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DETERMINATION

DU PENTAEDRE DE VOLUME DONNE ,

DONT LA SURFACE EST UN MINIMUM;

Par M. C.-G. SUCKESDORFF.

Nous nous proposons de donner ici la solution du probléeme sui-
vant -

Entre tous les pentaedres de méme volume , trouver celui qui a la
moindre surface.

On ne laissera de coté aucun pentaedre, en considérant les pyramides
quadrangulaires et les troncs de pyramides triangulaires : bien entendu
que nous appelons tronc de pyramide tout solide qui reste lorsque,
d’une pyramide quelconque, on retranche la partie supérieure par un
plan guelconque qui ne coupe nine touche la base de la pyramide.

La pyramide quadrangulaire, qui, & volume égal, offre une surface
moindre que les autres figures de la méme espece, est bien connue, et
I'on trouve, en exprimant sa surface §’ par son volume V,

§ = 2 {36V

Admettons maintenant qu’on parvienne a trouver aussi un tronc de
pyramide triangulaire dont la surface soit moindre que celles des autres
solides du méme genre, & volume égal : le probleme proposé plus haut
sera dés lors facilement résolu, car il ne restera qu’a comparer la sur-
face de ce tronc a celle de la pyramide dont nous avons parlé tout
3 Theure, les volumes étant supposés égaux. Cest a la plus petite des
deux qu’appartiendra la propriéi¢ du minimum entre toutes les sur-
faces de pentaedres.

F2..
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Pour trouver ce tronc, cherchons d’abord des expressions conve-
nables pour le volume, pour la base et pour la surface latérale & une
pyramide triangulaire quelconque; et pour cela supposons que la
droite OM, qui perce au point M la base
ABC de la pyramide O.ABC, soit I'axe d’un
cone ordinaire, tangent aux faces AOB,
BOC, COA de la méme pyramide suivant
les droites OD, OE, OF. Soit MP la
trace, sur le triangle ABC, du plan OMP
mené par OM perpendiculairement au
plan de ce triangle. De plus nous admet-
tons que, par OM et chacun des points A,
D, B, E, C et F, des plans soient me-
nés. Les plans DOM, EOM, FOM sont
perpendiculaires aux plans des triangles
respectifs AOB, BOC, COA; et les angles diédres F.OM.D, D.OM.E,
E.OM.F, que nous désignerons respectivement par 27, 2 ¢, 27,
sont divisés en parties égales par les plans AOM, BOM, COM.

Si Von donne 7, 7' et 1, qui au reste doivent satisfaire 4 la’ condi-

tion
(1) T4+ v + 17 = 180°,
et que de plus I'angle DOM = EOM == FOM = ¢ soit connu, Pangle
triedre O. ABC est déterminé. Ensuite, on pourra fixer la position de
la base ABG par OM = ¢, par l'angle OMP = ¢, que nous supposons
ne pas surpasser go degrés, et enfin par I’angle ¢ des plans OMP et
OMA.
Si 'on pose
AM =4, BM=a, CM=a’,
angle AMO = A, angle BMO = A’, angleCMO = A’,

et qu'on applique une formule bien connue aux pyramides M. AOB,
M.BOC et M.COA dont est composée la pyramide O.ABC, on trouve
d’abord pour le volume V' de la méme pyramide

I . . . . . . . . .
V= é[aa'c sin Asin A'sint”~+a'a’csin A’sinA”sint+a”acsinA”sin Asint'};
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mais il est facile d’introduire dans cette formule, au lieu de «, «/,
a’, A, A’ et A”, les quantités dont nous nous sommes servi pour
la détermination de la pyramide, car si nous appelons «, o et " les
angles respectifs AOM, BOM et COM, nous tirons des triangles AOM,
BOM, COM,

¢ I , ¢ I " c I

e ————y ] = < a == S
cota 4 cot A sin A coto’ + cot A sin A’ cot o’ +cot A” sin A"

et des angles triedres 0. ADM, O. BEM, O.CFM,
cota=costcoty, cota’=cost'coty, cota’= cost’coty.
De plus, les angles triédres M. APO, M.PBO, M.CPO nous donnent
cot A = cosycoty, cotA’=cosy coty, cotA’= cosy’cot d,
" en faisant
(2) Y=180°—1"+79, 7 =180+ 7 + .

On voit maintenant comment on arrivera au but. L’élimination
faite, on trouve, en ayant égard aux relations

sin T cos T + sin 7’ cos v’ + sin 7" cos ' = 2 sin 7 sin ¢ sin *,
€os 7 8in T -+ cos ' sin 7’ + cos " sin 1" = o,
conséquences des équations (1) et (2)

¢* cot sin r sin v’ sin ="
3 (cosTcoty +cosy cotd) (cost’ coty - cos ' cot P} (cos ” cot g + cosy” cot b1’

(3) V=

Pour la base et la surface latérale de la pyramide, on est immédia-
tement conduit aux formules snivantes :
3V

3V
esin g

s AAOB 4+ ABOC + ACOA =

Concevons maintenant que, de la pyramide O.ABC, on retranche
la pyramide O.A’B'C, et désignons par z, @, n les valeurs que pren-
nent ¢, ¢, y pour cette pyramide. En appliquant les formnles que
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nous venons de trouver, le volume V”, la base et la surface latérale de
la méme pyramide seront donnés par les formules

(4) V= 2% cot g sintsin ¢'sin 7’
" 3(cos 7 cot p -+ cos ncot w) (cos T’ coty + cosn’ cotw) (cos 77 cote + cosn” cot )

AABC =2 AANOB + ABOC + ACOA = 2

< ?
zsin w zsin ¢

ou il faut supposer
(5) nw=180°—1+un N =180°+1+ 1.

Les calculs étant ainsi préparés, nous allons nous occuper du tronc
ABC A’B'C'. Sinous appelons V son volume et § sa surface, nous aurons

(6) V:V/__Vﬂ’
v’ 1 1 V” 1 1
(7) S=3[:<§a+m—¢>—‘;(m‘m)}

Ces formules s’appliquent a tous les cas, excepté a celui oul'on a
¢ = 0, c’est-a-dire ou1 le tronc est prismatique. Alors les expressions de
V' et V" deviennent infinies, et les expressions de V et S se présentent
sous une forme indéterminée. Pour éviter cet inconvénient, nous con-
sidérerons en particulier le cas des troncs prismatiques, et d’abord
nous formerons des expressions convenables pour le volume et la sur-
face d’'une figure de cette espece.

Les expressions de V' et V” étant substituées dans les formules (6)
et (7), on peuty introdaire, au lieu de ¢, z et ¢, la partie MM' ="/ de
I'axe du cone dont nous avons parlé, et les rayons r, r' des cercles
d’intersection du méme cone avec les plans qu’on méne par les points
M, M, perpendiculairement 4 OM; car on a

h=c¢—3 c=rcotg, z=r'coty.

Le changement accompli, si ensuite, apres une réduction convenable,
on fait r’ = r, on trouve pour le volume et la surface cherchés que,
pour éviter toute confusion, nous désignerons respectivement par ¢

LI U [ . ' UL 0 RN O e
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et s
"3k t (€037 cosy’ | cosqy”\ -
(8) o tangt tang ¢’ tangt” | 7 ¥ o5 T cose T cos e )
Y 1
3 cosn  cosn’  cosn”
+ cotw e e
COST = COST cOS =
s = r® tangt tang 7’ tang 7"
o h X I cos cosy’ cosy”\
2h UL g (81 s oy
(9) < r sin sine cos T cos T cos T
cos cosy’ cos n” '
+ cotw ( i n, —7)
COST = COST coS

ou il n’y a plus d’ambiguité.

Remarquons ici que si un tronc quelconque de pyramide triangu-
laire offre une surface moindre que tous les autres, les valeurs cor-
respondantes des éléments qui le déterminent doivent rendre 'expres-
sion de S et celle de s, dans le cas d’un tronc prismatique, un
véritable minimum. Donc, si I'on connait tous les minima de S cor-
respondant aux troncs des pyramides ordinaires et ceux de s corres-
pondant aux troncs prismatiques, on aura le tronc cherché.

Proposons-nous de les trouver, et admettons d’abord que ¢ ne soit
pas zéro; alors, en opérant suivant le principe du calcul différentiel,
il faut différentier les équations (1), (2), (3), (4), (5), (6) et (7). La

différentiation faite dans la supposition de V = constant, si ensuite on
pose

1
\ m= , m
cost cotg -+ cosy col
(ro0) ¢
I
m'= —
( cosz” coty + cosq” coty P
1 14
-= 9 n —
€0ST cotg + cO57 COtw
(r1)
1
’l” —
cost” cot g + cosx” cote’ 1

1
b
cost’ cotg -+ cosy’ coty

sind + sing
sing siny ’

1
cos 7’ coty + cosa’ cotw

sinw — sing

sing sine

et qu’entre les équations obtenues, on élimine dz, dy', dv, dn', dq

R R RN
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et dV”, on tronve
LoD av -2 go 4+ 1V 4y
ds =3 ‘ - i
— ?
- V' cos V” cosw \'A V”\ cosg
- dql T Zsinw do — <? - ?) sin’g

esin?

3 - [ 7 ”o: ”
= de coty(m siny + m'siny + m” siny’) dy

! s ” /!
~+ (m cosy + m’ cosy + m’ cosy’) g

dy
’ ’ /4 s -
~+ (m cost + m’'cost’ + m” cost tanggo)s—in,q)

[~ m' (cot g + cosy’ cost’ cot)  m (coty 4 cosycost cotd) )
sin 7’ sint dr

d V': V’
~+ m”siny” cot ¥

m” (cotg+cosy” cost” coty)  m (coty + cosy cost cotd) )
( ¢ i _
sinz” sint dr”

— m'sinvy coty

3 i . .
= dz + cotw (nsiny + n' siny’ + n” siny’ ydn
zZ
~+ (ncosy + n' cosy + n’ co‘zn”)jﬁ-
i 1 - sin’e

' cost’ + n” cost” — tang )—@—
- (1 cost + n' co 89) S
[~ 7' (coty + cosn’ cost’ cot ) 7 (coty -+ cosn cosT cotw) ]
sin 7/ sint dz'

d‘] ” — VI/

—+ 7" sinn” cotw
[~ 7" (cot ¢ + cosn” cost” cotw)  n(cotg 4+ cosy cosT cotw)
sin = d=".

+ sint”
B — n' sinn’ cotw _f

Pour chacun des minima cherchés, on aura dS = o, comme il est
facile de s’en assurer. Si donc, au moyen des deux derniéres équations,
on a éliminé dc et dz de expression de d8S, les coefficients des diffé-
rentielles restantes s'évanoniront séparément. Voici les équations

o 1
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que Von trouve :

(1) pz = qc,
(13) coty (msiny + m’ siny + m” siny") = o,
(14) cote (nsiny + n'siny’ + n’sing”) = o,
’ / " s 3cosy
(15) mcosy -+ m' cos’y + m’cosy’ = — '
3 ’ ’ " ” 3 cosw
(16) ncosn + n' cosn' + n’cosn’ = — pal

3 cos
pzV’ [m cost -~ m' cost -+ m” cost’ — tango — ———3]

P
(17) : 3
— " - ’ 7 ” ” g cos g
== qcV"| n cost 4 n' cos?v -+ n” cost —tanggo————q— )
/ [~ m’ (cotg -+ cos o’ cos’ coty)  m (coto + cosy cost cot xp)j
pzV’ sin 7/ sinz ,
(18) | ~+ m’ siny” cot |
I
n’ (coty 4~ cosn’ cost’ cot w) n{cote -+ cosxn cos T cot m)—]
fod qc A4 sin sinz N
B ~+ n” siny” cotw B
[~ m” (coty + cosy” cost” cot)) m(cotp - cosy cost cot) |
pz A% sin 7”7 sin T
B — m'siny coty N
(19) ” " " 7
n"” (cotg + cosn” cost” cotw) n (coty =+ cos 7cos T cOt )
=qcV”’ sin 7 sint ,
\ L — n’siny’ cotw B

Avant de commencer I’élimination, nous remarquons qu’il faut, dans
les équations (13) et (14), supposer égaux a zéro les facteurs composeés.
On s’en assure en examinant d*S. Les équations de condition étant
satisfaites, le coefficient de dy* s’y réduit a zéro sans que cela ait lieu
pour le coefficient de dydy, sile facteur composé, dans I'équation (13),
n'est pas zéro. Il ne peut donc y avoir de minimum sans que cette
condition soit remplie. Par rapport au facteur composé, dans 1'é-

Tome Ii (2 série). — Mans 1857. 13
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quation (14), ce sera la méme chose ; en sorte que nous aurons
(20) m siny 4 m'siny’ + m”siny’ = o,

(21) nsiny + ' siny’ + n’ siny” = o.

De plus, il est nécessaire que chaque relation déduite des équa-
tions (1), (2), (3), (10), (15), (20), subsiste encore aprés que l'on
y achangé ¢, V', m, m', m’, p, ¢, v, ¥, 7 en z, V', n, n'; v,
g, —w, 0+ 180°% n'+ 180° n”+ 180° respectivement; car, en fai-
sant le méme changement dans les équations mémes, on retombe sur
les équations (1), (5), (4), (11), (16) et (21).

Maintenant, pour effectuer I’élimination, nous multiplions I'équa-

C 1 RY \ ) . cosy’cosy”tangg
tion{20) par ——;, nous multiplionsla méme équation par ———"—-27,
mim m m

et I'équation (15) par tango coty. Remettant ensuite pour un mo-
ment, au lieu de m, m/, m” et p, leurs valeurs, et appliquant les équa-
tions (1) et (2), d’ou nous tirons

cosy’ €osT — cosy cost’ = — sint”"sin (y + 1),

. €os Y’ €osT — cosy cost” = sint’ sin(y — 1);
nous trouvons par un procédé bien simple les équations suivantes :
(22) M cot’¢ -+ 2 Ncotg coty + P cot®§ = o,

m’ siny’ cosy”sint” sin (y + 1) — m" siny’ cosy’ sint’sin(y — 1)
= P tang ¢,

3(r + sing siny)

(24) m cost -+ m' cost’ + m” cos = oo
?

ot nous avons introduit les dénominations :

P = siny cosy/ cosy/ + siny’ cosy cosy” + siny” cosy cos 7,
2N = costsin(y' + ") + cost'sin(y + y') + cost”sin(y + ¢'),

M = siny cos?’ cos7” + siny cost cost’ + sin7” cost cost'.

Au moyen de I'équation (24) et de celle qu’on en tire par le chan-
gement de m. ... en n.. .., on peut déterminer les valeurs de m, m,

1 ' | [ T A YR RN AT SRR e
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m”, n’ et n’ qui vérifient 'équation (17). Si ensuite on 6te les produits

égaux pz et gc, et quon restitue les valeurs de p et ¢, on aura, en
réduisant,

(25) V(1 — 3sing sing) = V'(1 + 3singsinw).

Ajoutant & I'équation (24) les équations (20) et (15) multipliées res-
pectivement par —sin(y + 1) et — cos(y' -~ 7’), let ayant égard aux
équations (1) et (2), on trouve, aprés une réduction bien simple,

(26) 2mp sint'sint” cosg = 3[1 +singsingy — cosg cosy cos(y + 7],
oum’ et m” n’entrent plus. On aura de méme,

a2m psintsint” cosg

) == 3[1 4+ singsing — cosg cos Y cos(y" +1")],
\27

2m"” p sint sint’ cos ¢

= 3[1 + sing siny — cos ¢ cos Y cos(y + t)].

Ayant éliminé m”, n” entre les équations (18), (20), (21), et m', n’
entre les équations (1g9), (20), (21), si ensuite on substitue les va-
leurs de m, m', m” que donnent les équations (26) et (217), et les va-
leurs correspondantes de n, n', n”, on trouve facilement, en obser-
vant les relations

cos (y + 1) = cos (¢ — 1), cos(y + ') = cos(y — 7'),
cos (7" + ') = cos(y — 1),

auxquelles donnent lieu les équations (1) et (2), celles qui en résultent
par le changement de ... en v, +180°..., et les valeurs de p et ¢ :

(>8)

{ V' siny” cosyp = — V”siny” cosw,

V' siny' cosy = — V”siny’ cosw.

Pour que ces équations subsistent conformément aux conditions du
probléme, il faut qu'on ait cos¢ = o, et en méme temps cosw = o,
ou bien siny”: siny = siny” ; sinn’.

En examinant 'équation (25) dans la supposition de ¢ = w = go°,
on sera bientdt conduit a Pabsurde, quand on y aura substitué les
valenrs de V' et V" données par les équations (3) et (4), celle de ¢

13..
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tirée de I’équation (12), et enfin les expressions de p et ¢. 11 faut donc

supposer
siny”: siny’ = sinn”; sinn'.

Cette analogie, combinée avec les équations (1), (2), (5) et (28),
nous donne
n=179=*x180° n'=7x180° 9= 7 =180,

ou il faut prendre les signes supérieurs ensemble et les signes infé-
rieurs ensemble; et
(29) V' cosy = V" cosw.

Si, dans I’équation (23), on substitue les valeurs de m’ et m” tirées
des équations (27), et qu’ensuite on rétablisse la valeur de p, on
trouve en réduisant et en ayant égard aux relations

sin(y'— ') = sinz, cos(y’ +¢") = cos(y —7),
2[costsin(y + 7’) — siny cosy] = costsin (Y + ¥')

~+ cos sin (7 + ") + cost”sin(y +¢') = 2N,
amenées par les équations (1) et (2) :

aPsing 3[ [cosysin(y + ) — siny cos-c]]_

2P+ sing > (1 +sing sin¢) — N cosg cosd

D- < , . . . ] I 9 .
ivisant par sing sing, puis remplagant - par i+ cot’¢, on aura,
en posant
2P — 3[cosy sin(y + ") — siny cost] =cosy sin(y — " )
-+ cosy’sin(y — §') + 3siny cost = Q,
et réduisant,
Q

singsiny

— Q — 3Ncoty coty — 2P cot’ ¢ =

Si 4 cette équation on ajoute I’éguation (22) multipliée par 2, on
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trouve

Q

sng sin

(30) 2M cot®y — Q + Ncotg coty =

d’oui résulte, en élevant les deux membres au carré, puis exprimant les
sinus par les cotangentes, et réduisant,

(4 M2 cot?’p — 4MQ — Q?)cot?¢ + 2N (2 Mcot’ ¢ — Q) coty coty
+ [(N? — Q?*) cot®’¢ — Q*] cot’§ = o.

Enfin, si I'on ajoute cette équation et Péquation (22) multipli¢e par
Q — 2Mcot*yp, on aura

[2M2 cot?p — 3MQ — Q*|cot®o
+ [N* — Q* — 2MP)cot* ¢ + PQ — Q*]cot®§ = o.

Pour passer 2 I'équation correspondante par le changement de ...
enn + 180°..., il n’y a qu'a changer ¢ en — w; car, suivant les rela-
tions établies entre 7y, 7', 7" et n, ', %", les expressions de M, N. P, Q
ne changeront pas.

11 est donc nécessaire que I'équation que nous venons de former, réso-
lue par rapport acot, nous donne la valeur de cette quantité, de méme
que celle de — cotw, si elle n’est pas vérifice indépendammerit de .
Mais c’est bien cela qu’il faut supposer, car I’équation (29), d’ou ré-
sulte ¢ > w, nous empéche d’employer les valeurs égales qu’on trouve
pour les mémes quantités. Nous aurons donce ‘

(31) 2 M? cot*¢ — 3MQ — Q*=o.

~ Soustrayant de I'équation (30) multipliée par tang ¢, celle qui en
résulte par le changement de & en — @, on aura

sing (2Mcot?p — Q) (tang ¢ + tangw) = (colw - co;m) Q.

/

Divisant membre 3 membre |’équation (25) par Véquation (29), on
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trouve

(32) cols\p - COISw = Jsing(tang ¢ + tangw);

d’ott, & cause de I'équation précédente.
Mcot’p — 2Q = o.

Eliminant Q entre cette équation et P'équation (31), on est conduit &
M?(cot’p — 2) = o,

d’ou résulte M == o; car, en examinant 'équation (32), on voit qu'ii
. 1 « ,

faut supposer sing < 32 cequi donne cot®¢ > 8. La valeur de M étant

substituée dans ’équation (31), nous en tirons Q == 0. On aura donc,

en reprenant les expressions de M et de Q, et en les transformant par
rapport & I'équation (1), aprés avoir introduit les valeurs de " et 7",

siny[cost’ cost’ — cosz(cos® 1 + cos? )]
(33) + cosycos’rsin(t — ') =0

?
siny(cost — 2¢ost’ cost’) — cosysin(v' — ') = o.
Eliminant 7 entre ces équations, on trouve

o, cost(cos®t — cos?7’)
sin (v — 7") e a , ) = o.
+ cos7"[sin®7 cost’ — cos7(cost” + cost cost')]

Mais, en vertu de I'équation (1), le facteur composé contenu dans
le premier membre de cette équation peut étre remplacé par le produit
sin(t — ') sin (t —t”). Nous aurons donc

sin(t — 7')sin(r — 1"} sin(v' — ") = o,
d’ou nous concluons que deux des angles 7, 7, t* sont égaux.

Supposons =17/, et substituons cette valeur de " dans les équa-

tions (33); elles nous donnent

/ "

7=1=1", oubien siny=o.

1 ' ' U o s RN RAREERL
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Si, dans la supposition de t =t = 1", d’olt résulte

—cos(y + 7)) =cosy, —cos(y + )= cos Y

— cos(y + 1) = cosy”,

on soustrait les équations (26) et (27) deux a deux V'une de I'autre. et
qu’ensuite on remplace m, m’ et m” par leurs valeurs, qui sont toutes
positives, de méme que celle de p; on est conduit i la relation
€0s y = €os 7' = cos y’, qu'on ne peut pas admettre. 1l faut donc
passer le cas de 1 =7 =",

Supposons maintenant, outre ' = 7/, siny = o, d’ou nous tirons
7= 0, ou bien 7 == 180°, et soit d’abord 7= 0. Si, dans ce cas, on
rétablit les valeurs de m et 77/, et si l'on élimine t* = ¢’ au moyen de
I'équation (1), équation (26) prendra facilement la forme

(34 I+ cosT __bBeosg (v — o)
) cos~ cote + cotd pcosy

En transformant 'expression de V', donnée par I'équation (3) dans
la méme supposition, les valeurs de 7 et 7 étant rétablies, on trouve,
en appliquant 1’équation (34),

,__ 2¢sinttang’z cos’ L {y —9) _ ¢*sinz tang®t’ sing sin?y
~ p(1+cost)sing (coty — cotd)  2p(1+ cost)sin’ L (Y — ¢)

Substituant cette valeur de V’ et la valeur correspondante de V”
dans I’équation qui résulte lorsque a I'équation (25) on ajoute 'équa-
tion (29) multipliée par 3 cosg; puis éliminant ¢ au moyen de 'équa-
tion (12), et restituant les valeurs de p et g, on aura, en réduisant,

35) s [I+3cos(q;+cp)][l——Cos(Lla—i—go)]cot2—;-(Lp——"0)
o ‘:[l+3cos(c.)——§9)][1—cos(w——cp)]cot"‘;(m—l—g:).

De plus, on tire de ’équation (32)

3singsin(yp + o) =cosg — cos¢y — (cosg — cosw)

— Snz(b+o)sinfb —g) sing(o—g)sin(w+sg)

cos3 (Y — g) €05 3 {w =+ g) ’
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et 'on trouve sans difficulté, en éliminant z entre I’équation (34) et
celle qui en résulte par le changement de p et { en g et — w, les va-
leurs de p et ¢ étant ensuite rétablies,

sing (+g¢)sin(o+g)  sin; (o —g)sin(y —9)

Ssimgsin(y +w) = =TTy T el

Combinant cette équation avec la précédente, on aura

[sin(¢ — ¢) — sin(w + )] [Sin-;-(‘l’-F?) + sin{(w—q,)] — o,

cosy(p—g) = cosi(o-+g)

d’ou
(36) Y—p =0t

¢ étant éliminé au moyen de cette équation, I'équation (32) nous
donne

i

(37) cos= (4 +w) =3

En combinant encore 1’équation (36) avec I'équation (35), on trouve
q q )

[cos (¢ + @) — cos(w — 0]
> {2 —3[cos(y — 9 +29)+ cos(w +¢ — 29) |} = o.

Ici 'on ne peut pas supposer le premier facteur égal a zéro, et ce
sera la méme chose par rapport au second; car, en conséquence des
équations (36) et (37), d’ous, au reste, nous tirons

I
cos(§ — ¢) = cos(w + @) = 3
ce méme facteur se réduit & 1 — cos2¢, quantité quil ne faut pas sup-
poser égale & zéro, vu les conditions établies.
Si, au lieu de supposer y = o0, on suppose y=180°, ce qui produit
le méme effet que si Pon avait remplacé ¢ et w par 180°—¢ et 180°—w

respectivement daus la supposition de y=o0, on est conduit au méme
résultat.

1
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Il est donc démontré qu’il n’y a aucun tronc de pyramide triangu-
laire a volume donné dont la surface remplisse les conditions de mini-
mum, si ce n’est un tronc prismalique.

Si, aprés avoir différentié les équations (1), (2), (5), (8) et (9),
¢ étant constant, on élimine dh, dy, dy’, dx', dn" et dr entre les
équations obtenues, et qu'ensuite on égale a zéro les coefficients de
dr, dv, d»n, dy, de, dv, d’ dans Péquation qui résulte, on est
conduit aux équations suivantes :

(38) ST, S r_ 0,

sin Y sin o r

(39) sinycost’ cost” + siny’ cost cost” + siny” cost €os? = o,

(40) sinyn cost’ cost’ + siny’ costcost’ -+ siny” cost cost = o,

(41) { €os 7y €08T' €087” -+ €08y cosT €ost” + cosy’ cosT cost’
I
— 3 cosTcost’ cost’ cosY = o
b
. (4) €os% co57 €cOST” + CcOS7’ COST COsT” + COS¥” COST COS T
o .
-+ 3 cost cost’ cost” cosw = o,
7 3cost”sin{r — 1) [ 1 1 h + v
sinz sin+’ cost cost’ | sin sin r rélangr tangt' tangt”
. ;e .
siny cosy’ sint coswy sint
cot —
(43) + ¢ | cos<” cos?t’ cos?t ]
cot o [ sin»n” cosx’ sin 7’ + cosn sint| o
| cost” cos?r’ costt -
¢ 3cost’ sin(r — ") [ 1 1 A v
sint sint” cost cost” | sin sinw r r® tang r tang 7’ tang "
3 g g g
sin’ cos<y sint cosy” sint”
cot
(44) + Y [cos 4 + cos’t -+ cos? "
cot o sin »’ cosy sint cosy” sine”| o
cost’ cos?t cos?z” | T 7

auxquelles doivent satisfaire les valeurs des éléments qui déterminent

le tronc prismatique triangulaire de volume donné, dont la surface

est un minimum. Au reste, il faut remarquer que, des équations (39)
Tome 11 (2° série). — Mars 1857. 14
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et (40), nous avons 6té les facteurs cot ¢ et cot w par la méme raison
pour laquelle ces facteurs ont été introduits dans les équations (13)
et (14).

Ajoutant les équations (39) et (41), multipliées respectivement par
~— cos'y et siny, ajoutant les mémes équations multipliées respective-
ment par — cosy et siny’, par —cosy” et siny’, par siny et cos7y,
par sin 7 et cosy/, et enfin par sin y” et cosy”, on trouve, en ayant
égard aux équations (1) et (2),

(45) cost sin (1" — 7') = 3 sinycost’ cost” cos ¢,

(46) { cost’ sin(t — 7") = 3sin7y cost cost” cosy,

cost” sin(7 — 7) = 3siny” cost cost’ cos Y,
(47) cost cost”— cosT(cost + cos®t”) = 3 cosy cosTcost cosT’ cosy,

cost cost’— cost' (cos?t + cos?1”) = 3cosy costcost cost’ cosy,

(48

€08t cosT — 08T’ (c0s? T ~+cos?7”) = 3cos 7y’ cosT cosT cost” cosy,

équations qui doivent encore subsister quand on y a changé v, ¥, v,
¢ en n+180° n'+180°% n'+180° w, ce qui résulte des équa-
tions (1), (5), (40), (42). Mais, pour cela, il faut qu’on ait

cosy = cosw =0 et =1 =1"= 60°,
ou bien
siny _siny’  sing”
sin v~ sinn’ ~ sinwn”

En supposant d’abord ¢ =0 =9g0°, 1==1v=1"=60° les équa-
tions (8) et (38) nous donnent
-

6 2
h:zr:\/Gu,
27

et I'on voit facilement que toutes les équations de condition sont véri-
fiées par ces valeurs, indépendamment de 7 et . L'examen de ¢*S
nous montrerait que la surface de la figure correspondante est un véri-
table minimum; mais, comme cette vérification n’est pas nécessaire,

) I R L R N A T RN R R RN ERREN
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nous nous en dispensons. La méme figure est, au reste, un prisme
régulier dont la hauteur est égale au diamétre du cylindre inscrit, et
I'on trouve, en exprimant sa surface ' par son volume,

S = 3 V108 V",
Supposons maintenant

sin gy sing’ _ sing”
sinn  sinw’ " sin #”

En combinant cette analogie avec les équations (1), (2), (5, (38),
(41) et (42), nous serons conduit aux relations suivantes :

2r
n=9%180° %' =19 =*=180° u' =vy=*180° w=4¢, kstn—‘],’

ou il faut encore prendre en méme temps les signes supérieurs ou les
signes inférieurs.

Substituant ces valeurs dans les équations (8), (43) et (44), nous
trouvons, en réduisant et observant I’équation (41),

(49) v = 2r? tang7 tang 7’ tang 7" sin ¢,
3 cost” sin (v — 7) sin + cotd siny”  cosy’sin<’ cos 7 Sin T -0
sint sint’ cos cost’ Y | cosc” cos?t cos’T !
3cost’ sin(r — ") sin ‘sin o cos7y sint cosy”sine” ] -
- — — -+ cotd ; — . -’ = 0.
sin T sint” cost cost cos~ cos'c cos*z

Si, & la seconde de ces équations, on ajoute I'équation (3g) multipliée

cot{ tangr tang’ . . . . C e
par —T:E—jc_of—:7—c—o§g1-_”’ et qu'on ajoute la méme équation multiplice
T

cotd tangr tang =7 . .
par ————‘——sgf,ﬁsg,f a la troisieme, on trouve, aprés une transfor-
COST COST COST

mation bien simple,

© 3 cost” sin(7'— <) sin ., cosy” sin (v — 7}
in (= ,) q’:cotu{» 51ny’——~—7———(—,—',
5 sint sin 7 i COST COS T
0) « ) L . P
(50) 3 cost’ sin (v — 77 sin ., cosy'sin(v—1")
T = coty |siny — ——————|.
\ sint sin~ COST COST

14..
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Maintenant si 'on élimine § entre ces équations, aprés y avoir sub-
stitué les valeurs de siny’, siny”, cosy et cosy”, qu'on tire des équa-
tions (46) et (48), on aura, en réduisant,

sin(t — 7') sin (t — ") sin(*' — ") = o.

11 est donc nécessaire que deux des angles 7, v/, 7" soient égaux. En
supposant que ce soient 7’ et 7", ’équation (45) nous donne

(51) siny = o3

car nous ne pouvous pas avoir cosy = o sans retomber sur la solu-
tion déja trouvée.

De plus, si dans Péquation (50) nous remplagons cos t”sin (7' — 1)
par la valeur que donne la seconde des équations (46), et si ensuite
nous restituons la valeur de ¢”, nous trouvons, au lien des équa-

tions (47) et (50),
1 —2¢ost = 3cosycostcosd, gsin®¢ = tang?t.
Combinant ces équations avec I'équation (51), nous trouvons
v =0, cosxp:cosr:%,
et enfin les équations (1) et (49) nous donnent

r=

1l y aura donc encore un systeme de valeurs pour lequel toutes les
équations de condition seront satistaites ; mais, en examinant la figure
correspondante, nous trouvons que c’est une pyramide; et, puisqu’il
en est ainsi, nous n’avons pas a nous en occuper davantage.

Le prisme nouvellement déterminé est donc, entre tous les trones de
pyramides triangulaires, 4 volume égal, le seul qui puisse avoir une sur-
face minimuwm. Comparant la surface s’ du méme prisme avec celle §'
de la pyramide dont nous avons parlé au commencement, nous trou-
vons, en supposant les volumes égaux,

I
2 .f
COS™ T == 39
3

sS< 8.
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Le prisme régulier dont la hauteur équivaut au diamétre du cys

lindre inscrit est donc la figure que nous nous sommes proposé de
trouver.

Notre pr M. CaTtaran. — Le résultat obtenu par M. Sucksdorff est
d’accord avec ce théoréme que j’ai entendu énoncer autrefois (par
M. Steiner, ce me semble) : Parmi tous les polyédres de méme espece
et équivalents en surface, le plus grand est celui qui est circonscrip-

tible a une spheére, et dans lequel les points de contact des faces sont
les centres de gravité de ces faces.



