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Sur quelques points de théorie des enveloppes;

Pan Gnonans BOULIGAND.

i. L’hommage que je veux rendre ici à M. Édouard Goursat
s’attache indissolublement au souvenir de l’une des toutes premières
leçons de son cours de la Sorbonne,qui souleva l’enthousiasmeunanime
de ma promotion à l’École Normale, en novembre 1909. L’objet de
cette leçon avait été d’établir sous quelle forme la méthode des appro-
ximations successives de M. Émile Picard conduit, dans les conditions
ordinaires, au théorème local sur l’existence des fonctions implicites.

Il s’agissait là, en considérant une équation unique, du cas régulier
d’un problème dont les cas singuliers les plus courants ont eux-mêmes
une importance capitale : ils tiennent en effet sous leur dépendance la
théorie classique des enveloppes (').

Je me suis attaché, en 1918, à traiter d’une manière systématique
les plus simples de ces cas singuliers (2). Mon principe de recherche
se trouve exposé dans mon Cours de Géométrieanalytique(“),en vue de
ses applications les plus simples.

En 1922, j’ai donné par ces considérations l’explication appro- 
(') Ce fut M. Henri Lebesgue qui, dans une conférence d’agrégation faite en

1912 à l’École Normale, entretint de cette difficulté la promotion ci-dessus
nom mec.

(=) Le cas singulier des fonctions implicites et les enveloppes dans le plan
(Revue de l ’enseignementdes Sciences, 12° année, nov.—déc. 1918, p. 225—237)_

(3) Voir les n°5 69, 70, 71 d’une part et les n°$ MO, lk-l, ill—2 d’autre part.
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fondie du paradoxe qui se présente lorsqu’à un systéme '

f(xaya :: a)=o, é’(æ,)', 5; a)=07

définissant une famille de courbes gauches à un paramètre, famille en
général dépourvue d’enveloppe,on substitue le système

f(æy Ï) Z, a)=07 B(‘”9Ïv 5)=0y

dont la dernière équation provient de l’éliminationde a entre les deux
équations du système précédent (' ). En terminant ce dernier exposé,
j’examinais sommairement le cas où les courbesf= o, g:0, admettent
une enveloppe : sous des conditions appropriées, je montrais que la
surface R(x, y, z) = 0 admet alors une arête de rebroussement.

Le présent exposé aura pour principal objet la solution du problème
suivant :

Établir l ’existence de l’arête de rebroussement pour l’enveloppe d’une
famille de surfaces à un paramètre

f(x, _}'_. :, a) = o,

en précisant des conditions suffisantes en vue de cette existence.

Le rôle joué par cette catégorie d’enveloppes dans la génération des
intégrales d’une équation aux dérivées partielles du premier ordre,
lorsqu’on en possèdeune intégralecomplète, montre bien toute l’atten-
tion méritée par la question précédente (°). 

(1) Sur une notion d’équivalence locale apte à préciser certains points de la
théorie des enveloppes (Nouvelles Annales de Mathématiques, t. 1, 1923,
p. 8—21).

(*) Il se présente à propos des équations différentielles ordinaires d’autres
applicationsde la même théorie. Cf. 5. K. Zusuu, Sur l’allure des intégrales
d’une équation diflérentt‘elle ordinaire du premier ordre dans le voisinage de
l’intégrale singulière (Bulletin international de l’Académie polonaise des
Sciences et des Lettres, série A, année 1931, p. 228—33r; voir notamment le
théorème 1). Relativement à l’équation aux dérivées partielles du premier
ordre et à la présence d’arêtes de rebroussement sur une surface intégrale
passant par une courbe donnée, voir les exemples traités dans mon travail à

l’impression au Bull. des Sc. Math. [Sur le probléme de Cauchy pour l’équa—
tion f(x))" Z: ['a ql: Ol'
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J’en rendrai l’exposé autonome : cela me donnera l’occasion de
rappeler, dans un cas simple, le principe de la méthode commune à
toutes les recherches précédentes, qui participent exclusivement du
point de vue local.

4

2. J ’étudie d’abord la résolution locale en u de l’équation
g(æ, .Ï7 “) = 07

connaissant une solution x,, y,, u,_pour laquelle gL, s’annùle, tandis
que g} et g,”,, ne s’annulent pas. Soit P., le point qui dans le trièdre
Oæyu a pour coordonnées (a:… y,, un). J 'introduirai chemin faisant,
outre les dérivées déjà nommées, toutes dérivées utiles, en les suppo—
sant toutes continues par rapport à l’ensemble des variables x, y, u.

Vu-la continuité, g} et gl, restent non nulles et gardent un signe
constant dans un parallélépipèdeH de centre P., et d’arêtes parallèles
aux axes qu’on peut toujours restreindre de manière que, chaque
parallèle à Oy le traversant coupe l’ensemble des points g: 0 en un
point et un seul : cet ensemble est une surface y : cp(æ, u) dont la
portion utile sera désignée par S. Moyennant l’existence et la conti-
nuité de gÏ, (accompagnant celles de g,), S admet un plan tangent
continûment réparti ('), lequel devient en P(, parallèle à Ou-.

Étudions maintenant au voisinage de P,, l’ensemble I‘ des points
définis par le système

.g(w, 33 il) =0, 5'Ë.(% % ll) = 0;‘
la seconde équation se résoutlocalementpar rapport à u sous la forme
u: u(æ, y), vu gÇL;£ o. La fonction composée

g= g[æ, )‘.— Ü(æ, y)]
donne, quand on la dérive par rapport à y en restant sur F

"! _ .I r' "'; __ :Ô'_,-— g,+ éu (ty—é")…

Vu â,7£ o, l’équationgr: o définit dans le plan æOy, dans un paral—
lélogramme de centre (x,, y,), un arc 'y admettant la représentation 

(‘) Il y a planéité du paratingent en chaque point de S.
Journ. de Math., tome XV. -— Faso. I, 1936. 14
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explicite
" = ‘l'($)»

d’où la représentation locale de F
y= +…), " =ñ[æ, ww

laquelle montre que F est un arc de courbe, doué d’une tangente con-
tinue si l’on étend l’hypothèsede continuité à gf… gl). (').

Notons maintenant qu’au voisinage de l‘, chaque section de S par
un plan x=æ,+ &, pour une valeur assez petite de la constante &,

possède un sens de concavité permanent. En effet, nous avons sur S la
relation

Sur la courbe F , jouant le rôle de contour apparent de S pour la
direction de projection cylindrique Ou, nous avons

dr(î : 0.

Donc, dans un voisinage suffisammentrestreint de I‘ (cela dans Il), la
; - d'y \ 'dérivée du’ gardera de par nos hypotheses un Signe constant. Sup— 

posons par exemple que toutes les sections x=æ, + & précédentes
tournent, au voisinage de F, leur concavité vers les _y positifs, ce qui_
permettra d’établir une figure (’.)

Cela posé, la courbey= «]»(æ) sépare dans le plan æ0_y son voisi-
nage en deux régions : du côté y > Ll)(æ), chaque système (x,y) suffi—
samment voisin de cv,,yo fournit pour u deux déterminations u, (a:,y)
et u,(æ, y) se confondant sur y avec iî(æ, y). Au contraire, du côté
y < nlz(x), l’équation g: 0 n’a pas de solution en u tendant vers u0
quand a: — æ,, y —y., tendent vers zéro (3 ). 

1) Il y a unicité de la paratingente à I‘ en chaque point.
* Cf. Cours de Géométrie analytique, n° ill-2.

(
(')
(“’) La théorie peut s’étendre à la résolution locale d’une équation

é'(‘”u æzv - - -; 40m J': “)=0
autour d’une solution articulière a:“ .L‘" .L‘° '° u° donnant lieuà «fÇ,o=o,!’ 2, ’ II.? , ’ Ü
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5. Si nous revenons au" plan des xy et considérons la famille de

courbes
g($; J'» a) = 0.

ces courbes, au voisinage du point (æ,,y,), resterontdu côtéy > +(æ)
de la séparatrice y : par un point pris de ce côté, à distance suffisam—
ment petite de (x,, y,), il passera deux courbes de la famille (alors
qu’il n’en passe aucune, dans ces conditions, du côté y < <l;(æ).
Démontrer que toutes ces Courbes sont tangentes à 7 ne soulève alors
aucune difficulté, vu la résolubilité de g en y.

Nous sommes donc maintenant en possession des élémentsessentiels
qui, pour les courbes planes, permettent de résoudre le problème local
des enveloppes, dans son cas régulier ( ‘ ). Et ces éléments nous seront
utiles par la suite. 
mais à g}#o, gZ,# 0. On suppose encore la continuité de toutes dérivées du
second ordre de g par rapport à l’ensemble des n + 2 variables. La remarque de
convexité faite au cours du raisonnement ci-dessus se portera dans le cas actuel
sur les sections de la variété g: 0 par la variété linéaire bidimensionnelle

æ,=x?+s,, æn=æg+sn.

(‘) Complétons la note précédente en observant qu’une simple modification
d’écriture permettrait, dans l’espace à (n + I) dimensions lieu du point
($,, $,, . . ., x,,, y), de traiter du cas régulier de l’enveloppe pour une famille à
un paramètre de variétés

é'(—’L‘u £a.» ' ° " *”ny )., a) = 0

au voisinage d’un système de valeurs .r‘,‘, . . ., æ?,, y°, a° annulant à la fois g et gÇ,
sans que g,. et gâ. s’annulent pour ce système. On pourra d’ailleurs tou10urs
raisonner en supposant l’équation g=o résolue par rapport à y sous la forme

)'= ?(—”-n l'a, - - '.— J)… a)-

Si les sections envisagées dans la note (“), p. 106, tournent leurs eoncavités vers
les y positifs, le domaine )» > t|,(x,, x,, . . ., $,.) pourra s’obtenir comme réunion
des domaines )' > <p(æ,, w,, .. ., x,., a), du moins en se limitant aux environs du
point (œ‘,‘-, . . ., x}{. y“). En pareil cas, un point de contact d’une variété y=<p
avec l’enveloppe se trouve du côté des y négatifs par rapport aux variétés _y= <p

provenant d’une autre valeur du paramètre : ce point occupe donc une position
extrême par rapport à l’un des domainesy > (p, en ce sens qu’il se trouve sur sa
frontière en restant extérieur aux autres domaines analogues. Son ordonnée ne
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4. On pressent que la présence d’une arête de rebroussement pour
l’enveloppe d’une famille de surfaces à un paramètre se produira dans
des conditions généralisant celles où l’enveloppe d’une famille de
courbes planes à un paramètre vient à présenter un point de rebrous-
sement.

C’est à l’étude de cette éventualité que nous allons maintenantnous
attacher. Les propriétés locales de [‘ que nous avons établies au n° '2
seront modifiées si gl, s’annule au point Pc de cette courbe en tant que
point isolé ('>. En continuant à supposer que g, reste #0 en P.,,
nous pourrons raisonnersur les équations particularisées

5’=_Y — ?(æ, "\ = 0, s‘h= —— %= 0
avec

?u‘l-‘än ("ol: 0» Ÿu-“l-£o, ”ol # Ov Ÿun-l J'… (lol
7—4 0-

Alors, il passe au point (av… un) un arc x: X(u) de la courbe ‘PL= o
du plan (æ,'u), arc sur lequel le point (a:… u.,) n’a pas de rôle singu-
lier. La tangente y est parallèle à l’axe des _u. Dans l’espace (33,y, u),
la tangente à F en P.,, dénué de rôle singulier sur cet arc, est aussi
parallèle à l’axe des a. Toute difficulté est ici écartée de par la repré-
sentation paramétrique suivante de I‘

w=X(u), )'=Ça[X(ul, u]

représentation qui donne pour les dérivées
.L‘L=X'(Ill, J'iz=ŸirX,lul

.cÏ,:= X”uzl, _) }Ç:= <pQ.X”(ul + :pj'….a-’( ul + ç_Ç.X”(ul. 
saurait dépasser en aucun cas la valeur de <p(æ,, @, .. ., x… al. La même cir-
constance se produit dans tout problème d’enveloppe, donnant naissance à une
enveloppepouvant être regardéecomme frontière d’un domaine, lequelsoit la
réunion de domaines limités auæ enveloppées. Le nombre de paramètres dont
dépendentces dernières est indifférent dans tous les cas possibles où l’hypothèse
en italiquesest réalisée, la recherche sera équivalente à celle de l’extremum,pour
an., ..., æ,, donnés, d’une fonction qui dépendà la fois des coordonnéesx,, x,, . . ., x,,
et des paramètresde la famille (même si quelques-unesdes dérivées mises ci—dessus
en cause venaientà ne plus exister).

.(‘) Le cas où gZ. s’annule tout le long de 1‘ pourrait s’étudier dans le même
esprit (Cf. Cours de Géométrie analytique, p. 260).
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Pour le point P,, nous avons X’(u): o. D’autre part, la projection
de l‘ sur le plan des (a, a:) étant-définiepar l’équation

<92,( [, u) = 0,

nous aurons le long de I‘
% X'(ü) + ?22e= 0

f_aj',_rX”(ui + çÇÎ_1.eX’!(1L)+ 2ÇÏ;:_I.X/Ull + ({J'Z==o.

Lorsqu’on l’applique en P,, la seconde de ces relations nous donne
pour X”(u) une valeur finie et non nulle. Nous sommes donc ici dans
les conditions (‘) où la projection y de I‘ sur le plan des xy présente
un rebroussementau point (a:… y,).

5. Notre étude préliminaire est terminée. L’extension à l’espace va
maintenant se faire très immédiate, si nous supposons que l’équation
de notre famille de surfaces, soit

fl‘Ll, .Ï.° ;, a)=01

est résoluble, au moins localement,par rapport à une des coordonnées
et peut s’écrire par exemple (’) :

: »— G(_æ, )', a) = 0.

Nous allons tirer parti des considérationsdéveloppées au n°2. Pour
faire correspondre les notations, il sera commoded’appelerg la dérivée
de G par rapport à a.

Supposons que, pour le système de valeursx,, y,, a,, nous ayons
- I _ .,

| ' ‘ _—.-'—".-£o») oa aol—0: gal—Loi)… aol—0!
girl—503 .Ï07 aol # 07 Ê'li’(£03 3.01 a,.) # O'

Si nous considérons le trièdre Oæya, les hypothèsesci—dessus cor- 
t‘) Cours de Géométrie analytique, n° 51. ,

C) Il en est ainsi dans un parallélépipède pourvu que le plan tangent d’une '

surface de la famille passant en un point intérieur à ce parallélépipède ne soit
iamais parallèle à l‘axe de coordonnées en question.
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respondent pour la famille de courbes

g( al‘, J', a) = o

à ce que nous avons appelé cas régulier de la théorie des enveloppes
dans le plan (fin du n° 5). Cela nous conduit à tracer dans le plan des
w_y une courbe y=a]a(æ) d’un côté de laquelle exclusivement nous
aurons deux déterminations a,(æ, y) et a2(æ, y) de la fonction a
soumise à g: 0, déterminations qui se raccordent sur y = &ll(æ). A
chacune de ces déterminations de a, toujours du côté indiqué de
y=aIæ(æ), l’équation z = G attache une détermination de 2. Nous
aurons donc deux nappes de l’enveloppe, soudées le long de la courbe

y= +<w.t : = G[w, _v, a… n]
(3 jouant ici le même rôle que 17 au n° 2).

Cettecourbeest bien une arêtede rebroussementde la surface enveloppe,
car elle est lieu de points de rebroussementpour les sectionsa: = x.,+ e

de l’enveloppe : en effet, si l’on donne à m une valeur constante, on se
ramène à un problème d’enveloppe d’une famille de courbes planes,
dans les conditions envisagées au n° &.

L’existence de l’arête de rebroussementest donc établie, moyennant
des hypothèses qui mettent en cause les dérivées du troisième ordre
de G, donc aussi bien celles de f. Cette arête de reboussement sera
définie par le système des trois relations.

f(J', J', :, a) :o,
f;,=o, .
f:i'=(’r

au voisinage des valeurs x.., yo, 2—0, a., annulant les trois premiers
membres et répondant en outre aux conditions

fÈ#0a fil)-#0, fZ’x7éo.

6. Toutes les circonstancesspéciales susceptibles d’affecter les pro-
priétés de l’enveloppe des courbes planes

g<w, % a>=o
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exerceraient une répercussion évidente sur la recherchedel’enveloppe
des surfaces

: —— G(æ, y, a) = 0 (avec g= G',,).

Par exemple, si les courbes g = o, le longd’un arc de leur enveloppey,
avaient avec celle—ci le contact du second ordre mentionné note (‘),
p. 108, la courbe de la surface enveloppe des :- — G = o projetée sui—

vant Y perdrait, en ce qui concerne la géométrie visuelle, son rôle
d’arête de rebroussement pour cette dernière surface (tout en conser-
vant cependant le rôle de ligne singulière en cas de données algé-
briques). '


