Ë+—2q1‘t—E), a>a…

où q est un entier positif et 60 donné assez grand. Eu égard à la condi-
tion (4), la transformation
(7) s=e‘£, E=a+ir
fait correspondre biunivoquement 'à D un domaine spiralique A
contenu dans |z [ < 1 et asymptote à la circonférence. La fonc—
tion 1I"(z)=d>(E) est holomorphe dans A. Au contour y(c, d) du
plan E défini par .

ca=rN(a), a 2 d
[2(q+1)n—c]a=rN(a), aëd Ë+e<c<%“ ——-s,

caêrN(a)ë[z(q+1)n—c]a, a=d
correspond un contour I‘(c, d) du plan des z intérieur à A. Étant
donnée la rapidité de la décroissance de Œ(E), conséquence de (3)
et (4), lorsque E s’éloigne indéfiniment sur y(c, d), l’intégrale

(8)
' f ll®(ë)l[ft(d)lild&i("/‘!”
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Qexiste. Comme dg tend vers 1 lorsqu’on s’éloigne dans D, on voit que; Md”
2 in F ;(ed)“ _

l’intégrale

prise dans le sens direct par rapport à l’extérieur de F(c, d)‘ définit
une fonctionf(z) holomorphe pour |: | < 1 et 2 extérieur à F(c, d)
et une fonctionf, (2) holomorphe pour z intérieur à F(c, d). D’après
la convergencede (8), f(z) etf, (z) restent inférieurs à un nombre M(e)
lorsque |z| tend vers 1 en restant à l'extérieur des deux bandes
balayées par I‘(c’, d) lorsque d étant fixe, c’ varie entre 0 — e et c + &.

On peut prolongerf(2) pour tout z de module inférieur à 1 en faisant
croître d. f(2) étant ainsi défini, si z est intérieur au domaine
primitif I‘(c, d), on a

'

f(s) =f,(z) + 1P'(z)L

Comme enfin ]( 3) ne change pas si c varie entre les limites fixées,
le comportement de cette fonction est connu, à une fonction bornée
près, lorsque |5| tend vers 1. |](z) —‘F(z)| est borné dans A,
lf(z)l est borné partout ailleurs. Dans A l’étude de f(z) est ramenée
à celle de f(ei5) qui ne diffère de Œ(E) que par une fonction restant
bornée. Donc, dans_les q domaines spiraliques correspondant à (5),
f(z) tend vers l’infini lorsque [; | tend vers 1. D’autre part, en suppo—
sant h assez grand, (1) montre que le domaine riemannien décrit par
Z = F (E) lorsque & décrit la portion de D appartenant à

| € — a
| < %

est une couronne tournant q fois autour de l’origine (c’est là l’origine
du théorème de Bloch). Il s’ensuit que, si L est un chemin de déter—
mination infinie def(2) compris entre deux domainesconsécutifsA. , A2
correspondant respectivement à (5) et (6), et si L’ est un chemin de
détermination infinie appartenant à A., |f(z)| tend encore vers
l’infini lorsque |z| tend vers 1 dans le domaine limité par L et L' et
ne contenant pas A.,. On a un résultat analogue pour les chemins de
détermination infinie compris entre la frontière de A et un des deux
domaines correspondant à (5) et voisins de cette frontière. Ainsi,
tout chemin de détermination infinie de f(z) est complètement
contigu à ceux appartenantà l’un des domaines correspondant à(5).
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On voit de même que si |f(z)| reste bornée sur deux=chemins
asÿmptotes à |z |

= 1 compris entre deux domaines consécutifs corres—
pondant à (5), |f(z)| est uniformément bornée entre ces deux che-
mins. Les résultats de Lindelôf (' ) s’appliquent : si f(z) tend vers
des limites sur deux tels chemins, ces limites sont les mêmes. Donc :

La fonction W =f(2) posséde q valeurs asymptotiques infinies
distinctes et q valeurs asymptotiquesfinies distinctes au plus; la fonc—
tion inverse z : cp(w) possède q singularités transcendantes à l’infini et
au plus g singularités transcendantes à distance finie. Les singularités
transcendante‘sà l’infini sont isolées des singularitésalgébriques.

Pour établir le dernier point, observons que les singularités algé—
briques de <p(W) sont les valeurs de f(z) correspondant à f’(z\ = 0.
Dans A, on a j’(z) =f4 (z) + 1I"’(z), f'. (z) est donné par

9.i’,:7rf()=f “”_’,.ddu,
1-._(( (,(u —..) 

donc est borné dans les conditions indiquées pour f,(z) puisque (8)
converge, |f',(z)| est borné dans les portions de A où |f(z) | > A dès
que A est pris assez grand. Au contraire

W'<= >= <D'Œ)Î“€
est asymptotiquement égal à

®'(E)=°(E)F’(Ë)=W(Z)F'(E)=lf(Z) —f1(z)lF'(ë)-

D’après (2), F’(E) tend vers l’infini lorsque E tend vers l’infini
dans D, donc lorsque |: | tend vers 1 dans A, f.(z) est borné dans les
portions de A où |f(s) | > A. Il s’ensuit que f’(z) ne s’annule pas aux
points 2 pour lesquelsf(s) est assez grand.

5. Supposons ici q = 1. Si f(2) n’a pas de valeur asymptotique
finie, la surface de Riemann décrite par w=f(z) est de l’espèce
envisagéeau n° 1 : singularité transcendante unique et isolée. Suppo- 

(’) Acta Soc. se. Fennz‘cæ, 106, n0 1|-, 1915.
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sons que f(z) possède un chemin de détermination finie (') tendant
vers |z| : 1, soit L ce chemin. lntroduisons la fonction

k(=)=f(Z) +ä'(Z)—

où g’(z) est bornée pour | 2 | < 1 et admet |z |
= 1 commelignesingu-

lière. On sait, d’après un théorème de Fatou et Riesz que,— pour
presque tous les 6, g(re‘°) tend vers une limite lors“que r tend vers 1 et
que ces limites forment un ensemble non dénombrable. La fonc—
tion Ic(z) admet les mêmes chemins de détermination infinie que f(z)
mais elle n’a”pas de chemins de déterminationfine tendant vers | z |

= 1 .

Supposons en effet qu’il existe un tel chemin L’. On peut supposer
que L et L’ sont des lignes polygonales. Si L’ n’appartient pas au
domaine A’ obtenu en supprimant A de |z| < 1, on peut trouver un
domaine A” contenant tous les points de A’, tel que tous les points
de L’ appartiennent à A” ou à sa frontière et dans lequel k(z) est
bornée. De même si L n’appartient pas à A”, on peut trouver un
domaine A’” contenant tous les points de A” et tel que L appartienne
à A’” ou à sa frontière, k(z) étant borné dans A’”. Dans A’” et en ses
points frontières appartenant à |z|< 1, points qui sont tous acces—
sibles, |f(z)l et |k(z)| sont bornés par un nombre M. Représentons
conformément A’” sur un cercle |v| < 1; les chemins tendant dans A’”
vers |z |

=! auront pour images des chemins aboutissant à un point
unique de |v|=1 qu’on peut supposer être v=1. A f(z) et k(z)
correspondent des fonctions F(v) et K(v) de module moindre que M;
K(v) tend vers une limite finie lorsque «» tend vers 1 sur un certain
chemin, donc d’après un théorème de Lindelôf (loc. cit.) tend vers
cette même limite lorsque v tend vers 1 par valeurs réelles. On a le
même résultat pour F(0). En revenant àf(z) et k(z) on voit que ces
deux fonctions tendraient respectivement vers des limites finies
lorsque 5 tendrait vers 1 sur un même chemin spirale, ce qui n’est pas
possible puisque leur différence g(z) est indéterminée sur ce chemin.
Donc :

L’une au moins des fonctions W =f(z) ou W =f(z)+ g(z) définit 
(‘) Je ne sais pas si cette circonstance peut se présenter.

Journ. de Math.. tome XV. — Faso. IV. 1036. 55
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une surface de Riemann ayant une seule singularité transcendantequi
est isolée des singularités algébriques.

4. Supposons q > 1 . Ici encore, il est possible, a priori, que l’inverse
def(2) admette q singularités transcendantes à distance finie. Mais,
comme ci—dessus, on peut trouverune fonctiong(z) telle quef(3)+g(z)
n’ait plus de valeurs asymptotiques finies. On peut, en effet, trouver
q+1 fonctions g',-(z), j=1, 2, . . ., q+1 bornées pour |z|<1,
admettant |z| = 1 comme ligne singulière et telles que toutes les
différences g,(z) — g,.(z) jouissent de la même propriété. Il suffit de
définir les g,—(z) par les q + 1 séries de Taylor formées par les termes
pris de q+ 1 en q+1 dans une série telle que En“"z"’. D’après le
raisonnementprécédent, dans chacun des'q domaines limités par deux
domaines consécutifs correspondant à (5), une seule des q—l— 1 fonc—
tionsf(z)+g,—(z) peut admettre un chemin de détermination finie;il existe une fonction f(z)+g,(z) qui n’a pas de valeur asympto-
tique finie. On a ainsi des exemples de fonctionqui restent bornées sur
un chemin spiralique et dont les valeurs décrivent une surfacede Riemann
admettant q singularités transcendantes à l’infini, toutes isolées des sin—
gularités algébriques.

5. Au contraire (I) ou (2) montre que la fonction inverse de ef”)
admet une infinité de singularités transcendantes à l’infini et à
l’origine. Elle fournit un exemple de fonction F(z), holomorphepouf
|
z | < 1 , qui tend uniformément vers zéro sur une suite de courbes l‘… l‘,,

tendant uniformément vers la circonférence ]z [
= 1 (‘). On sait (2)

qu’unefonction F(z)jouissantde cettepropriété et quiserait bornée serait
identiquement nulle; il en de même d’une fonction pour laquelle la
moyennem(r, F) de Nevanlinnaserait bornée. Car elle serait le quotient
de deux fonctions holomorphes bornées, le théorème de Fatou et
Riesz sur les valeurs limites radiales s’appliquerait (3), la fonction ne
pourrait tendre vers une limite sur des courbes tendant vers un arc 

) ComparerBIEBBRBACE, Funktionentheorie, Bd. 2, 2° édition, p. 153.-
) Voir par exemple Mouret, Leçons sur les familles normales, p. 107.
) F. et R. NRVANLINNA, Acta Soc. se. Fennicæ, 50, n° 5, 1922.

1

2

3

(
(
(
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fini de la circonférence sans être constante. Lesfonctions ef… consi—
dérées ici sont d’ordre de croissance infini dans le cercle unité
(voir n‘ 7); la question se pose de savoir si, en bornant l’ordre, on
pourrait étendre la proposition relative aux fonctions à m(r, F)
borné.

6. Considérons ici la classe générale des fonctions W: F(z) holo-
morphes et non bornéespour |z | < 1 telles que chaque F(z) est bornée
sur un chemin simple, mais quelconque, L[= L(F)] : z : z(t), têo,
avec lim | z(t)|: 1, tout point de '|z| : 1 étant point limite dest::
valeurs z( t). Il est loisible de supposer que L est une ligne polygonale
et que |z(t)|>

%-

Représentons conformémentsur |E | < 1 le domaine formé par les
points de |z | < 1 n’appartenantpas à L. A L correspond la circonfé-
rence |E|= 1 privée d’un de ses pointsqu’on peut supposerêtre 5: 1;
à tout chemin asymptote à |z |

= 1 et ne coupant pas L correspond un
chemin aboutissant à E: 1 et inversement. F(z) est transformé
en ®(E), holomorphe pour |E|<1 et continue pour |E|=I, sauf
en E=1; on a |®(E)|<M pour |E|=I, saufenE=1. Comme®(E)
n’est pas bornée, les raisonnements qui montrent qu’une fonction
entière possède des chemins de détermination infinie (‘) prouvent
qu’il existe dans |E|< 1 un chemin X’ aboutissant à E = 1 sur lequel
|@(E) | tend vers l’infini. Il existe donc dans |z | < 1 un chemin poly-
gonal L’ ne coupant pas L, jouissant des propriétés de L et sur
lequel |F(z)| tend vers l’infini. On peut représenter sur un cercle
|1| | < 1 le cercle |z | < 1 privé des points de L’ (à partir d’un point
arbitraire de L’), L’ fournissant les points de |n|=1, sauf 1|=1.
F(z) est transformée en x(*q). Il s’ensuit que :

Dans toute couronne r< | 2 | < 1 , lafonctionF(z) s’approched’autant
qu’on veut de toute valeur.

On peut le voir en observant que, (» étant donné fini, si F(z) —œ
ne s’annule pas dans une telle couronne et si P(z) est le polynome 

(’) Voir VALIRON, Comptes rendus, 166, 1918, p. 382.
Fifi
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P z%) est
holomorphepour |z | < | ; F. (2) n’est pas bornée pour |

z | < 1, car si
elle l’était, elle devrait être identiquement nulle d’après le théorème
rappelé au n° 5 puisqu’elle tend vers zéro sur L' . F1 (z) n’est donc pas
bornée, ce qui établit la proposition.

On peut aussi dire que la moyenne m(r, F) n’est pas bornée
d’après ce qui a été dit au n° 5, donc, d’après un théorème de
Ahlfors ('), F(2) prend une infinité de fois toutes les valeurs, sauf
au plus celles d’un ensemble de mesure linéaire nulle (sur la sphère).

(» étant un nombre fini donné et & positif arbitraire, considérons
l’un des domaines D(œ, &) dans lesquels | F(z) — m

| < &. Si D(w, e) est
complètement intérieur au cercle |z|< ], F(z) prend la valeur (»

dans D(œ, a). Dans le cas contraire, on peut considérer la fonc-
tionX("f,) correspondant à une portion de L’ surlaquelle| F(z)|> |

(» |+ &.

A D(œ, &) correspond un domaine A(w, &) dans lequel | x(vq) — m
| < a

et sur la frontière duquel, sauf pour n=1, on a |x(n)—œ|=e.
Il s’ensuit que, si x(n) ne prend pas la valeur (» dans A(œ, a), cette
fonction tend vers ou lorsque ?] tend vers 1. Donc, dans tout domaine
D(w, a), F(z) prend la valeur ou ou s’en_approche d’autant qu’on
veut (2). De même, tout domaine dans lequel |F(z)| >A contient
un chemin sur lequel |F(z)

|
tend vers l’infini.

Le théorème de M. [versen sur les fonctions inverses des fonctions
méromorphes en tout point à distance finie (“) s’étend donc aux-
fonctions de la classe envisagée :

formé avec les zéros de F(z) — m, la fonction F.(z) =

Soit W la surface de Riemann décrite par w = F (2). Toute portion
connexe de W qui se projette à l’intérieur (ou à l’eæte'rieur) d’un
cercle C du plan simple des w contient des lignes dont la projection sur
ce plan simple est aussi voisine que l’on veut d’une ligne donnée arbi—
trairement dans C (ou à l ’eætérieur de C).

7. Revenons à la fonction f(z) du n° 2. Si petit que soit le nombre 
(‘) Comm. Soc. sc. Fennicæ, 5, 1931, n° 16.
(’) Les théorèmes de Gross (Math. Z., 2, 1918), permettent d’affirmer davan-

tage. '

(3) Thèse, Helsingfors, 1915.
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positif &, il existe des valeurs de a aussi grandes que l’on veut pour
lesquelles

V(a) > [n(a) ]‘—5.

Car supposer que l’inégalité contraire

V (G) é [°V’(U) ]"5
serait vérifiée à partir d’une valeur de a conduirait à un résultat
absurde. On déduit de là que

Îirî log logl* (a) = [,
a___æ logn(a)

et en tenant compte des propriétés de Œ(E) dans les domaines (5)
et de la transformation (7) qui fait passer à f(z), on voit que,
M(r, f) étant le maximum de |f(z)| pour |z| = r, on a

13… = [_
r=1 !

I — " 
f(z) est d’ordre infini dans le cercle. Son ordre ne dépend pas de la
rapidité de la croissance de n(a), c’est-à—dire de la rapidité de la
convergence vers |z |

= 1 des chemins sur lesquels |f(z)| reste borné.
On obtiendraitdes fonctions d’ordre plus élevé en faisant au préalable
une représentationconforme de la bande D sur une autre définie par
une fonction N(o) différente de celle fournie par F (E), on reviendrait
ainsi à la méthodede ma Note citée des Comptesrendus qui peut fournir
une grande variété d’exemples.

Nous allons établir, en ce qui concerne l’ordre, la réciproque
suivante :

Si w: F(z) n’estpas bornée dans le cercle |z | < I, mais reste bornée
sur un chemin continu I‘, asymptote à |z|= 1 et tel que lorsqu’on le
décrit, l’une au moins des limites d ’inde'termination de l’argument soit
infinie, on a

Œlog,‘M(r, F)
2 1.

r=1 ‘ _
logl_r 

Pour le démontrer, on supposera toujours que I‘ est une ligne
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polygonale, la portion connexe ]" de F qui est extérieure au cercle

I . . I .r= |z|=; délimite dans la couronne ; <r<1 un domaine D.
La transformation (7) représente D sur un domaine A limité par la
droite «:=log2 et par deux courbes y, y’ appartenant à la bande
0 < fc < log2; y’ se déduitde 7 par une translationde 2 Tt ; Y est asymp-
tote au moins à un point à l’infini de l’axe des a, on supposera, pour
fixer les idées, que c’est au point + oo (il peut se faire que tout point
de l’axe des a ou d’une demi—droite de cet axe soit point limite des
points de 7).

On applique la méthode de Carleman (‘) à la transformée H(E)
de F(z), transformée qui est holomorphe dans A et bornée à distance
finie sur sa frontière. Si A’ est une portion connexe de A définie
par log | H(E) | > K, K étant supérieur àla borne de log| H(E) | sur la
frontière de A, on rendra A’ simplement connexe en lui adjoignants’il
y a lieu des régions bornées dans lesquelles on a log]H(ë)îK;
on obtient ainsi un domaine A”. Soit &: co+ ir, un point de A”.
Pour chaque 0 supérieur à cro, la droite a=const. définie par ce
nombre détermine dans A” un nombre fini ou infini de domaines, l’un
d’eux contient EO, j’appelle M(c) le maximum de |H(E)| dans ce
domaine. M(o) est une fonction indéfiniment croissante, qui aura,
en général, des discontinuités isolées, sa valeur à droite M(a+ 0) a
une dérivée à droite, j’appellerai simplement M(a) et M’(o) cette
valeur à droite et sa dérivée, et je poserai

'

U(a)=logM(a), U’(a)— 
Si | H(a +iæ)|: M(a), on applique la méthode de Carleman au
domaine connexe contenantce point a + ir, situé à gauchede la droite
d’abscisse c+e, et dans lequel |H(E’)| > JM(a). On obtient donc 

(‘) Arkiv für Mat., Bd. 15, n° 10, 1920. La méthode de M. Carleman
présente.ici l’avantage de conduire de suite à la relation différentiellequi résout
la question. Elle donnerait de même des résultats dans l’étude de l’extension des
domaines où une fonction est très grande (Comparer MILLOUX, Acta mat/a., 61,
1933, p. 105).
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(form. (8) de Carleman)

U'(a)
U (U) —— âU(a)

&
z'1|:h(a)’

où h(a) est la somme des longueurs de segments d’abscisse @ aux
extrémités desquels | H (E)| = \/ M(a).

Ainsi, pour chaque a assez grand, nous avons un point c+ir,
avec

‘ 2U(a)
loglli(a+ir)lêâU(a), fëæuîa'3'

Comme U(a) croît indéfiniment, il existe des a aussi grands que l’on
veut pour lesquels, si petit que soit le nombre positif et, on a

Ë+:; < [logU(a)]“““.
Car, si l’on avait __…”— > 1 a > ,.

U (U) l10gU(°)l‘+“ : ’ “
on en déduirait que, les av étant les points de discontinuités de U,  [ I I [
['°gU<v«>]°‘

_
[logU (a —- o)]Œê2 l[logU(…)]:_ [logU (av—O)]“] Ë°“°‘ °”’

ce qui est absurde. Finalement, on a des points @+ if: pour lesquels

2_ I0 > _ > ——]… H(a+ rr)
| = 2

U(a),
.

r: …0gU(a)]…’
il s’ensuit que

.li_m_lognlH(a+lr)l gl,
O'=eo log

%_

ce qui entraîne le théorème énoncé.


