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MEMOIRE

Sur le développement des fonctions ou parties de fonctions
en séries dont les divers termes sont assujetlis a satisfaire &
une méme équation différentielle du second ordre conte-
nant un parametre variable ;

Par JOSEPH LIOUVILLE.

{Présenté a ’Académie des Sciences, le 30 novembre 1835.)

I.

Lorsqu'on veut déterminer les lois du mouvement de la chaleur
dans une barre hétérogene, placée dans un milieu entretenu a 0°, ou:
tombe sur I'équation aux différences partielles

d (A— du
(r) . g‘-f{ﬁ = % .

t dr
Dans cette équation qui doit servir a déterminer la température « dc
chaque point en fonction du temps ¢ et de P'abscisse x de ce point .
les trois lettres g, k&, I représentent respectivement la chaleur spéci-
fique, la conductibilité intérieure et le pouvoir émissif: et, puisque lu
barre est hétérogene , on doit les regarder , non comme des constantes,
mais comme des quantités variables données pour chaque valeur de .
Si les abscisses des deux extrémités de la barre sont x et X, onna de
plus deux conditions définies de la forme

dn Ty — .
\ - — fe = o pour x = x,
<
(21 du
e -+ Hu = o pour & = X,

JULrT 1836, 3
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ket H étant des constantes qui peuvent avoir des valeurs quelconques
depuis o jusqu’a -+ o« . Enfin, on doit avoir

(3) u = f(x) pour ¢t = o,

f(x) étant une fonction arbitraire qui représente I'état initial des
températures et qui satisfait aux deux conditions

‘—i{l—g—) — hf(x) = o pour x = x,

d
idS'.—)—l-Hf(x) == o pour x = X,

lesquelles se déduisent, en posant ¢ =0, des équations (2) que nous
avons regardées comme ayant lieu pour la valeur générale de « dont
fla) n’est qu’un cas particulier.

Pour former la valeur de « qui satisfait & I'équation (1) et aux con-
ditions définies (2) et (3), on est conduit a développer la fouction
f(x) (pour toutes les valeurs de x comprises entre x et X) en une
série dont les termes successifs different 'un de 'autre par un para-
metre r et ont la propriété de satisfaire a la fois a équation différen-
tielle générale

a( k‘%
— gV = T — vy,
et aux conditions particulieres,
av
7 — VY = opour x = x,
dv
% +HV = o pour x = X.

On peut voir, dans Pouvrage de M. Poisson sur la chaleur, comment
on est porté, par la marche méme du calcul , 2 admettre la possibilité
de ce développement pour une fonction quelconque f(x); mais jus-
qu'a ce jour il a paru difficile d'établir cette possibilité directement et
d’'une maniére rigoureuse. Je me propose de donuer ici une méthode
tres simple pour y parvenir. Je considére en elle-méme la série par
laquelle les géométres ont représenté le développement de f(x) dont
il est question : sans rien supposer & priori sur lorigine de cette série
ni sur sa nature, j'en cherche la valeur, et je trouve que cette valeur
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est précisément f(«x), du moins lorsque la variable x est comprise
entre les limites x et X.

I

Soient g, k, [ trois fonctions positives données en nombres finis
pour chaque valeur de x comprise entre x et X : nous supposerons que
les deux premiéres restent constamment >> 0; mais la derniere pourra
étre nulle, soit pour quelques valeurs particulieres de x, soit méme
dans toule I’étendue des valeurs de cette variable. Soient encore % et H
deux constantes qui peuvent avoir toutes les valeurs possibles depuis
0 jusqua —4-co.

En adoptant pour le nombre r une valeur convenable, on peut tou-
jours trouver une fonction V qui ne devienne identiquement nulle
pour aucune valeur déterminée de r, x restant indéterminée (*), et qui

¥) On peut exprimer V en série convergente. Pour cela soit £ ce que devient
k quand x=x : vreprésentons par p,, p,, P.,... une suite de quantités

lides entre elles par la relation générale p,., =f %‘ff (Il — gr)pmdx : pre-

x

nons en outre p,=1- hk’f -‘%r , et faisons p, + p +p.+... =z, 7). La

x
valeur de V qui satisfait 4 la fois 4 'équation indéfinic {A) et aux conditions déli-
wes (B) sera ¥ ==T1(x, r), r désignant une quelconque des racines de I'équation

©) d“(jfx’i) + HO(X, 1) = o.
dv . . .
Powr x=x, ona V=1, I = k, quel que soit »: 1a fonction V n’est dons

identiquement nulle pour aucune valeur de r, x restant indéterminée. Cela posé.
les racines de 1'équation (C) seront toutes inégales, comume M. Sturm I’a démontre
a la page 142 de ce volume : il pourrait n’en étre plus de méme si on employait
(et cela est arrivé quelquefois) une valeur de V susceptible de devenir identique-
ment nulle pour certaines valeurs détermindes de 7.

Quand on a H =+ o0, la seconde des équations (B) étant divisée par H se ré-
duit &4 V=0 pour x=X, et semblablement I’équation (C) se réduit &
(X, r)==o. Du reste, la valeur de V demeure la méme que ci-dessus. Mais cette
valeur change de forme quand on a 2=+ oo : dans cette nouvelle hypothése,
la premiére des équations (B) devient V = o pour x =x; et, si 'on veut continuer

aposer V=p, = p +p, ... (x, r),il faut prendre p, = l"fl dT.‘z:’ sans
33..
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satisfasse a la fois a 'équation différentielle indéfinie

e (A- av
(A) —m - t@E —)HV=o,

et aux conditions particulieres,

dx

(B) ( av

g dv—kV:opourx:x,

=+ BV = o pour x = X.

Cette fonction V, comme on vient de le voir, se présente utilement
dans la théorie de la chaleur; mais nous la considérons ici en elle-
méme, abstraction faite de son usage dans les problemes de physique
mathématique.

Pour que les conditions (B) soient satisfaites, il faut que le para-
métre r soit choisi parmi les racines d’une certaine équation transcen-
dante. Nous représenterons cette équation par

(C) @ (r) = o.

Cela posé, notre but dans ce mémoire, est de trouver directement et
par un procédé rigoureux la valeur de la série

v J TgV f(z)dx
I gVidz

dans laquelle le signe Z s’étend a toutes les valeurs de r qui satisfont a
I'équation (C). Quelle que soit la fonction f(x)(*), nous montrerons

altérer d’ailleurs la relation établie entre p, et pn,,. Cela étant, on a, pour
- dv
X ) ZI;
valeur de r qui rende V identiquement nulle, et dés lors, d’aprés la démonstra-
tion déja citée de M. Sturm, I'équation (C) n’a que des racines inégales.

= = 1, valeur différente de zéro : par conséquent il n’existe aucune

(*) Les fonctions que nous considérons dans ce mémoire [et la fonction f(x) en
particulier] peuvent changer de forme ou d’expression analytique dans Iétendue
des valeurs de la variable ; mais, aux points ou elles changent de forme, nous ad-
mettrons toujours qu’elles ne possédent qu’une seule valeur. D'aprés cette restric-
tion qui nous est commune avec M. Poisson (voyez la page 173 de son grand
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que la série en question a précisément f(x) pour valeur, du moins
lorsque la variable x est comprise entre les limites x, X.

HI.

Mais avant d'entrer en matiére, il faut rappeler quelques propriétes
remarquables dont jouissent et la fonction V et les racines de I'équa-
tion (C).

1°. Les racines de I'équation (C}sont, en nombre infini, toutesréelies
et inégales : la plus petite de ces racines peut étre nulle ou > o : les
autres sont >>0. Nous les désignerons désormais 7y, Fyy gy v e Pge s «Tpe o«
et nous les supposerons rangées par ordre de grandeur, en sorte que
Yon ait r,<<r,<<ry. .. < e« - < 1. o » Nous représenterons aussi par
V.(x), V)(x), Vi(x),. .. Vo(x),...V(x),. .. les diverses valeurs que
prend la fonction V lorsqu'on y pose successivement r=r,, r==r,,
To=lgyee =Ty e e Fe=lpye- s

2°, Si l'on considere les valeurs de V relatives a deux racines diffe-
rentes r,,, 7., U'intégrale définie prise de x=x 2 x=X du produit de
ces deux valeurs par gdx est toujours égale a zéro, de maniére que
Yon a

ﬂ gim(-x)Vn(x)dx = o,

toutes les fois que la différence r,, — r, est autre que zéro.

0. La fonction ¥ ne devient jamais infinie, et elle ne peut changer
de signe qu’en passant par la valeur zéro. L'étude des propriétes
des racines de I'équation V=0, dauns laquelle on regarde x comme
Vinconnue, est trés intéressante. Si l'on considére celles des ra-
cines des équations V (x)=0o, V,(x)=0, V;(x)=o0,...V(x)=o,...
qui sont comprises entre x et X (abstraction faite des racines x=x,
x ==X, qui dans certains cas existent) on démontre que la premiere
de ces équations est impossible, que la seconde possede une seule ra-
cine , que la troisiéme en possede deux, et ainsi de suite, en sorte

ouvrage sur la Chaleur), si I'on coustruit la ligne représentée par Péquation
y= f(x), cette ligne aura une seule ordonnée en chacun des points de jonction de
deux parties conjuguées; elle pourra avoir deux tangentes ou deux rayons de cour-
bure différents appartenant i ces deux parties.



258 JOURNAL DE MATHEMATIQUES

que la fonction V,(x) ne s’évanouit jamais, et que la fonction
V.(x) s'évanouit (m— 1) fois pour des valeurs de x >x et < X.

4°. Les (m—1) racines > x et < X de I'équation V,(ox)=o0 sont
inégales entre elles, et de plus comprises entre les m racines de I'équa-
tion suivante : V,,,(r)=o0. Aiosi la fonction V,(x) est la seule qui ne
change jamais de signe lorsque a croit d’une maniére continue de x
a X : la fonction V,(x) change (m—1) fois de signe dans le méme
mtervalle.

5°. 8i l'on désigne par A, A, . ..A,, des constantes qui ne soient
pas toutes nulles, et si I'on pose

AVAZ) A A Voa(Z) o o o AV () = ¥ (),

la fonction ¥{x) ne sera jamais identiquement nulle, et I'équation
¥(a)=o0 aura (m—1) racines au moins et (n— 1) racines au plus
entre \ et X. Dans I'énoncé de ce théoréme, chaque racine multiple
de I'équation ¥ (x)==o (lorsque cette équation a des racines mul-
tiples ) doit étre comptée autant de fois qu'elle entre dans I'équation :
ainsi les racines doubles doivent étre comptées deux fois, les racines
triples trois fois, etc.
On sait comment M. Poisson s'est servi de I'équation

f; * gV (x)V (x)dxr = o,

pour prouver la réalité de toutes les racines de 'équation (C). Les autres
proprietes des racines ry, 1, 1y, . .. ont été découvertes et démontrées en
rigueur par M. Sturm (*). Considérées en elles-mémes et indépendam-
ment de leurs applications, ces propriétés sont déja trés élégantes
Pusage que nous allons en faire leur donnera peut-étre plus de prix
encore aux yeux des géometres.

*; On prendra une idée des méthodes cmployées par M. Sturm en lisant son
Memoire sur Uintégration des équations différentielles linéaires du second ordre
»oyez page 106 de ce volume). Mais la démonstration compléte du 5° théoréme
{dont nous allons surtout faire usage) n’a été donnée par 'auteur que dans un
Mémoire sur Uintégration des équations aux différences partielles encore inédit
=t dont il nous a promis d’enrichir ce journal.
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Iv.

Nous nous servirons d'abord des théorémes contenus dans le numero
précédent, pour établir quelques lemmes préliminaires dont nous au-
rons besoin plus tard.

Lemme 1%, Soient a, b, c,... des grandeurs inégales comprises
entre x et X. Posons

V(a)V(x) — V (a)V (x) = P,(x),
V(@) Vi(x) — Via)V,(x) = Py(x),

................

s T
P s(b)Psix) — P 3(5) P,(a:‘) = Qs(x):
P(B)P(x) — P)P,(x) = Q=x),

----------------

puis encore
Qs(c) Q) — Qic) Qo) == Ry(x),
Qs(c) Q) — Qslc) Qs(x) = Rs(x),

-----------

................

et ainsi de suite. Je dis que, si Uon se borne a considérer les valeurs de
x>x et <X, la fonction P,(x) s'évanouira pour x=—a et seule-
ment pour x==a : la fonction Qy(x) s'évanouira pour x=a, x=45 et
seulement pour x=a, x=0b; la fonction R(x) s'évanouira pour
r=a,x=b, x=c, et seulement pour x=a, x=b, x=c, et
amsz des autres. De plus , toutes ces fonctzons P, (x) > Qs (x) ,

R,(x),-.. changeront de signe chaque fois qu’elles s’évanouiront.

D’abord on se rappelle que la fonction V,(x) ne peut jamais devenir
nulle quand x est >x et <X,

La fonction P,(x) se ramene 4 la forme A,V (x) 4-A,V,(x) en po-
sant A,=—V,(a), A,==V,(a), et le coeflicient A, nest pas nul.
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Donc par le 5° théoreme du n° 11, cette fonction ne peut s'annuller
plus d’une fois quand x est > x et < X, et il est d'ailleurs évident
quelle devient nulle quand x=a. En vertu du méme théoréme, la
racine @ ne peut étre qu'une racine simple : par conséquent , la fonc-
tion P,/x) doit changer de signe en méme temps qu'elle s’évanouit. Les
fonctious Py(x), Px),... ne jouissent pas nécessairemeunt des mémes
propriétés que P,(xr): elles sannullent, il est vrai pour x=a, mais
la racinc a peut étre multiple, et des racines autres que a, quoique
comprises entre x et X, peuvent satisfaire aux équations Py(x) =o,
P(x)=o0,. ...

La fonction Q;/a) s'annulle évidemment pour x=5, elle sannulle
aussi pour x =« puisque l'on a P,/a) =o, Py(a)==0. Or, en rempla-
cant P,(x) et Pi{x) par leurs valeurs, la fonction Qy(x) prend la forme
AV ) 4= A V. x) 4 AV (x) et le coeflicient A; n'est pas nul puis-
qu'on le trouve égal & P,(0)V,(«) : donc pour des valeurs de x > x et
< X, Qy x) ne peut s'évanouir plus de deux fois : donc on a bien
Qy{x) = o pour x =a, x=1>,, et seulement pour x==a, x=b: de
plus les racines a et b ne peuvent étre que des racines simples, ce qui
oblige Ia fonction Q,/x) a changer de signe chaque fois qu’elle s’éva-
nouit. Les fonctions Q,(x), Qs(x),... deviennent nulles pour x=a
et x=~; mais elles nc jouissent pas nécessairement des autres
propriétés démontrées pour Qy(x).

La fonction R (x) s'annulle évidemment pour x==c: elle s'annulle
aussi pour x—=a et x==0, car il est aisé de voir que L'on a Qy(@)=o,
Oyh) =0, Qu)=0, Qb)==0. Or, en remplacant Q,(x) et Q(x),
puis P}, Py(x), P(x) par leurs valeurs, celle de R,(x) prend la
tforme A,V (x) 4 AV, (x) + A;Viia) + ANV, (x), A, ayant la valeur
suivante Q'¢)P,(0;V,(a) qui ne peut pas étre nulle. Donc I'équation
R, x)==o nc peut avoir entre les limites x, X aucune racine diffe-
rente de @, b, ¢, ct de plus ces trois racines doivent étre simples, en
sovte que Ry(a) changera de signe en s'évanouissant.

fl est clair que Pou pourra continuer indefiniment cette démons-
tration.

Coroflaire. Les (m — 1) lettres @, b, ¢, ... représentant toujours
des quantites inégales << x et > X, on peut déterminer les constantes
AL AL AL WAL, de telle maniere que la fonction
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¥(x) = AV, (x) + AV, (x) + AVy(x) ... 4 AV, (x),

sans étre identiquement nulle, devienne €gale a zéro pour x==«,
x=b, x=c,... En effet, si Yon a m= 2, il suffira de prendre
¥ (x) == P,(x): si Ponam =23, il suffira de prendre ¥ (x) = Qs(x) ;
st 'on a m=4, il suffira de prendre ¥(x)=R,(x); et ainsi de
suite.

L.a fonction ¥ (x) étant ainsi délerminée, I'équation ¥(x)=o0 nc
peut avoir que (in— 1) racines au plus (5° théoreme du n° Il ): or, les
quantités a, b, c,. . . sont par hypothése au nombre de (m—1) : on voit
donc, comme nous l'avons déja fait observer, 1°. que les racines de
I'équation ¥ (x) == o sont toutes inégales et comprises dans la séric
a, b, ¢,... 2°. que par suite la fonction ¥{x) change de signe
chaque fois qu’elle s’évanouit. Il est bien entendu que la variable a
ne sort pas des limites x, X.

Lremme 2°. Soit @ () une fonction de x : si Ueéquation

() /:x ¢(x)Vdx = o

a liew en remplagant r par une quelconque des racines de Uéquation (C),
jedis que Lon a nécessairement ¢(x) = o, dex=x a x =X.

D’abord, si la fonction @ (x), sans étre identiquement nulle, con-
servait toujours le méme signe depuis xr=x jusqua x =X, l'équa-
tion (2) serait absurde , car en posant r=— r, on aurait

S} o)V (x)dx = o,

et cela ne se peut, puisque la fonction V,(x) ne change pas non plus
de signe entre les limites x=x, x =X.

Supposons maintenant que lorsqu’on fait croitre x de x a X, ¢{a)
change de signe (m — 1) fois, el soienta, b, c,... les (m—1) valeurs
de a pour lesquelles ce changement seffectue. En faisant successive-
ment r==r,, r=r,,...r=="r,, dansl'équation (), on en déduira m
équations nouvelles que 1'on pourra ajouter membre a2 membre aprés

les avoir multipliées respectivement par les constantes A LA, A,
En posant

AV, (x) + AV, (x) ...+ AV, (x) = ¥(x),

Jurer 1836. 34
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on trouvera ainsi
X

ﬁ o(x) ¥(x)dx = o.
Mais, d’apres le corollaire du lemme 1%, on peut déterminer les
constantes A,, A,,...A,, de telle maniere que la fonction ¥{x) change
de signe toutes les fois que x atteint et dépasse infiniment peu une
des (m — 1) valeurs a, b, ¢,..... et ne change de signe pour au-
cune autre valeur de x. En adoptant les valeurs de A,, A,,.. .A,, qui
produisent cet effet, I'élément ¢(x) ¥(x)dx conservera toujours le
méme signe dans toute I'étendue de I'intégration, et par conséquent,

. X : . , -
on ne pourra pas avou"[: ¢(x) ¥(x)dxr = 0, a moins qu'on n'ait
aussi @(xr) = o, du moins pour les valeurs de a comprises entre x

et X,
V.

Maintenant nous pouvons résoudre le probléme qui fait 'objet spé-
ctal de ce mémoire,
Prosrine, Trouver la valeur de la série

X N
v / gV f(x)dz

X
f gVvidx

dans laquelle le signe S 'étend a toutes les valeurs de r qui sont
racines de l'équation (C). La variable x est comprise entre x et X,
et la fonction f(x) est donnée arbitrairement entre ces limites.

En représentant par F(x) la valeur cherchée et remplacant le signe
S par la série qu’il représente , on a

X X
V() f V@S (2)dz v,(x)fx eV.(@) f (x)dzx
X + X
f gV, (2)dz [ 6V

Vel [ gVu(e) f o)t

f: * &Vn (x)*dx

Je multiplie les deux membres par gV.(x)dx et j’integre ensuite par

=

ey
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rapport a x en prenant x et X pour les limites de l'intégrale. Puis-
que pour deux indices m et n différents, on a

X
[ gVul@) Vi(@)dz = o,
cette intégration fera disparaitre tous les termes du second membre i
Vexception d'un seul, et 'on aura

X X
[ gVu(x) Fi}da = [ §Vul) flx)de,
d’'ou lon tire
T glb(x) — f@)] Va(a)dx = o

Cette égalité devant avoir lieu pour toutes les valeurs possibles de I'in-
dice m et la fonction g étant constamment >> o0, il résulte du lemme 2-
que, pour toutes les valeurs de x comprises entre x et X, on doit
avoir F{a)— f(x)=0, d'ou F(x)=f(x). La valeur cherchée de la s¢-
rie est donc f(x), entre ces limites de la variable, ce qui s’accorde avec
le résultat que les géometres ont obtenu par d’autres méthodes moins
directes et moins rigoureuses que la notre.

D’aprés les équations de condition (B), qui sont remplies pour la
fonction V, la valeur F(x) de la série

X ~
v f gV f\@)dz
2l T

f gVidzx

d—if? — AF(x) = o pour x = x,
daF
71;%9 4 HF(x) = o pour x = X;

satisfail aux égalilcs

si donc on veut que l'égalité F(x)= f(x) soit exacte aux lmite~
mémes x ==x, x == X, il faudra regarder la fonction f(x) comme
assujettie aux deux conditions

I—U—;‘i—x) — hf(x) = o pour x == X,
‘—%ﬁﬂ ~+ Hf (x)= o pour x = X,

que nous avons admises en effet au n° L.
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VI.

Nous croyons devoir ajouter a la démonstration précédente quel-
(ues remarques qui ne seront pas sans intéret.

Par un raisonnemen! semblable a celui dont nous nous sommes
servis pour démontrer le 2° lemme du n° IV, on peut encore établir
la proposition suivante : §i Iégquation

@ [l e@Vdr=o

« lieu enremplacant rpar unequelconque des racines r,,r,,. . . jusqu a
T, je dis que la fonction @{x) change de signe aw moins (n—r7 fois,
lorsquion fait croitre x depuis x jusque X. En effet, supposons, s'il
est possible, que la fonction @(x), dans cet intervalle, change de signe
(m—1) fois seulement, m étant < n, et soit (comme au n° 1V) ¥(x)
une fonction de la forme A,V,(x) 4 A,V (x)+ +A V. (x), qui
change de signe aussi (m—1) fois et pour les mémes valeurs que o(x),
le produit @/x)¥(x)dx ne changera jamais de signe, et par suite on
ne pourra pas avoir

[: o(a)¥(x)dx =o,

ce qui résulte pourtant de Véquation [(8) en y posant successive-
ment r=r,, r=r,,...r=r,, puis ajoutant membre a membre les
équations ainsi oblenues, aprés les avoir multipliées par les facteurs
respectifs A,, A,...A,. Il est donc absurde d’admettre que la fonc-
tion @(x) sannulle (m — 1) fois seulement, m étant < n : ce qui de-
montre la proposition énoncée. ’

Désignons par ¢, la somme des 7 premiers termes de la série

s ‘ V/:gif(x)d.r\
l ]: " gVidx

dont on n'a pas besoin de supposer que la somme soit connue. Pour
un indice m égal ou inférieur a n, nous obtiendrons immédiatement

S g Valade = [ gVala) f(x)dr,
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ou, ce qui est la méme chose,

(%) /. gpVa(@)dz =0,

f« veprésentant la différence f{ar)— o,. En comparanl cette équation
a 'équation (8), on conclut de la proposition qui vient d’étre dé-
montrée , que la quantité p, Sannulle au moins (n—1) fois lorsque a
croit depuis x jusqu’a X.

Soit Q une fonction quelconque de la forme A,V () --A,V,(x)
+....4A,V,(x) (ce qui comprend comme cas particulier la fonc-
tion ¢,). En posant dans I'équation (3) successivement r=r,, r=r,,...
r=r,, puis ajoutant les équations ainsi obtenues, aprés les avoir mul-
tiplides par A,, A,,....A,,ona:

ﬁxgr.de=o5

ce qui, en posant Q=rv,, devient :

X
[; gPa0.dr=o.
Maintenant multiplions par go,dx et intégrons entre les limites x, X
les deux membres de I'équation f{x) = 05,-p., puis effacons le

X - , 1 e - - .
terme /: gfa7.dx, qui est égal a zéro; nous obtiendrons ainsi

ﬁx go‘nf(x)dx= [:x go’,’clx :

nous obtiendrons une autre formule plus remarquable encore, savoir,

/‘, > gf(x)dx= [: xg(s,‘-{-f,l')dx ,
en multipliant par gdx et intégrant le carré f(x)'=0."+25.f.4Fa’
Cette derniere formule nous prouve que 'intégrale f i go.*dx , quelque
grand qu’on prenne I'indice 7, ne peut jamais avoir une valeur numé-
riquesupérieure a la limite f: ) gf(x)dx avec laquelle elle coincide
lorsque n== o.



