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Sur quelques points de théorie des enveloppes ;

Par Geowees BOULIGAND.

1. L’hommage que je veux rendre ici & M. Edouard Goursat
s’attache indissolublement au souvenir de I'une des toutes premiéres
lecons de son cours de la Sorbonne, qui souleva I’enthousiasme unanime
de ma promotion 4 ’Ecole Normale, en novembre 1gog. L’objet de
cette lecon avait été d’établir sous quelle forme la méthode des appro-
ximations successives de M. Emile Picard conduit, dans les conditions
ordinaires, au théoréme local sur I’existence des fonctions implicites.

Il s’agissait 1, en considérant une équation unique, du cas régulier
d’un probléme dont les cas singuliers les plus courants ont eux-mémes
une importance capitale : ils tiennent en effet sous leur dépendance la
théorie classique des enveloppes (').

Je me suis attaché, en 1918, a traiter d’'une maniére systématique
les plus simples de ces cas singuliers (?). Mon principe de recherche
se trouve exposé dans mon Cours de Géométrie analytique (*), en vue de
ses applications les plus simples.

En 1922, j'ai donné par ces considérations l'explication appro-

(*) Ce fut M. Henri Lebesgue qui, dans une conférence d’agrégation faite en
1912 a I'Ecole Normale, entretint de cette difficult¢ la promotion ci-dessus
nommeée.

(*) Le cas singulier des fonctions implicites et les enveloppes dans le plan
(Revue de ’enseignement des Sciences, 12° année, nov.-déc. 1918, p. 225-237).

(*) Voir les n° 69, 70, 71 d’une part et les n° 140, 141, 142 d’autre part.
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fondie du paradoxe qui se présente lorsqu’a un systéme
f(‘z" >, S a):0> é’(x, Y, 3, a):o,

définissant une famille de courbes gauches a un paramétre, famille en
général dépourvue d’enveloppe, on substitue le systéme

f(x, », 5, a) =0, R(x, y, 5)=o,

dont la derniére équation provient de 1'élimination de a entreles deux
équations du systéme précédent ('). En terminant ce dernier exposé,
j'examinais sommairement le cas o les courbes f=o0, g=o0, admettent
une enveloppe : sous des conditions appropriées, je montrais que la
surface R(x, y, 3) = o admet alors une aréte de rebroussement.

Le présent exposéaura pour principal objet la solution du probléme
suivant :

Etablir Dexistence de I’aréte de rebroussement pour 'enveloppe d’une
famille de surfaces ¢ un paramétre

f(x, 3,3, a)=0,
en précisant des conditions suffisantes en vue de cette existence.

Le role joué par cette catégorie d’enveloppes dans la génération des
intégrales d'une équation aux dérivées partielles du premier ordre,
lorsqu’on en posséde une intégrale compléte, montre bien toute I’atten-
tion méritée par la question précédente ().

(1) Sur une notion d’équivalence locale apte @ préciser certains points dela
théorie des enveloppes (Nouvelles Annales de Mathématiques, t. 1, 1923,
p- 8-21).

(*) 1l se présente a propos des équations différentielles ordinaires d’autres
applications de la méme théorie. Cf. S. K. Zarewsa, Sur l’allure des intégrales
d’une équation différentielle ordinaire du premier ordre dans le voisinage de
Uintégrale singuliére (Bulletin international de 1’Académie polonaise des
Sciences et des Lettres, série A, année 1931, p. 228-321; voir notamment le
théoréeme I). Relativement a l'équation aux dérivées partielles du premier
ordre et a la présence d’arétes de rebroussement sur une surface intégrale
passant par une courbe donnée, voir les exemples traités dans mon travail a
Pimpression au Bull. des Sc. Math. [Sur le probléme de Cauchy pour l'équa-

tion f(z,y,z,p,q)=0].
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J’en rendrai 1’exposé autonome : cela me donnera l'occasion de
rappeler, dans un cas simple, le principe de la méthode commune a
toutes les recherches précédentes, qui participent exclusivement du
point de vue local.

2. J'étudie d'abord la résolution locale en u de I’équation
&(z, y, u)=o,

connaissant une solution x,, y,, u, pour laquelle g, s’annule, tandis
que g et gi, ne s’annulent pas. Soit P, le point qui dans le triédre
Ozyu a pour coordonnées (z,, y,, &, ). J'introduirai chemin faisant,
outre les dérivées déja nommées, toutes dérivées utiles, en Jes suppo-
sant toutes continues par rapport a I’ensemble des variables x, y, u.

Vu la continuité, g, et g, restent non nulles et gardent un signe
constant dans un parallélépipéde II de centre P, et d’arétes paralléles
aux axes qu'on peut toujours restreindre de maniére que chaque
paralléle 2 Oy le traversant coupe I'ensemble des points g = o en un
point et un seul : cet ensemble est une surface y = ¢(x, u) dont la
portion utile sera désignée par S. Moyennant ’existence et la conti-
nuité de g’ (accompagnant celles de g,), S admet un plan tangent
continiiment réparti ('), lequel devient en P, paralléle a Ou.

Etudions maintenant au voisinage de P,, ’ensemble T des points
définis par le systéme

.g(x,‘)', lt):O! é’:l(‘z" y’ ll):o;-

la seconde équation se résout localement par rapport a u sous la forme
u=u(z, y), vu g,. o. La fonction composée

glz ; w(z, )]
donne, quand on la dérive par rapport a y en restant sur I
8= &y + Su u:,.: g'J..

Vu g,5£ o, 'équation g = o définit dans le plan Oy, dans un paral-
lélogramme de centre (,, y,), un arc Y admettant la représentation

(') Il'y a planéité du paratingent en chaque point de S.
Journ. de Math., tome XV. — Fasc. I, 1936. 14
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explicite
v=4{(z),

d’ou la représentation locale de I’
ry=1u(x), w=ulr,¥(x);

laquelle montre que I est un arc de courbe, doué d’une tangente con-
tinue si I'on étend I'hypothése de continuité a g, , g, (')

Notons maintenant qu’au voisinage de I', chaque section de S par
un plan £ = x,+ ¢, pour une valeur assez petite de la constante ¢,
posséde un sens de concavité permanent. En effet, nous avons sur Sla
relation )

NSNS » Oy .
gz T EN\gn ) T 28y, T Ee=0

Sur la courbe T, jouant le réle de contour apparent de S pour la
direction de projection cylindrique Ou, nous avons

P _,
du~

Donc, dans un voisinage suffisamment restreint de I' (cela dans I1), la

7 d!y 1 :
dérivée 5= gardera de par nos hypothéses un signe constant. Sup-

posons par exemple que toutes les sections & = x, + ¢ précédentes
tournent, au voisinage de T, leur concavité vers les y positifs, ce qui_
permettra d’établir une figure (?).

Cela posé, la courbe y = {(x) sépare dans le plan zOy son voisi-
nage en deux régions : du c6té y > §(x), chaque sysiéme (z, y) suffi-
samment voisin de z,, y, fournit pour « deux déterminations u,(z, y)
et u,(z, y) se confondant sur y avec u(x, y). Au contraire, du coté
y <{(x), 'équation g=o0 n’a pas de solution en « tendant vers «,
quand z — z,, y — ¥, tendent vers zéro (*).

(') 'y a unicité de la paratingente a T en chaque point.
(?) Cf. Cours de Géométrie analytique, n° 142.
(®) La théorie peut s’étendre a la résolution locale d’une équation

G(Lyy Loy ooy Lpy Y, U)==0

autour d'une solution particuliére z¢, &3, ..., £8, »°, ©°, donnant lieua g,,=o0,
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3. Si nous revenons au plan des xy et considérons la famille de

courbes
g(x, ), (l) =o,

ces courbes, au voisinage du point (z,, y, ), resteront du cdté y > ()
de la séparatrice y : par un point pris de ce coté, a distance suffisam-
ment petite de (z,, y,), il passera deux courbes de la famille (alors
qu'il n’en passe aucune, dans ces conditions, du c6té y <{(zx).
Démontrer que toutes ces courbes sont tangentes a y ne souléve alors
aucune difficulté, vu la résolubilité de g en y.

Nous sommes donc maintenant en possession des éléments essentiels
qui, pour les courbes planes, permettent de résoudre le probléme local
des enveloppes, dans son cas régulier (). Et ces éléments nous seront
utiles par la suite.

mais & g+5% 0, g1 0. On suppose encore la continuité de toutes dérivées du
second ordre de g par rapport a I'’ensemble des n + 2 variables. La remarque de
convexité faite au cours du raisonnement ci-dessus se portera dans le cas actuel
sur les sections de la variété g— o par la variété linéaire bidimensionnelle

Ty =x+ ¢y, Ln=Z}+ €.

(*) Complétons la note précédente en observant qu'une simple modification
d'écriture permetirait, dans l'espace a (n +1) dimensions lieu du point
(&4, Xyy ..., Xn, ¥), de traiter du cas régulier de I'enveloppe pour une famille a
un parameétre de variétés

(&g, Lyy ooy Ly Yy, @a)=0

au voisinage d’un systéme de valeurs z9, ..., x%, »°, a® annulant a la fois g et g,
sans que g, et g s'annulent pour ce systéme. On pourra d'ailleurs toujours
raisonner en supposant I'équation g=o0 résolue par rapport & y sous la forme

Y=29(&Ly, Ly .oy Tuy @)

Si les sections envisagées dans la note (*), p. 106, tournent leurs concavités vers
les y positifs, le domaine y > {(z,, &,, ..., z,) pourra s’obtenir comme réunion
des domaines ' > 9 (&, £, .+ ., Zn, @), du moins en se limitanl aux environs du
point (z, ..., x). ¥°). En pareil cas, un point de contact d'une variété y = ¢
avec l'enveloppe se trouve du coté des y négatifs par rapport aux variétés y — ¢
provenant d'une autre valeur du paramétre : ce point occupe donc une position
extréme par rapport a I'un des domaines y > ¢, en ce sens qu'il se trouve sur sa
frontiére en restant extérieur aux autres domaines analogues. Son ordonnée ne
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4. On pressent que la présence d'une aréte de rebroussement pour
I'enveloppe d’une famille de surfaces 4 un paramétre se produira dans
des conditions généralisant celles ou I'enveloppe d’une famille de
courbes planes a un paramétre vient a présenter un point de rebrous-
sement.

C’est a I'étude de cette éventualité que nous allons maintenant nous
attacher. Les propriétés locales de I' que nous avons établies au n° 2
seront modifiées si g,, s’annule au point P, de cette courbe en tant que
point isolé ('). En continuant a supposer que g reste <0 en P,,
nous pourrons raisonner sur les équations particularisées

g:.,. —’?(.’L‘, ”\:0’ -‘*’;L:“Q;lzo
avec
" " ,
Pur( Loy f’(»\ =0, Qi (Lo, 1ty) # 0, c?/’m-( Lyy Uy) 7O,

Alors, il passe au point (x,, 4,) un arc z = X () de la courbe ¢, = o
du plan (@, v), arc sur lequel le point (x,, u,) n'a pas de réle singu-
lier. La tangente y est paralléle a I'axe des u. Dans l’espace (z,y, u),
la tangente a I' en P,, dénué de réle singulier sur cet arc, est aussi
paralléle a I'axe des u. Toute difficulté est ici écartée de par la repré-
sentation paramétrique suivante de I'

w=X(u), y=o[X(u), «]

représentation qui donne pour les dérivées

&£, = X' (), Y=o X ()
L= X" (), D=0, X"(1) + rad’ () + 0 X' ().

saurait dépasser en aucun cas la valeur de ¢(z,, z,, ..., z,, @). La méme cir-
constance se produit dans tout probléme d’enveloppe, donnant naissance a une
enveloppe pouvant étre regardée comme frontiére d’un domaine, lequel soit la
réunion de domaines limités aux enveloppées. Le nombre de paramétres dont
dépendent ces derniéres est indifférent dans tous les cas possibles ou Phypothése
en italiques est réalisée, la recherche sera équivalente & celle de I'extremum, pour
&y, ..., T, donnés, d’une fonction qui dépend a la fois des coordonnées x,, z,, ..., Z,
et des paramétres de la famille (méme si quelques-unes des dérivées mises ci-dessus
en cause venaient a ne plus exister).

(*) Le cas ol gy: s'annule tout le long de ' pourrait s’étudier dans le méme
esprit (Cf. Cours de Géométrie analytique, p. 260).
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Pour le point P,, nous avons X'(#) =o. D’autre part, la projection
de I sur le plan des (u, x) étant définie par I’équation

Ol £, ) =o0,
nous aurons le long de T’
9u X' (4) - gin=0
e X" (1) + Qe X2 (1) + 295, X/ (10) + Qra=o0.

Lorsqu’on 'applique en P,, la seconde de ces relations nous donne
pour X”(u) une valeur finie et non nulle. Nous sommes donc ici dans
les conditions (') o1 la projection y de I' sur le plan des xy présente
un rebroussement au point (x,, y,).

3. Notre étude préliminaire est terminée. L’extension a I'espace va
maintenant se faire trés immédiate, si nous supposons que 1'équation
de notre famille de surfaces, soit

,‘(‘L.’ .)” ;1 a):07

est résoluble, au moins localement, par rapport a une des coordonnées
et peut s’écrire par exemple (?) :
s —G(xr, ), a)=o.
Nous allons tirer parti des considérations développéesau n°2. Pour
faire correspondre les notations, il seracommode d’appeler g la dérivée

de G par rapport a a.
Supposons que, pour le systéme de valeurs z,, y,, a,, nous ayons

, .
NULyy Voo (lo) —=o0, Sat Loy )y dy) =0,

t " . - N ] . .
5’)"&‘0?)07 ao»#“» Lar( Loy Yoy a‘,)¢o.

Si nous considérons le triédre O xya, les hypothéses ci-dessus cor-

(') Cours de Géométrie analytique, n° 51.

(*) Ml en est ainsi dans un parallélépipéde pourvu que le plan tangent d’une
surface de la famille passant en un point intérieur a ce parallélépipéde ne soit
iamais paralléle a I'axe de coordonnées en question.
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respondent pour la famille de courbes
g(x,y,a)=o

a ce que nous avons appelé cas régulier de la théorie des enveloppes
dans le plan (fin du n° 3). Cela nous conduit & tracer dans le plan des
zy une courbe y ={ () d’'un cété de laquelle exclusivement nous
aurons deux déterminations a,(x, y) et a,(x, y) de la fonction a
soumise & g = o, déterminations qui se raccordent sur y = {(z). A
chacune de ces déterminations de a, toujours du coté indiqué de
y =4Y(x), I'équation z =G attache une détermination de 3. Nous
aurons donc deux nappes de I'enveloppe, soudées le long de la courbe

y=¥%), 3=G[xy, ale )]

(« jouant ici le méme role que z au n° 2).

Cette courbe est bien une aréte de rebroussement de la surface enveloppe,
car elle est lieu de points de rebroussement pour les seclions x =, +¢
de I'enveloppe : en effet, si I'on donne 4 = une valeur constante, on se
raméne 4 un probléme d'enveloppe d'une famille de courbes planes,
dans les conditions envisagées au n° 4.

L’existence de I'aréte de rebroussement est donc établie, moyennant
des hypothéses qui mettent en cause les dérivées du troisiéme ordre
de G, donc aussi bien celles de f. Cette aréte de reboussement sera
définie par le systéme des trois relations.

Sfle, ¥y, 5, a)=0,
o=, .
f:,:’:".-

au voisinage des valeurs z,, y,, 3,, @, annulant les trois premiers
membres et répondant en outre aux conditions

f’: ¢07 f;:y#o’ Z”# 0.

6. Toutes les circonstances spéciales susceptibles d’affecter les pro-
priétés de I'enveloppe des courbes planes

g(w,y, a)=o
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exerceraient une répercussion évidente sur la recherchedel’enveloppe
des surfaces
s —G(x,y,a)=o0 (avec g=G)).

Par exemple, si les courbes g = o, le long d’un arc de leur enveloppe v,
avaient avec celle-ci le contact du second ordre mentionné note ('),
p- 108, la courbe de la surface enveloppe des = — G = o projetée sui-
vant y perdrait, en ce qui concerne la géométrie visuelle, son rdle
d’aréte de rebroussement pour cette derniére surface (tout en conser-
vant cependant le role de ligne singuliére en cas de données algé-

briques).



