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QUADRATIC FUNCTIONS OR FORMS. JlQ 

Quadratic Functions or Forms, Sums of IVhose Values 
Give Λ11 Positive Integers; 

BY L. E. DICKSON 

(Chicago). 

1. We shall obtain several new types of generalizations of theorems 
on polygonal numbers due to Fermât, Cauchy, and liéalis. We 
shall also give a complete solution of the following new problem : 
Kind every positive binary quadratic form B(.r, y) such that every 
positive integer is a sum of.ν values of B. The only important cases arc 
found to be ν = ι and s = 3. For s = 2, we are led to just six quater-
nary quadratic forms. That each of them actually represents every 
positive integer ρ will be proved by descent from ρ to smaller integers. 
Fermât stated that this was the method used by him to prove that 
every ρ is a sum of four squares. Our proof of this fact and for the 
remaining five forms involves only ideas familiar to Fermât and justi-
fies our belief that Fermai actually possessed the kind of proof he 
claimed. 

2. The Possible Forms Β. — Since 1 shall be a sum of values of B, 
1 must be represented by B. Hence Β is equivalent to x- gxy-h hy'K 
The replacement of χ by x-\-ky adds ik to g. By choice of k, the 
new g is ο or r. Write 

( i) f—a'f + S-l'0> + b VJ ) < g=oov 1. 

When s > 4,f represents every positive integer p, since ρ is a sura of 
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four squares .rj, and we may assign the value ο lo I lie remaining .r, 
and to eacli y,·. Hence llie only interesting cases are .v= 2 and ,v = 3. 

First, let # = 0. Since Π and / are positive forms, o. When 
.ν = 2, //. > 3, / = 3 requires y, =/·.. = ο, while ,rj 4- x'f, = 3 is impos-
sible in integers. When.ν — 3, h > 7 ,/= 7 requires y, =y., = y

:f
 = ο, 

while ·/·'{ -h .r] + .z'l = 7 is impossible. 
Second, let g— 1. Write \ = 2.r H-y, <i = i\h — 1. Then 

(2) + /·?), ''>» 

Ily hypothesis, / represents all positive integers. Hence F represents 
all multiples of 4· When s—2, r/>i2, F=i2 gives y, =y2 = o, 
while XJ-|-Xij=i2 is impossible. When .v=3, >28, F = 28 
gives y, =y.

J
=y.

i
 = o, while Vf-|- Vû-f- \ J= 28 is impossible. 

Whether £ == ο or £·= 1, the only possible forms /have//=i, 2, 
or 3 if .ν = 2, and h = 1, . . ., 7 if s — 3. 

In the derivation of F we had \;=y-, (mod2). Let us now remove 
this condition and allow the X, and y·, lo take arbitrary integral 
values. Then if F represents a multiple l\n of 4, the corresponding / 
represents n. We first prove this when s— 2. Then 

X'f -4- \ î — f , —ξ υ ( ιιιο(Γ'ι ) 

and every square is ==0 or 1. If \, and X2 are both even (odd), 
then y

t
 and y

2 are both even (odd). Uul if one of \, and X... is even 
and Llie olIiei* is odd, the same is true of y, and y2. If in the latter 
ease, \, and y, are not both even, we may permute \, and \«, or 
permute j, and y._>, or permute both pairs, and obtain a new repré-
sentai ion of l\n by F in which now V, and y, are both even, and 
hence \

2
 and y2 are both odd. In all cases we have \,=/, (mod 2) 

for i= 1, 2. Then X/= 2av+y/ for i = 1 and 2 define integers .r,·, 
which with yf give a representation of η by /. 

Λ similar proof applies if s = 3. If X,, X2, X
;
, are all even (odd), 

then y,, y
2

, y
3 are all even (odd). If lvvo of X,, X2, X:, are even (odd) 

and one is odd (even), the same is true of y,, y.,, y
;J

. 
Hence if g — 1 it remains only to prove that the form F in (2) repre-

sents all multiples of 4· 
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!]. Method of bcscent (') for Quaternary Quadratic Forms. — 'Πιο 
method seems to be limited to forms of Lagrange's type 

O .U—.■ x~ -f- <t —f— tj z~ -4~- fltjw'". 

LF.MMA 1. — For integers satisfying 

(''■>) t- -b ar- -4- h jKf [η + ο), 

there will exist a representation of mp by Q with 

(\) χ ξ raw -4- ( z. r ~ tiv — rz (mod/;), 

prodded there exists a representation of mq by Q with (4) holding 
mod <7 instead of mod p. 

( Consider the equation 

( t) ) m ρ -— ( ρ~4- /Y/n' 4— I z )~ -J— et( p\ —i— fw — rζ -4- If Z' —t- atjw", 

whose expansion simplifies by means of (3 ) to 

( G ) mjf ~ ~ jïL V- 4- op- V - -4- ·>. apr \ u· 4- pt \ -

I- *.apl Yiv — ·>.αρίΛ ζ -4- ρφ( ζ- -4- ntv-). 

1η (ϋ) interchange ρ with </, \- with J, and replace Y by —«·, 
IT' by — V ; we get 

(-) m<f j-ztf-z--^- arj-sv-— '.>.ti</rz\ -4- >x/fz\ 

4- iru/fxY -i- ■>.a</rwX -4- p(j( V- 4- u V- ). 

Multiplying (η) by ρ jq, we get (6). This proves Lemma I. 
The linear 1'uricLions in ( 5) remain unaltered if we replace /·, /, \, 

Y by /·-f- lî/>, /H-Tρ, Y— lb/<r - TJ, 4 —Tu·+ 11 J, respectively. 
W e choose integers H and Τ so thai 

(<S) ' r'\ < ~p, I <-p. 

We shall limit our further discussion to the case a = i, bf> o. 
l»y (8), -f- r- + b <p2 if y>2 >2/;, and then q <fp in (3). Hence 

('j We would'nul expect to prove that every positive integer ρ is a sum of four 
squares by descent (i. e. by induction from all integers <ρ to ρ) without knowing 
some relations between the squares leading to a fairly definite equation. 

Journ. de Mathtome VII. — Fasc. Ill, 1928. 4* 
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whenρ2^>·ιύ, (5) follows from a like equation with ρ replaced by the 
smaller number η. This proves : 

THEOREM 1. — For each, positive integer ρ such that p-<'ih and for all 
sets οf solutions l, r of the congruence 

(()) I--+- r- 4- b 7ξι ο (mod/?). 

suppose that there exist integral solutions Χ, V, ζ,ιν of 
( ι ο ) m ρ zr ( ρ \ -f- nr -f- / c )--+-(ρΎ -f- tw - ■ r ζ y1 -+ b r- -ι- hw ·'-. 

Then for every positive integer ρ such thatp'f>'ib and for any chosen 
set of solutions of congruence (9), there exist integral solutions of (10 ). 

LEMMA 2. — If ρ is an odd prime, (9) has solutions. 

For f = o, i, -fp — 1), the values of t2 are incongrnent 

modulo p. If no one of them were congruent to any of the ^(/J.-+■ 1) 

incongruent values of —F — h, there would exist +1 integers 
incongruent modulo p. 

LEMMA .'L — If ρ is an odd prime not dividing b, there exist solu-
tions ο f 

(\\) h~ v- -+- b ~ ο (mod p" ). 

The proof is by induction from n = I > 1 to n ~ k 1. Let 

t- -t- r2 4- b — pkq. 11 — I -1- pkx. ('·— r 4- pky. 
Then 

a- + v2-+- b ΞΞ pkL ( modpk~^ ), L η H- y tx -f r>.ry. 

Since b is not divisible by ρ, l and /-are not both divisible by p. Hence 
Ave can choose integers χ and y so that L is divisible by p. 

THEOREM 2. — If Ρ is any odd integer relatively prime to b, there 
exist solutions of l-r b = ο (modΡ ). 

Write ρ = ritf S where the p{ are distinct primes. By Lemma 3, 
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there exist integers ui9 ct
· such that 

"1 *+* v't b ~ η ( mod p'p). 

It is known that we can choose integers /, r so thai 

/-ΞΞΜ,. /·==(·, ( niod/Q«): t ΞΞ /·=(>, (mod//3S): 

Then /J+ r-+ b is di visible bv ... and hence by their pro-
duct P. 

Τ ΗΚΟΠΕΜ 3. — Every positive integer ρ is a sum of four squares. 

Here m = ι, h = ι, andp-<'ib gives ρ — ι ; then (10) has the solu-
tions \ = ι, Y = 3 = »r = o. liy Theorems 1 and 2, every odd integer 
is a siun of four squares. Since 

( 1) ·>. (X'- H- y-) — ( χ H- y f H- (χ — y)² 

the double of any sum of four squares is a sum of four squares. 

THEOREM — Every positive integer is represented by 

y — x- + y'1 -+- z- -+- u·-. 

By Theorem 3, \n~\~ '2 is a sum of four squares. Two of them are 
even, (22)· and (20·)-, while the remaining two, c- and d2, are odd. 
ffence c — .r-\-y, d = x — y for integers .r, y. Using (12), we sec 
that every odd integer 2Λ+ I is represented by g. ^iext, the double 
of g is ( 2: )3 + ( 2U·)--}- Ί,Ί'~ —f- 2 V2. 

LEMMA — If b ~ >j ( mod4 ), x~ ~H/"+ b===c> (mod 2") has solu- ■ 
tions. 

This is first proved when n~ 3. If 7/==3 (mddS), take .r=i, 
y — 2. If /> = 7 (mod 8), take Λ·=Ι, Y = U. W e next proceed by 
induction from η = 3 to /1. == m -f-1. Hence let 5S+ r,3+ b ~ 2"'7. 
Take ,r = ς -h 2'""1 Y, y = η q- ί'"~χ Y . Then 

./■- -t-
ι

)*ί -+- f> = Ν . ( mod 2"i+1 ), Ν — Y + ;\ + YJ Y. 

Since ζ and η are not both even, we can choose integers \ and Y so 
that IN is even. 
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VVe may now extend the proof of Theorem 2 si ml obtain : 

THÉOREM ή. — if b~ 3 (mod4) rind if ρ is any integer relatively 
prime to b, there exist solutions of /2-f- /·- -f- b = ο (modp). 

THEOREM 0. — Every positive integer is represented by 

h ,/*· -j— ν- -(— A v* —i— .> (ν*. 

We apply Theorem 1 with m = 2, /> = 3. Then p2<ib only when ρ 
is ι or 2. Take ^ = <r = o·, then (fo) becomes a =p(\--f- \ -') and 
evidently has integral solutions. Next, let ρ be any positive integer 
not divisible by 3. Then /'-'+/·- +3 = ο (modp) has solutions by 
Theorem 5. Hence Theorem I shows that the double ol* every positive 
integer ρ not divisible by 3 is represented by It. Let also ρ be odd. 
Evidently χ -f- y + ζ -f- <r is even. If.*· -l-yis odd, x2-\- y- and z'2-y u·3 

are = ι (rnod4)and '±p = h = ο (mod4), contrary to hypothesis. Hence 
.v-\-y= 2X, x —y — 2 Υ, ζ H- <r = aZ, J — u' = 2W. Hy (12), h is 
now the double of a like form. Hence every odd ρ not divisible by 3 
is represented by //. This holds also for every odd ρ divisible by 3 
since the triple of h is a form of type h. Hence every positive odd 
integer is represented by h. The same is true of its double by (12). 

THEOREM 7. — Every positive multiple of 4 is represented by 

Ψ — -f- y ■ -f- 7 -Ί— ~ ι ν. 

YVe apply Theorem I with /// = /|, /> = 7. rY\mu ρ-< -ib only vvlien 
p< 3. If ρ — ι or 2, take ζ = <r = ο; I lien (10) becomes \ = />( V-t- Y") 
and is solvable. If= .3, t- — r-= \ by (8) and (9); then (10) holds 
if X = <r = ο, Y =7·, z = 1. Next, let ρ be aiiy j>o«irive integer not 
divisible by 7. Then i2-\- /·-+ 7 = ο (rriod/ί) has solutions bv Theo-
rem 5. Hence Theorem 1 shows that l\p is represented by Φ. Tliis 
holds also wlien ρ is divisible by 7 since 7Φ is a form of type Φ. 

THEOREM 8. — Every positive multiple of l\ is represented by 

Ψ = X- -+- y1 Η- ι ι ζ--4- I 1 η'-. 

We apply Theorem 1 with m = 4» b = ii. Then p-<'ib only 
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when ]>$'\. II*/» = !, 2 or 4, take 3 = «'= 0; then (JO) becomes 
!\ — p( \--\~ Y'-)and is solvable. Ifp = 3, lake r = o, <f = ï ; then (8), 
(9), (io) become 

r- 0 or 1. /- — o'nr 1, /- -1- r· H~ ι ( m Oil/» ), 
1 =■- ( 3 \ + r)· ( ;') ν M- / y. 

Hence /'JH- /·- = 1. The final equation holds if \ = Υ = ο. YVe repeat 
the last part of the proof of Theorem 7 with 7 replaced by 11, arid Φ 
by ψ. 

Theorem 8 is new. Alleinpls I ο prove it by means of ternary forms 
have failed. 

We have now proved by descent : 

THEOREM 0. — Every positive integer is represented by each of the six 
forms ( 1 ) having ,y =. 2, g = ο or 1, h = ι, 2, or 3. 

4. The Ease s = 3. —We take y.j = y
:t
= ο and prove that the 

resulting quaternary lorrn represents all positive integers. 1 se will 
be made of the classic theorem that every positive integer not of the 
form 

(■3) i*(»«-»-7) 

is a sum of three squares without a common divisor > 1.* 
We first show that every positive integer misrepresented by each 

of the forms g = χ* + .ri; + .ri; -f- hy- (h = r, .. ., 7). If m is not of 
the form (i3), this is Lrue with y — ο. Il now siiffices to prove that g 
represents 8/2+7, since , ihy then give a representation of 
(13 ) by g. We exhibit a value of y for which 8 Ν η — hy· is posi-
tive and not of the form (i3) and hence is a sum of three squares. 
For h~ 1, 2, 4, 5, or 6, take y = 1. For h == 3, take y — 1 or 2 
according as Ν = ο or Ν > ο. For h. = 7, take y — ι if Ν = ο, ι, 
or 2 ; but take y = 2 if Ν > 3. 

Every positive multiple of 4 is represented by each of the forms 
X; + XjH- X"+ dy-, where d— i\h — 1, Λ = 1, . .., 7. Let m be of 
the form (i3 ) and a multiple of 4, whence k> 1. Take y = ik~x. Then 

m — dy -—(\k~* Ρ, P — 4(8/1 + 7) — d~ 1 (rood4)« 
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Thus Ρ is positive for every η and Λ< 7. Hence Ρ is a sum of three 
squares, and the same is true of 4/,~< P· 

TEIEOREM 10. — Every positive integer is represented by cock of the 
fourteen forms (1) having s — 3, g — ο or ι, h = ι, . . .,7. 

ο. Polygonal lumbers. — When χ is an integer >0, 

( I /, ) p
m+l

 (x ) - - - m ( cv· — JC ) -h .r 

is called a polygonal number of order m H- 2. in particular, 

Pz =-Χ(Λ· Η Ι ) 

is a triangular number and pf.jr) = x* is a square. Fermât stated 
that he was the first to discover the beautiful theorem that ever\ 
integer A>o is a sum of m-\- 2 polygonal numbers of order m-\~ 2 
(whence A is a sum of three triangular numbers, and a sum of four 
squares). Cauchy gave the first proof in i8i5, and showed that all 
but four of the polygonal numbers may be taken to be the special 
ones ο or 1. Two much simpler proofs have been given by the writer 
in papers cited below. 

When χ takes all integral values, positive, negative, or zero, the 
numbers (t4) shall be called generalized polygonal numbers g

m
+fx). 

No one of them is negative. Since pf— x) = ρ fx — 1)? every g fx) 
is an ordinary triangular number. Henceforth we take m^> 1. 

THEOREM 11. — Every integer Λ >O is a sum of three generalized pen-
tagonal numbers g fx). 

By ( 13), 24A + 3 is a sum of three squares u*, e% wa without a 
common divisor J . Hence from 

it'1 -4- e2-+- w-~ ο (mod3), u1 -+■ ν'2 -f- 3 (mod^j, 

we see that u2 = v-= w>2 = rbotb modulo 3 and modulo 4· Hence u, 
e, w are each of the form 6.v± r, and their squares are of the form 
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(6χ— i')a, where χ is positive, negative, or zero. Thus 

7\ Λ -ι- S = 2(6.1? -·· j)-r= 3 1 i'<(.3.r-~ .rj, .Λ 2-^ (3#'- — ,v) — Zg
h
(x). 

where Lite summations extend over three values of x. 

THEOREM T2. — Every integer A ^o is a sum of three generalized 
hexagonal numbers g

n
(ut>). 

Eor, 8 A+ 3 is a sum of three odd squares (4# — i)3, whence 
À = -(2jr — χ) = I£■«.(.£.). Second proof : Every A is a sum of 

three triangular numbers /= -/(/H- ')· According as y = 2z or 

γ ='iz —j, l = g
n
(—z) or g«(z). 

The only earlier paper on this subject is by S. Réalis. (' ). Hy long 
proofs he obtains the inferior theorems that every.-A is a sum of four 
numbers £Y,(.r) or four gt-,(x)· That he was contént to use four when 
three sul'licc is remarkable in view of the fact just noted that the gene-
ralized hexagonal numbers coincide with the triangular numbers. 

THEOREM 111. — Every Λ is a sum of four numbers g-fx). 

In fact (-), every A is a sum of four values οί p-(x — ·>) for inte-
gers x <o. They are values of g- (x). 

THEOREM 14. — Every A is a sum of four numbers gH(x). 

Except (') when A == 4 (mod8), every A>o is a sum of four values 
of p

H
(.v — 5) for integers χ >o. They are values of g»Çx) = 3^'2 — ix. 

If η is a sum of four values of the latter, then 4^ + 4 is a sum of four 
values of 

17 ν- — Η.τ -f- ι = ( ι — ι — bx) = r(3 )' -- ·>. ) =zgt(y), y = ι — a.r. 

(') Noue. Corresp. Math., I. 4. 1878. μ. 27-'jo. 

(-) DICKSON, Generalizations of the theorem of Fermât and Cauchy on poly-
gonal numbers (Bulletin American Mathematical Society, vol. 34. Jan.-Feb.. 
1928. Theorem 4). 

{*) Ibid., Theorem 6. 
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It remains lo prove that every Α = (a/"Η— ι) is a sum of four num-
bers By the last remark, lliis will he true if 2/· is a sum of four 
numbers g»(>fi)· By llie theorem quoted, the latter is true unless 
2/' = 4(2 /-+-1 ). This again is a sum of four numbers gn(-r) d 2 / is. 
Hence the theorem is proved by descent. 

TIIEOHEM 15. — if m >*-7, every positive integer A is a sum of m — 2 

numbers g
lll+

,(.r ). 

For (' ), every A is a sum of in — (3 numbers ο or 1 and four values 
' Pm+-j('V—3) for integers o. All m — 2 sumrnands are values 

Of (>)· 
But fewer than in—2 sumrnands do not serve for every A. In 

fact, p(—1 ) = m—1 is the least g(-v) which exceeds />C 1 ) = 1. 
Hence A = m — 2 requires m — 2 sumrnands 1. Thus there is no 
improvement of either Theorem 15 or Theorem 14· 

The values in order of gf-v) are ο, 1, 4, 7, i3, 18, .... No sum 
of three is 10 or iG. Again, r 1 is not a sum of two g:,(.r), while 5 is 
not a sum of two ga{-r). 

THEOREM IG. — The number of sumniands in Theorems 11-15 is a 
minimum. 

For interesting forms of Theorems 11-15, see $ 9, end. 

6. A II Tiring Problem. — Find every quadratic function q(-r) 
having a positive coefficient of .1r, which takes only integral values 
for all integers ;r>o such that every positive integer A is a sum of a 
limited number / of those values of 7(u?) which are integers >0 for 
integers .τ>0. 

Let η('ΐ') = α.*'2+ β-r-f- γ. Take ,r = n, ι, 2, Then γ, α-J-β, 
4α -h 2β are integers. Hence 2A is a positive integer m, and 2β is an 
integer. Since q does not represent every A, / > 1, and a sum of two 
or more values of q must give A = 1. Hence q(u) — i, qfk) — ο for 

(1) Ibid,, Theorem 5. 
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certain integers u>o, k>o. Let k be as small as possible. Then 

q(cc) = q{x) — q{k) == [x — k)[m{x 4- k) -+· αβ]. 

Since </(//) = i, 2(3=7« — h= 2/(11— £). Since Λ is an 
integer, «—k — zt: 1 or ±2. If« — k = àz 1, 7(0?) is/>

m+a
(:±: a? H=^") 

in the notation (i4)· For every such polygonal'function*the minimum I 
has been found (f ). For the new case u — k = dz 2, 

( 15) </(&) ~ — k)\m(ac — k qr 2 ) ±: 1 J. 

For the lower signs, /*==/* -H 2 >0. Since 

(ιβ) q(k ± ι) = ~(i—m) 

is an integer, m is odd. The case m — 1 may be excluded. For the 
lower signs, this is true by the definition of k as least. For the upper 
signs, when m = 1, (i5) becomes p3(x— k — 1), wich was treated in 
the papers cited. 

The derivative of ( f 5 ) is zero when χ — k = dzv, where 
e— (2 m — 1 )/( 2f/i ), 

whence χ lies between k and kzbi. This χ is the abscissa of the 
minimum point of the parabola y — (j(x)· 13ut 

7 (/.·) = o, q(k±?.) = q{u) = 1. 

and (16) is negative. Hence for the points on the parabola below 
the χ—axis, the only integral abscissa is A zhi. Thus <7(#)>o for 
every integer x>o except x = kzL· 1, which is therefore the only 
value of a? to be excluded in our problem. 

We first treat (i5) for the upper signs. Write X =x — k — 2. 
Then 

(17) c/(x) — ér(^) — - (X + 2)(fliX + l) — I +/( Χ ), 

(18) f(X) — -m(X*-X) + tX, <= 1(3/114-1). 

(*) DICKSON, Bulletin Amer. Math. Soc\ol. 34, Jan.-Feb., and March-April, 
19^8. 

Journ. de Math., tome Vil. — Fasc. Ill, 1928. 4^ 
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THEOREM 17. — If m = 2 M + Ι Ι, every integer Ν > ?>η m —6 is a 
sum of four values of /(X) for integers X>o and 3 M — 1 numbers 
ο or 1. 

We apply the result proved by Cauchy : 

LEMMA 5. — If a and b arc positive odd integers and 
(10) b-<C 4 », b- 4- 2 b 4- 4 > 3», 

there exist integers > ο satisfying 
(9.0) a — ,r2-f- y2-Y- -3"+ b — χ 4- y -h s 4- IT·. 

Evidently Ν = f(x)~I-/(/) -+-/(*) + /(♦*')+ 7' 's equivalent to 

(21) . Ν :=-/»(«— b)-γ-lbr, o < r < E 

Tbe following discussion holds when Ε is not restricted to the 
present value 3 M — 1, nor t to the value in (18), hut with the single 
restriction it>_m. Insert the value of a from (21) in (19) and 
replace r by Ε or ο in the first or second inequality. We get 

(22) b<- —> b> > 

( 23) IJ = 2477t Ν 4- (.61 — τη )2 — 16/«2, V = 2 4- ( 2 / — m )2 — 2 /// F. 

Then b and U are positive if Ν > ~ m. There will occur at leasts posi-
tive integers between the limits (22) if their difference exceeds d, and 
hence if 
(24) 4 Va — U2 > F, Ρ = 2/rid — 37ii 4-2I. 

The left member is > ο if 
(25) 16 V — U = 8/M(N — 4^) + 4(2<— m)24- 3(2^ — 3//I)2>O. 

Then (2/1) holds if its square holds and hence if 
(26) F = ( 2 V 4- W)2 — L V > o, 8W = U — P2. 

In the present case, 2Z = 3w-f-i, 2E = 3m — 5. Take d— 2. 

Hence 
U = 24 /»N 4- 48m24- 48M 4-9, V= 2/niN 4-M!+9«4-I, 

ν ~ 1\ηι -γ- r, W = 3 771 IN 4- 4 ni2 -4- 5 /n 4- ι, 
Y — m2 ÏS2 — 36/?ι3Ν 4- ιο//<2 Μ — 12mK — 9,ο \ m3 4- -fini- 4-9m. 
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Hence F>o if Ν>37^2 — 6. Then N)>4E and (25) holds. 
Sincec/ = 2, there is a positive odd integer b between the limits (22). 
Since Ε>m — 1, we may choose r so that (mod ni). 
Then (21) yields an integral value of ^ (a — b) and hence an odd 
integer a. Since all the conditions in Lemma 5 are satisfied, 
Theorem 17 is proved. 

When 2, X>o. We saw that £-f-i is the only value 
of χ to he excluded. Hence the summands in our problem for q(pd) 
are the values of q(x) for χ = ο, ι, and all the values of func-
tion (17) for integers x>o. 

First, let k = o. Then the summands are 7(0) = ο and the values 
of (17). By theorem 17, every integer >L = 4 -f· 37 w — 6 is a sum 
of 3 M— 1 numbers ο or 1 and four values of i-f-/(X), and hence is 
a sum of 3M + 3 numbers chosen from ο and values of (17). We 
next prove this also for all positive integers < L = 74M -f- 35. The 
values L of (17) are 

(.27) I, 3M + 3, 8 M 4-6, 15M4-IO, 24Μ + 15, 35M4-21, 48M4-28, 03M4-36. 

ΓΙ. e sums by four of these numbers and ο are 

o~4, 3 M 4- 3-6, CM 4- 6-8, 8 M 4- 6-9, 9M 4-9, 10, 11 M 4- 9-1 1, 

12M4-12, I'iM-F-IA, ι3, i5M 4-IO-I3, I G M 4- Ι 11, 

j 7 M 4- 15, ι8Λ1 4- 13 -15, 19Μ4-10-16, 21Μ4-16, 17, 22 M 4-18, 

«3 M -h 16-18, M 4-i5-i9, 26 M 4- 19, 20, 27 M 4- 18-21, 

29 M 4- 22, 3oM 4? 20-22, 3j M 4- 22, 23, 32M 4- 21-24, 

33M 4- 23, 2',, 34M 4- 25, 35M-h 21-25, 36M4-26, 38M4- 2.4-27, 

89M 4- 20-28, 4oM 4- 27, 28, t\i M 4- 27-29, 42 M H- 29, 

43 M 4- 27-3O, 44 M 4- 3o, 45 M 4- 3o-31, 46 M + 3o-32, 

4
7

M 4- 31, 32, 48 M + 28-33, 49M4-33, 5oM 4- 3i-3i, 

51M 4- 31 -34, 53 M 4- 34-36, 54 M 4- 34-36, 55M + 37, 
56M 4- 34-37, 57M 4- 37-38, 58 M 4- 37, 38, SqM 4-36-3c>,. 

60 M 4- 4o, 61 M 4- 4o, 62 M 4- 3g-41, 63 M 4- 36-41 ? 
64M 4- 4o-42, 65 M 4- 4i, 42, 66 M 4- 3g-43, 67M 4- 4», 43, 

68M 4- 41, 69M 4- 42-45, 70M 4- 42-45, 71 M 4- 42-46, 

72M 4-43-46,
 7

3M 4- 46-47, 74M + 45-47-

Tbe maximum gap 3 M is from 3 M -b 6 to β M -f - G, since all later 



332 L. Ε. DICKSON. 

gaps are<2M-bi. Hence every integer < L is derived from an 
entry of the table by adding at most 3M — ι. 

THEOREM 18. — 7//«=2M + I)>I, every positive integer is a sum 

of 3M + 3 positive or zero values of — 2) + 1] for integers 

a?>o. The number 6 Μ + 5 is not a sum of fewer thin 3 M -f- 3 such 
values. 

7. THEOREM 19. —Ifm = 2M4· I> q, every integer Ν >3^m— 29 

is a sum of four values of /(X) and 3 M — 4 numbers Ο or 1. 

Since M >-3, E = 3M — 4 > m — 1 and we may choose r< Ε so 
that tb 4- r==N (mod m). We have the same t and d as in § 6, but 
now 2E = 3m —11. Hence we have the same U, P, W, while Y is 
increased by (jm. Hence F is increased by 

24τη'1 Ν — 144mz-\- 4O8/7ï2+ 18 m. 

Now F > ο if Ν >37m — 29. 

Let k—ι. The summands are y(o)=o, g(i) = 3M+i and the 
values of function (17). Their sum by four are 

(28) o-4, 3M-4-1-6, 6M-(-2-8, 8Μh-6-9, 9M-4-3-10, nM-b7-n, ..., 

The first gap 3 M — 3 is the maximum gap since it is not less than the 
largest later gap 2M + 1 in the table of § β. This proves : 

THEOREM 20. — If m = 2M -h ι > 7, every positive integer is a sum 

of 3 M positive or zero values of^fx — I)[M(X — 3) 4- 1] for integers 
χ > o. The integer 3 M requires 3 M such summands. 

To prove a theorem analogous to theorem 19 for m = 7, we must 
take d — 4 to have two odd values β and β 4-2 of b. The latter 
with r=E = 5 gives ίό +/·= ίβ 4-6 (mod m), which with t β 4- r 
(r<E) give a complete set of residues. We find that F ο if Ν > 829. 

Hence to extend Theorem 20 to the case m— 7, we would have to 
verify it for all Ν < 829. 
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8. Function (i5) for the lower signs. — Write X = #— k. 
Then y (a?) becomes/(X) in (18), except that now 

t~ - (3m — ι) = 3Μ + ι. 

Give to k its least value 2. We saw that k — » = 1 is the only value 
> ο of# for which cj(x) is negative. Hence thesummancls are <7(0) = 1 
and the values of /(X) for integers X > η : 

(29) ο,ι, 3Μ + ι, 8M-4-3, [5M-4-6, 2/μΜ+ιο, 35M-t-15, 48M4-21, 63M4-28. 

THEOREM 21. — If m = 2 M -F-1, every integer Ν >/ is a sum of 
four values of /(X) with /= 3 M +1 and Ε numbers ο or 1, where 
E = 3M— 3, /=37m — 45 if M >»2; E = 4, / = 147 J/M = 2; 
Ε = ι, / = 31 ο if Μ = 1. 

For M>2, Ε>m — 1 and we may take d~i. Then Ρ == Î\m— ι. 
First, let M > 2. Then 2Ε = 3m — ç) and 

13 = 24 ni-h 48 m- — 48μ 4- 9, V — un Ν 4- ni- 4- 5 ηι 4- r, 

W~ 3mN + 4 ni- — 5m -h 1, 

F = m1 Ν2 — 36m3 Ν 4- 46m1 Ν — <2 m* — 132 m3 4- 244 ni- 4- 33 m. 

Then F > ο if Ν>07/71 — 45. 
Second, let M = 2. Then 

U = 120N 4-969, Vr=ioN-4 4,5 W = i5N4~76, 

F ~ 26N2—355oN—14765 > ο if Ν ̂ Ι47· 

Third, let M = ι. As at the end of § 7, we may take d = 4· Then 

U = 9(8N4-33). V = 6N 4-19, Ρ = 23, W = 9^ — 29, 

Then F = 9(N2 — 3o8N — 618) > ο if Ν>310. 

THEOREM 22. — If m — 2M + 1, every positive integer Ν is a sum 

of Ε nu mbers ο on a nd four positive or zero values ofl-(x—2) (mx — 1 ) 

for integers #> Ο where E = 3M — 3 Ί/ M > 2, Ε = 4 M = 2, Ε = 1 

«y μ=ι. 
This is true by theorem 21 if Ν > /. For M > 2, it suffices to verify 
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it when Ν < $ηm — 38 = ηί\M — ι. The sums by four of the num-
bers (29) are 

o-4, 3M + I-4, 6M + 2-4, 8M + 3-6. YM + 3, 4, 11 M+ 4-6, 

12M + 4, I4M + 5, 6, I5M + G-G, 16M + 6-8, 17M + O, 18M + 7H), 

19M + 7, 8, 21 M+ 8, 9, 22 M+ 8, 'I3M + G-U, 24M + 9-1.3, 

26M + 10, 11, 27M + 10-13, 29M + 11, 3OM + i2-I4, 31 Μ + 12, I3. 

32M + I2-I5, 33M + i3, 14, 34Μ + Ι3, 35Μ + Ι4-Ι8, 3(IM + 14, 

38Μ+Ι5-Ι8, 39M + J5-18, 40M + 16, 17, /Μ M+ 16-18, 
42M + 17,18, 43 M + 17-20, 44M -+-18, 4

R,
M + 18, 19, 46 M + 18-20, 

47M + 19, 20, 4^M +19-24, ^giVf -+ 30, 5oiM + 20-23, 5ι M+ 21-24, 
53M + 21-23, ... 

In the continuation from 53 M to7/1 M? all gaps are < Μ-M· The 
second gap 3 M — 2 is a maximum if M > 2, since it is not less than the 
largest later gap 2M + 1. If M = 2, the maximum gap is 2M 4-1 
(beginning 12M4-4)· For iVI = 1, Theorem 22 was verified for 
Ν 310 by a separate table. 

0. A Generalization. — In the most general Waring problem for 
a quadratic function f (a?), its values for integers χ > ο are not assumed 
to be all integers. Let ξ be the least integer ώ>ο for which f(x) is 
an integer >0. Then J\x) is not used as a summand when χ<^ζ. 
Write Χ = *-ξ,?(Χ)=/(Χ+ξ). Hen ce the sùmmands arc 
certain values of </(X) for XJo, while q(o) is an integer>o. The 
coefficient of X* is positive since there must be infinitely many 
positive integral summands. 

Changing the notations, we consider 

f(x) = ~x- + -,CC + C, t > O, C>0, <-/> o, 

where t, η, c7
 d are all integers, and t

7
 η, d have no common divisor 

> 1. Without loss of generality we may assume that d is relatively 
prime to both t and n. For, if t=pT, d = pO, where ρ is a prime, 
let χ be any integer >0 such that f(x) is an integer. Then 

Df(x) = Ύχ- + ̂  a? + I)c 
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is an integer. Since η is not divisible by ρ, χ is a multiple pX of p. 
Hence the integral values of f(x) for integers χ> ο coincide with the 
integral values of 

T!t+BUe 

for integers X^o. Similarly, if n~pN, d—pD, then x—pX and 
fix) becomes 

πλ +~ο-χ + ' 

This reduction from cl to D may be repeated. 
If J=2, then t and η are odd and f(x) is an integer for every 

integer x. The latter is evidently true also if d— i. For such a 
function /(#), Waring's problem was treated partially in §§ (>-8. It 
has been treated completely (' ) when f(x) is an integer >o for every 
integer > o. Here let d^> 2. 

The discussion is simplest when t = ι, d—p'f where ρ is a prime. 
Then η is not divisible by p. Hence #and# -+- η arc not both divisible 
by p. But their product must be divisible by p' if /(#) is an integer. 
Hence one of them is divisible by pk. According as x=p,!X. or 
χ 4- η = p':X

)
 f becomes 

X (pkX ± η) -H c 

for the upper or lower sign. Hence the integral values of 

(3o) nx) -f- c . (/< not divisible by prime/?) 

for integers ο coincide with the values of 

( 31 ) pkz2 + «: + r; 

for all positive, negative, and zero integral values of z. 

For c = ο, λ = τ —p1', (3i) is a generalized polygonal number of 
order 2(//'-Η i). Hence those numbers coincide with the positive or 
zero integral values, for integers #Jo, of the single function (3o). 
The small orders are 6, 8, io, 12, 16, 18, 20, i(\. 

(4 Dickson, Amer. Jour. Math., 1948. 
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Next, let t = i,d = ip''. Then η is odd and not divisible by the 
odd prime p. The preceding proof shows that the integral values 

of f(x) for integers x>o coincide with the values of ~(p'' z2-\-nz)-\-c 

for all integers z. For c = ο, η = ι — pk, the latter is a generalized 
polygonal number of order pk-\- 2. The small orders are 5, 7, 9, 11, 
i3, i5, 19, 21, 25. 

For an infinitude of integers (^(including all < 22 except 1.4 and 17), 
all generalized polygonal numbers of order o· coincide with the posi-
tive or zero integral values of a single function f(x) for integers x>o. 
Hence theorems 11-16 may be interpreted as theorems on the repre-
sentation of all positive integers as sums of positive or zero integral 
values of f(x) for integers x>o. 

An elaborate investigation of all these Waring problems will be 
given in a later memoir. 


