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MÉMOIRE 

Sur le développement des fonctions ou parties de fonctions 
en séries dont les divers termes sont assujettis h satisfaire a 
une même équation différentielle du second ordre conte-
nant un paramétré variable ; 

PAR JOSEPH LIOUVILLE. 

[Présenté à l'Académie des Sciences, le 3o novembre i835.) 

I. 

Lorsqu'on veut déterminer les lois du mouvement de la chaleur 
dans une barre hétérogène, placée dans un milieu entretenu à o°, on 
tombe sur l'équation aux différences partielles 

du "(.*"£) , 

Dans cette équation qui doit servir à déterminer la température u de 
chaque point en fonction du temps t et de l'abscisse χ de ce point . 
les trois lettres g, k, l représentent respectivement la chaleur spéci-
fique, la conductibilité intérieure et le pouvoir émissif; et, puisque L 
barre est hétérogène, on doit les χ-egarder, non comme des constantes, 
mais comme des quantités variables données pour chaque valeur de χ 
Si les abscisses des deux extrémités de la barre sont χ et X, on a de 
plus deux conditions définies de la forme 

1 ^ — nu = ο pour a■ = χ, 

I + liu = ο pour χ — Χ, 

JULLF.L I#3G. ' 
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A et H étant des constantes qui peuvent avoir des valeurs quelconques 
depuis ο jusqu'à 00 . Enfin, on doit avoir 

(3) u = f[pc) pour t = o, 

f(x~) étant une fonction arbitraire qui représente l'état initial des 
températures et qui satisfait aux deux conditions 

— hf{x) ~ o pour .r = x, 

+ Η/(*) = ° Pour x = X> 

lesquelles se déduisent, en posant t = o, des équations (2) que nous 
avons regardées comme ayant lieu pour la valeur générale de u dont 
f{x) n'est qu'un cas particulier. 

Pour former la valeur de u qui satisfait à l'équation (1) et aux con-
ditions définies (2) et (5), on est conduit à développer la fonction 
f(x) (pour toutes les valeurs de x comprises entre x et X) en une 
série dont les termes successifs diffèrent l'un de l'autre par un para-
mètre r et ont la propriété de satisfaire à la fois à l'équation différen-
tielle générale 

- '«v = A/- - 'v> 
et aux conditions particulières, 

dV -β — n\ =0 pour x = x, 

+ HV = o pour χ = X. 

On peut voir, dans l'ouvrage de M. Poisson sur la chaleur, comment 
on est porté, par la marche même du calcul, à admettre la possibilité 
de ce développement pour une fonction quelconque f(x)·, mais jus-
qu'à ce jour il a paru difficile d'établir cette possibilité directement et 
d'une manière rigoureuse. Je me propose de donner ici une méthode 
très simple pour y parvenir. Je considère en elle-même la série par 
laquelle les géomètres ont représenté le développement de f(x) dont 
il est question : sans rien supposer à priori sur l'origine de cette série 
ni sur sa nature, j'en cherche la valeur, et je trouve que cette valeur 
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est précisément f(x), du moins lorsque la variable χ est comprise 
entre les limites χ et X. 

II. 

Soient g, k, l trois fonctions positives données en nombres finis 
pour chaque valeur de χ comprise entre χ et X : nous supposerons que 
les deux premières restent constamment > o; mais la dernière pourra 
être nulle, soit pour quelques valeurs particulières de χ, soit même 
dans toute l'étendue des valeurs de cette variable. Soient encore Λ et H 
deux constantes qui peuvent avoir toutes les valeurs possibles depuis 
ο jusqu'à 4- oo . 

En adoptant pour le nombre rune valeur convenable, on peut tou-
jours trouver une fonction V qui ne devienne identiquement nulle 
pour aucune valeur déterminée de r, χ restant indéterminée (*), et qui 

(*i On peut exprimer Y en série convergente. Pour cela soit k' ce que devient 
k quand χ = χ : représentons par p„, ρ,, p

2
 . une suite de quantités 

ange de forme quand on a h = + oq ; dans cef 

fr quanti x = \ : representen 
valeur de Y qui satisfait à la fois à l'équation indéfinie (A) et aux conditions défi-
nies (B) sera Y = n(;r, r), r désignant une quelconque des racines de l'équation 

(C) } + ΗΠ(Χ, r) = o. 

Pour χ — χ , on a V = ι , — = h , quel que soit r : la fonction Y n'est doin 

identiquement nulle pour aucune valeur de r, χ restant indéterminée. Cela posé, 
les racines de l'équation (C) seront toutes inégales, comme M. Sturm l'a démontre 
à la page de ce volume : il pourrait n'en être plus de même si l'on employait 
(et cela est arrivé quelquefois) une valeur de V susceptible de devenir identique-
ment nulle pour certaines valeurs déterminées de r. 

Quand on a H = + °°, la seconde des équations (B) étant divisée par H se ré-
duit à V = o pour x = X, et semblablement l'équation (C) se réduit à 
n(X, r) = o. Du reste, la valeur de Y demeure la même que ci-dessus. Mais cette 
valeur change de forme quand on a h = + oo : dans cette nouvelle hypothèse, 
la première des équations (B) devient V = o pour χ = x; et, si l'on veut continuer 

i<t frjicinii-ic ci|uanuiia ^JL>; ucVACUI Y ^ y puur ^ CI, SU ÜI f? 

33.. 
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satisfasse à la fois à 1 equation différentielle indéfinie 

(A) + (gr - l)\ = 

et aux conditions particulières , 

1 — — h V — ο pour χ = χ, 

^ ^ -f- HV = ο pour χ = X. 

Cette fonction \, comme on vient de le voir, se présente utilement 
dans la théorie de la chaleur; mais nous la considérons ici en elle-
même, abstraction faite de son usage dans les problèmes de physique 
mathématique. 

Pour que les conditions (B) soient satisfaites, il faut que le para-
mètre r soit choisi parmi les racines d'une certaine équation transcen-
dante. Nous représenterons cette équation par 

(C) <zr(r) = o. 
Cela posé, notre but dans ce mémoire, est de trouver directement et 
par un procédé rigoureux la valeur de la série 

( vJ / 
/ J'*gV'dx Γ 

dans laquelle le signe Σ s'étend à toutes les valeurs de r qui satisfont à 
l'équation (C). Quelle que soit la fonction nous montrerons 

altérer d'ailleurs la relation établie entrep
m
 et p

m+l
. Cela étant, on a, pour 

x = χ , —- = ι , valeur différente de zéro : par conséquent il n'existe aucune 

valeur de r qui rende V identiquement nulle, et dès lors, d'après la démonstra-
tion déjà citée de M. Sturin, l'équation (C) n'a que des racines inégales. 

(*) Les fonctions que nous considérons dans ce mémoire [et la fonction f{x) en 
particulier] peuvent changer de forme ou d'expression analytique dans l'étendue 
des valeurs de la variable ; mais , aux points ou elles changent de forme, nous ad-
mettrons toujours qu'elles ne possèdent qu'une seule valeur. D'après cette restric-
tion qui nous est commune avec M. Poisson ( voyez la page 173 de son grand 
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que la série en question a précisément f(x) pour valeur, du moins 
lorsque la variable χ est comprise entre les limites χ, X. 

III. 

Mais avant d'entrer en matière, il faut rappeler quelques propriétés 
remarquables dont jouissent et la foncliou V et les racines de l'équa-
tion (C). 

i°. Les racines de l'équation (C) sont, en nombre infini, toutes réelles 
et inégales : la plus petite de ces racines peut être nulle ou > ο : les 
autres sont >0. Nous les désignerons désormais r„ t\, r

3
,. . ,r

n
... 

et nous les supposerons rangées par ordre de grandeur, en sorte que 
l'on ait r, < r

3
 < r

3
. . . < r

m
. .. < r„. ., Nous représenterons aussi par 

Y,(x), \
%
{x), V3

(a?),. . .Y
m
(x),. · . Υ

λ
(Χ) , ·. · les diverses valeurs que 

prend la fonction Y lorsqu'on y pose successivement r=r,, r=r\, 
Τ —- /"j y « « · Τ ̂  V

m
 f . · · Γ— Γ

n
 5 · . » 

2Si l'on considéré les valeurs de Y relatives a deux racines difïë-
rentes r

m
, r„, l'intégrale définie prise de x = x à x=li du produit de 

ces deux valeurs par gdx est toujours égale à zéro, de manière que 
l'on a 

J** gY 
m
(x)Y 

a
(x)dx = o, 

toutes les fois que la différence r
n
 — r

n
 est autre que zéro. 

5°. La fonction Y ne devient jamais infinie, et elle ne peut changer 
de signe qu'en passant par la valeur zéro. L'étude des propriétés 
des racines de l'équation Y=o, dans laquelle on regai'de χ comme 
l'inconnue, est très intéressante. Si l'on considère celles des ra-
cines des équations V,(.r)=o, V

a
(.r) = o, V

3
(x)—o,. . . Y

n
(x)=o,... 

qui sont comprises entre χ et X (abstraction faite des racines xz=x, 
J:S=X, qui dans certains cas existent) on démontre que la première 
de ces équations est impossible, que la seconde possède une seule ra-
cine , que la troisième en possède deux, et ainsi de suite, en sorte 

ouvrage sur la Chaleur), si l'on construit la ligne representee par l'équation 
y — cette ligne aura une seule ordonne'e en chacun des points de jonction de 
deux parties conjuguées ; elle pourra avoir deux tangentes ou deux rayons de cour-

bure différents appartenant à ces deux parties. 
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que la fonction Y, (x) ne s'évanouit jamais, et que la fonction 
V

m
(x) s'évanouit (m— ι ) fois pour des valeurs de χ > χ et < X. 
4". Les (m— i) racines > χ et < X de l'e'quation V

m
(,r) = ο sont 

inégales entre elles, et de plus comprises entre les m racines de l'équa-
tion suivante : V

m
+,(x)=o. Ainsi la fonction \,(x) est la seule qui ne 

change jamais de signe lorsque χ croît d'une manière continue de χ 
à X : la fonction Y

m
(x) change (/«— i) fois de signe dans le même 

intervalle. 
5°. Si l'on désigne par A

m
, A

m+I
,. . . A„, des constantes qui ne soient 

pas toutes nulles, et si l'on pose 

+ A
m
^,V

ra+I
(a:) +...-f- A„V

n
(.r) = "*(x), 

la l'onction Ψ(a?) ne sera jamais identiquement nulle , et l'équation 
Ψ(χ)=ο aura (m—i) racines au moins et (n—i) racines au plus 
entre s et X. Dans l'énoncé de ce théorème, chaque racine multiple 
de l'équation Ψ(Λ·) = Ο (lorsque cette équation a des racines mul-
tiples) doit être comptée autant de fois qu'elle entre dans l'équation : 
ainsi les racines doubles doivent être comptées deux fois, les racines 
triples trois fois, etc. 

On sait comment M. Poisson s'est servi de l'équation 

g\
 m
(x)V

u
(x)dx = o, 

pour prouver la réalité de toutes les racines de l'équation (C). Les autres 
propriétés des racines /·,, r

a
, r3,... ont été découvertes et démontrées en 

rigueur par M. Sturm (*). Considérées en elles-mêmes et indépendam-
ment de leurs applications, ces propriétés sont déjà très élégantes : 
l'usage que nous allons en faire leur donnera peut-être plus de prix 
encore aux yeux des géomètres. 

(*) On prendra une idee des méthodes employées par M. Sturm en lisant son 
Mémoire sur l'intégration des équations différentielles linéaires du second ordre 
<-ojez page 106 de ce volume). Mais la démonstration complète du 5e théorème 

(dont nous allons surtout faire usage) n'a été donnée par l'auteur que dans un 
Mémoire sur ΐintégration des équations aux différences partielles encore inédit 
et dont il nous a promis d'enrichir ce journal. 
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IV. 

Nous nous servirons d'abord des théorèmes contenus dans le numéro 
précédent, pour établir quelques lemmes préliminaires dont nous au-
rons besoin plus tard. 

LEMME IER. Soient a, b, c,.,. des grandeurs inégales comprises 
entre χ et X. Posons 

V,(a)V.(.r) — V
5
(«) V, (χ) = P

s
(

t

r) , 
V,(rt) V3(,r) — Yja)Y,(x) = P3(x), 
. . . . 
V,(a)V

m
(x) — Y

m
(a)YJx) = P,„(.r), 

. . . . . 
puis 

Ρ.(Ό)Ρ
3
(*) - P

3
(*)P.(*) = Q

3
(^), 

Îjb)ÎA(x) - Ρ4(Α)Ρ.(Λ) = QJx), 
. . . . . 
P.(6)P„(A·) - P

M
(£)P

A
(*) = QJx), 

...... 
puis encore 

Qs{c) Q
4
(*) — Q4(

C
) Q&) = Rfx) , 

QAO) QSO) — QSWQS(*) = PSC·^), 
...... 
Q

3
(OQ

ni
(ar) — Q

m
(c)Qs(x) = R

m
(a·), 

...... 

et ainsi de suite. Je dis que
}
 si Von se borne à considérer les valeurs de 

χ > χ et < X, la jonction Ρ
s
(ar) s'évanouira pour χ =.a et seule-

ment pour x = a : la fonction Qfx) s'évanouira pour χ·=ζα
}
 x=b et 

seulement pour χ·=.α, χ— b; la Jonction R4(x) s'évanouira pour 
x — a, x = b, x—Cj et seulement pour x=a x=b, x=c, et 
ainsi des autres. Jde plus , toutes ces jonctions P

a
 j ^ Q3 {x) , 

R4(x),... changeront de signe chaque fois qu'elles s'évanouiront. 
D'abord on se rappelle que la fonction V,(x) ne peut jamais devenir 

nulle quand χ est > χ et < X. 
La fonction ÎJx) se Tamène à la forme A,V,(JC) -j- A

A
V

2
(x) en po-

sant A,=— YJa), A
A
=V,(A)

;
 et le coefficient A

S
 n'est pas nul. 
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Donc par le 5" théorème du n° III, cette fonction ne peut s'anuuller 
plus d'une fois quand χ est > χ et et il est d'ailleurs évident 
qu elle devient nulle quand x = a. En vertu du même théorème, la 
racine a ne peut être qu'une racine simple : par conséquent, la fonc-
tion P/ar) doit changer de signe en même temps qu'elle s'évanouit. Les 
fonctions P

3
(.r) , · · · ne jouissent pas nécessairement des mêmes 

propriétés que P„(x) : elles s'annullent, il est vrai pour x = a, mais 
la racine a peut être multiple, et des racines autres que a, quoique 
comprises entre χ et X, peuvent satisfaire aux équations P3(.r) = ο, 
Ι\(χ) = ο ,. . .. 

La fonction Q3fx') s'annulle évidemment pour.r = &, elle s'annulle 
aussi pour x = a puisque l'on a TJà) =o, P

3
(a) = o. Or, en rempla-

çant P.Qr) et P
3
(jr)par leurs valeurs, la fonction Q

3
(X) prend la forme 

A ,V,(.·<■) -f- A
A
V/jr) + A

3
V

3
(x) et le coefficient A

3
 n'est pas nul puis-

qu'on le trouve égal à P
a

(Z>) V,(n) : donc pour des valeurs de χ > χ et 
<X. Q 

3
 x) ne peut s'évanouir plus de deux fois : donc on a bien 

Q3(x) = ο pour χ — α, χ = b, et seulement pour x=a, x=b: de 
plus les racines a et b ne peuvent être que des racines simples, ce qui 
oblige la fonction Q

3
(JT) à changer de signe chaque fois qu'elle s'éva-

nouit. Les fonctions Q4(x), Qs(x), · · · deviennent nulles pour x = a 
et x — b·, mais elles ne jouissent pas nécessairement des autres 
propriétés démontrées pour Q

3
(.r). 

La fonction R4(ar) s'annulle évidemment pour x-=. c ·. elle s'annulle 
aussi pour x=a et x—b, car il est aisé de voir que l'on a Q3(«)=o, 
0

3
7>) = ο, Q4(«0 = ο, Q4(£) = o. Or, en remplaçant Q

3
(.r) et Q4(x), 

puis l\(.r), Pj(.r), P4(.x) par leurs valeurs, celle de R4(jQ prend la 
(orme A,V,(x) ~h A

A

V
a
(.r) + A

3
V

3
I[x) -F- Α

4
ΛΤ

4
(;Τ), A

4
 ayant la valeur 

suivante Q
2
'c) P,(b) V,(«) qui ne peut pas être nulle. Donc l'équation 

R/.r) = o ne peut avoir entre les limites χ, X aucune racine diffé-
rente de a, b, c, et de plus ces trois racines doivent être simples, en 
sorte que R

4
(.T) changera de signe en s'évanouissant. 

11 est clair que l'on pourra continuer indéfiniment cette démons-
tration. 

Corollaire. Les (m— i) lettres a, b, c , . . . représentant toujours 
des quantités inégales <[ χ et > X, on peut déterminer les constantes 
A., A,, A ,. . . A,

N

, de telle manière que la fonction 
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ψ(χ) = A.V,(χ) -h A,V,(.r) 4- A
3
V

3
(.r) +...+ A

ro
V

m
(.r), 

sans être identiquement nulle, devienne égale à zéro pour xz=a, 
oc—b, x=c,... En effet, si l'on a m = 2, il suffira de prendre 
Ψ (χ) = P,(r) : si l'on a m= 3, il suffira de prendre Ψ (χ) = Qs(x) ; 
si l'on a m = 4, il suffira de prendre Ψ(.r) = R4 (χ) ; et ainsi de 
suite. 

La fonction Ψ (a?) étant ainsi déterminée, l'équation f(ar)=o ne 
peut avoir que (m — 1) racines au plus (5e théorème du n° III) : or, les 
quantités a, b,c,. . . sont par hypothèse au nombre de (m—1) : on voit 
donc, comme nous l'avons déjà fait observer, i". que les racines de 
l'équation Ψ (χ) = ο sont toutes inégales et comprises dans la série 
a, b, c,... i°. que par suite la fonction '¥(x) change de signe 
chaque fois qu'elle s'évanouit. Il est bien entendu que la variable χ 
ne sort pas des limites χ, X. 

LEMME 2E. Soit φ(χ) une fonction de χ : si l'équation 
/»X 

(α) / φ(χ] Vdx = ο 

a lieu en remplaçant r par une quelconque des racines de l'équation (C), 

je dis que Ton a nécessairement φ(χ) — ο, de χ = χ à χ = Χ, 
D'abord, si la fonction φ(χ), sans être identiquement nulle, con-

servait toujours le même signe depuis χ = χ jusqu'à λ ==Χ, l'équa-
tion (α) serait absurde, car en posant r .— /, on aurait 

J* φ(χ) Y, (x) dx = o, 

et cela ne se peut, puisque la fonction V,(x) ne change pas non plus 
de signe entre les limites χ—χ , χ = X. 

Supposons maintenant que lorsqu'on fait croître a? de χ à Χ, φ(χ) 
change de signe (m— 1) fois, et soient a, b,c,... les {m — 1) valeurs 
de χ pour lesquelles ce changement s'effectue. En faisant successive-
ment r=r,, r= r,,. . . r — r

m
, dans l'équation (ce), on en déduira m 

équations nouvelles que l'on pourra ajouter membre à membre après 
les avoir multipliées respectivement par les constantes A,, A,,. ,A

m
. 

En posant 

A.V.C*) + A ,V.(*) +·.·+ A
m

V Jx) = 
JUILLET I836. 34 
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υπ trouvera ainsi 

φ(χ)¥(χ)άχ = ο. 

Mais, d'après le corollaire du lenime ier, on peut déterminer les 
constantes A,, A„. . . A

m
, de telle manière que la fonction Ψ(-τ) change 

de signe toutes les fois que χ atteint et dépasse infiniment peu une 
des (m— i) valeurs a, b, c, et ne change de signe pour au-
cune autre valeur de x. En adoptant les valeurs de A,, A„. . . A

ml
 qui 

produisent cet effet, l'élément φ(χ) Ψ(χ)άχ conservera toujours le 
même signe dans toute l'étendue de l'intégration, et par conséquent, 
on ne pourra pas avoir^ φ(α;) Ψ(χ)ίΙχ = ο, à moins qu'on n'ait 
aussi φ(χ) => ο, du moins pour les valeurs de χ comprises entre χ 
et X. 

V. 

Maintenant nous pouvons résoudre le problème qui fait l'objet spé-
cial de ce mémoire. 

PHOBLÈME. Trouver la valeur de la série 

ÎV J*gVf{x)dx\ 

I* 4- — 

dans laquelle le signe X s'étend à toutes les valeurs de r qui sont 
racines de l'équation (C). La variable χ est comprise entre χ et X, 
et la fonction f(x) est donnée arbitrairement entre ces limites. 

En représentant par F(.r) la valeur cherchée et remplaçant le signe 
2 par la série qu'il représente, on a 

v,(x)f g^Ax)f(x)dx ν,(*)Γ gy,{x)f{x)dx 
F(*) = T^C H yk + 

V
m

(x) f gV
m
(x)f (x)dx 

H 75 h 

Je multiplie lesdeux membres par g\
m
(x)dx et j'intègre ensuite par 
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rapport a χ en prenant χ et X pour les limites de l'intégrale. Puis-
que pour deux indices m et η différents, on a 

Ρ gS^ Joc)\ 
n
{x)dx = o, 

cette intégration fera disparaître tous les termes du second membre à 
l'exception d'un seul, et l'on aura 

Ρ g\
m
{x)F{x)dx s= Ρ gV

m
(x)f{x)dx , 

d'où l'on tire 

Ρ£[*"(*) — /(·*)] V
m

(x)dx = o. 

Cette égalité devant avoir lieu pour toutes les valeurs possibles de l'in-
dice m et la fonction g étant constamment > o, il résulte du lemme 2' 
que, pour toutes les valeurs de χ comprises entre χ et X, on doit 
avoir F (JC)—f(x)=o, d'où Y{x)=f(x). La valeur cherchée de la sé-
rie est donc f{x), entre ces limites de la variable, ce qui s'accorde avec 
le résultat que les géomètres ont obtenu par d'autres méthodes moins 
directes et moins rigoureuses que la nôtre. 

D'après les équations de condition (B), qui sont remplies pour la 
fonction Y, la valeur F (x) de la série 

* I />·** I 
satisfait aux égalités 

— h¥(x) = o pour χ = χ , 

UF(x) = o pour χ == X; 

si donc on veut que l'égalité F(x) = fix) soit exacte aux limite-
mêmes χ χ il faudra regarder la fonction f(x) comme 
assujettie aux deux conditions 

~te hf{x) = o pour λ =± x, 

+ Hy (x}= o pour χ = X, 

que nous avons admises en effet au n° I. 
34.. 
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VI. 

Nous croyons devoir ajouter à la démonstration précédente quel-
ques remarques qui ne seront pas sans intérêt. 

Par un raisonnement semblable à celui dont nous nous sommes 
servis pour démontrer le i" lemme du n° IV, on peut encore établir 
la proposition suivante : Si l'équation 

(β) ff^[xj\dx = o 

a lieu en remplaçant rpar une quelconque des racines r„ r„.. . jusqu à 
r
n

je dis que la fonction <p[pc) change de signe au moins {np^fjfois, 
lorsqu'on fait croître χ depuis χ jusquà X. En effet, supposons, s'il 
est possible, que la fonction <p(x), dans cet intervalle, change de signe 
(m—Ι) fois seulement, m étant<Ç.n, et soit (comme au n° IV) V(A:) 

une fonction de la forme A,V,(.r) + A.V»(j:)+. · . + A
M
V

m
(x), qui 

change de signe aussi (m—1) fois et pour les mêmes valeurs que φ(χ), 
le produit (p{xfî(x)dx ne changera jamais de signe, et par suite on 
ne pourra pas avoir 

f\ tp(xj¥(x)dx = o, 

ce qui résulte pourtant de l'équation [(β) en y posant successive-
ment r=r,, r = r

a
,.. .r=r

m
, puis ajoutant membre à membre les 

équations ainsi obtenues, après les avoir multipliées par les facteurs 
respectifs A,, A

s
.. .A„. Il est donc absurde d'admettre que la fonc-

tion <p(x) s'annulle (/n— 1) fois seulement, m étant < η : ce qui dé-
montre la proposition énoncée. 

Désignons par cr„ la somme des η premiers termes de la série 

^ ( V J? gVfi*)dx I 

l j 
dont on n'a pas besoin de supposer que la somme soit connue. Pour 
un indice m égal ou inférieur à η, nous obtiendrons immédiatement 

f* g<T.y
m

(x)dx =2 Ρ g\Jx)j(x)dx, 
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ou, ce qui est la même chose, 

(y) / * g/\V«(oc)doc = ο , 

représentant la différence f(oc)— σ„. En comparant cette équation 
à l'équation Q3), on conclut de la proposition qui vient d'être dé-
montrée, que la quantité p

n
 s'annulle au moins ("—i) fois lorsque oc 

croit depuis χ jusqu'à X. 
Soit Q une fonction quelconque de la forme A ,V,(.r) -f-A

a
Y,(.r) 

+.. .. +A
a
Y

n
( oc) (ce qui comprend comme cas particulier la fonc-

tion a
n
). En posant dans l'équation [γ) successivement t==r,, r= r

a
,... 

r=t\, puis ajoutant les équations ainsi obtenues, après les avoir mul-
tipliées par A„ A,,. . . .A

n
, on a : 

/T gf.Q^ = o; 

ce qui, en posant Q=(T
n

, devient : 

Ρ gf^nd0C — O. 

Maintenant multiplions par g<r
n
dxet intégrons entre les limites χ, X 

les deux membres de l'équation j\x) — ν
Λ
-f-p« , puis effaçons le 

terme gf
n
T

n
dx, qui est égal à zéro; nous obtiendrons ainsi 

Ρ gVnf{x)doc= Ρ ga*dx : 

nous obtiendrons une autre formule plus remarquable encore, savoir, 

Ρ gAxYdx=pg^a+rAdx, 
en multipliant par gdoc et intégrant le carré f (oc)"=cr„ ρ„+(ν. 
Cette dernière formule nous prouve que l'intégrale^ gu

n

%dx, quelque 
grand qu'on prenne l'indice n, ne peut jamais avoir une valeur numé-

rique supérieure à la limitepg/(xydoc avec laquelle elle coïncide 
lorsque n— ce. 


