p-adic properties of motivic fundamental lines
Journal de l’École polytechnique - Mathématiques, Volume 4 (2017), p. 37-86

We prove the conjectured compatibility of p-adic fundamental lines with specializations at motivic points for a wide class of p-adic families of p-adic Galois representations (for instance, the families which arise from p-adic families of automorphic representations of the unit group of a quaternion algebra or of a totally definite unitary group) and deduce the compatibility of the Equivariant Tamagawa Number Conjectures for them. However, we also show that fundamental lines are not compatible with arbitrary characteristic zero specializations with values in a domain in general. This points to the need to modify the conjectures of [73] using completed cohomology.

Nous prouvons la conjecture de compatibilité des droites fondamentales p-adiques avec les spécialisations aux points motiviques pour une large classe de familles p-adiques de représentations galoisiennes (par exemple, les familles provenant de familles p-adiques de représentations automorphes du groupe des unités d’une algèbre de quaternions ou d’un groupe unitaire totalement défini) et en déduisons la compatibilité de la Conjecture Équivariante sur les Nombres de Tamagawa pour ces spécialisations. Néanmoins, nous montrons également que les droites fondamentales ne sont en général pas compatibles avec les spécialisations arbitraires à valeurs dans un anneau intègre de caractéristique zéro. Ceci indique qu’il est nécessaire de modifier la conjecture de [73] en utilisant la cohomologie complétée.

Received : 2016-06-09
Accepted : 2016-12-15
Published online : 2017-01-10
DOI : https://doi.org/10.5802/jep.38
Classification:  11G40,  11F67,  11F70,  11R23,  11F33
Keywords: Iwasawa theory, p-adic automorphic forms
@article{JEP_2017__4__37_0,
     author = {Fouquet, Olivier},
     title = {$p$-adic properties of motivic~fundamental~lines},
     journal = {Journal de l'\'Ecole polytechnique - Math\'ematiques},
     publisher = {Ecole polytechnique},
     volume = {4},
     year = {2017},
     pages = {37-86},
     doi = {10.5802/jep.38},
     mrnumber = {3611099},
     zbl = {06754323},
     language = {en},
     url = {http://www.numdam.org/item/JEP_2017__4__37_0}
}
Fouquet, Olivier. $p$-adic properties of motivic fundamental lines. Journal de l’École polytechnique - Mathématiques, Volume 4 (2017) pp. 37-86. doi : 10.5802/jep.38. http://www.numdam.org/item/JEP_2017__4__37_0/

[1] Artin, M.; Grothendieck, A.; Verdier, J.-L. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Springer-Verlag, Berlin, Lect. Notes in Math., Tome 269 (1972) (avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat) | Zbl 0234.00007

[2] Beĭlinson, A. A. Higher regulators and values of L-functions, Current problems in mathematics, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (Itogi Nauki i Tekhniki) Tome 24 (1984), pp. 181-238 | Zbl 0588.14013

[3] Bernstein, I. N.; Zelevinsky, A. V. Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. École Norm. Sup. (4), Tome 10 (1977) no. 4, pp. 441-472 | Article | Numdam | MR 579172 | Zbl 0412.22015

[4] Bernstein, J. N.; Deligne, P. Le ‘centre’ de Bernstein, Representations of reductive groups over a local field, Hermann, Paris (Travaux en Cours) (1984), pp. 1-32

[5] Blasius, D. Hilbert modular forms and the Ramanujan conjecture, Noncommutative geometry and number theory, Vieweg, Wiesbaden (Aspects Math.) Tome E37 (2006), pp. 35-56 | Article | Zbl 1183.11023

[6] Bloch, S. Algebraic cycles and values of L-functions, J. reine angew. Math., Tome 350 (1984), pp. 94-108 | MR 743535 | Zbl 0527.14008

[7] Bloch, S. Algebraic cycles and values of L-functions. II, Duke Math. J., Tome 52 (1985) no. 2, pp. 379-397 | Article | MR 792179 | Zbl 0628.14006

[8] Bloch, S. Algebraic cycles and higher K-theory, Adv. in Math., Tome 61 (1986) no. 3, pp. 267-304 | Article | MR 852815 | Zbl 0608.14004

[9] Bloch, S.; Kato, K. L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Birkhäuser Boston, Boston, MA (Progress in Math.) Tome 86 (1990), pp. 333-400 | MR 1086888 | Zbl 0768.14001

[10] Breuil, Ch.; Schneider, P. First steps towards p-adic Langlands functoriality, J. reine angew. Math., Tome 610 (2007), pp. 149-180 | MR 2359853 | Zbl 1180.11036

[11] Burns, D.; Flach, M. Motivic L-functions and Galois module structures, Math. Ann., Tome 305 (1996), pp. 65-102 | Article | MR 1386106 | Zbl 0867.11081

[12] Burns, D.; Flach, M. On Galois structure invariants associated to Tate motives, Amer. J. Math., Tome 120 (1998) no. 6, pp. 1343-1397 | Article | MR 1657186 | Zbl 0929.11050

[13] Burns, D.; Flach, M. Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math., Tome 6 (2001), pp. 501-570 | MR 1884523 | Zbl 1052.11077

[14] Caraiani, A. Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J., Tome 161 (2012) no. 12, pp. 2311-2413 | Article | MR 2972460 | Zbl 06095601

[15] Caraiani, A.; Emerton, M.; Gee, T.; Gerahgty, D.; Paskunas, V.; Shin, S. W. Patching and the p-adic local Langlands correspondence, Camb. J. Math., Tome 4 (2016) no. 2, pp. 197-287 | Article | MR 3529394

[16] Carayol, H. Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4), Tome 19 (1986) no. 3, pp. 409-468 | Article | MR 870690 | Zbl 0616.10025

[17] Carayol, H. Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), American Mathematical Society, Providence, RI (Contemp. Math.) Tome 165 (1994), pp. 213-237 | Article | MR 1279611 | Zbl 0812.11036

[18] Chenevier, G. Une application des variétés de Hecke des groupes unitaires (2009) (available at http://gaetan.chenevier.perso.math.cnrs.fr/pub.html)

[19] Chenevier, G. The p-adic analytic space of pseudocharacters of a profinite group, and pseudorepresentations over arbitrary rings, Automorphic forms and Galois representations (Durham, July 2011), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 414 (2014), pp. 221-285 | Article | MR 3444227 | Zbl 1350.11063

[20] Chenevier, G.; Harris, M. Construction of automorphic Galois representations, II, Camb. J. Math., Tome 1 (2013) no. 1, pp. 53-73 | Article | MR 3272052 | Zbl 1310.11062

[21] Clozel, L. Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Academic Press, Boston, MA (Perspect. Math.) Tome 10 (1990), pp. 77-159 | Zbl 0705.11029

[22] Clozel, L. Représentations galoisiennes associées aux représentations automorphes autoduales de GL (n), Publ. Math. Inst. Hautes Études Sci. (1991) no. 73, pp. 97-145 | Article | MR 1114211 | Zbl 0739.11020

[23] Clozel, L.; Harris, M.; Taylor, R. Automorphy for some -adic lifts of automorphic mod  Galois representations, Publ. Math. Inst. Hautes Études Sci. (2008) no. 108, pp. 1-181 | Article | MR 2470687

[24] Deligne, P. Théorie de Hodge. I, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris (1971), pp. 425-430 | Zbl 0219.14006

[25] Deligne, P. Théorie de Hodge. II, Publ. Math. Inst. Hautes Études Sci. (1971) no. 40, pp. 5-57 | Article | Numdam | Zbl 0219.14007

[26] Deligne, P. La conjecture de Weil. I, Publ. Math. Inst. Hautes Études Sci. (1974) no. 43, pp. 273-307 | Article | Numdam | MR 340258

[27] Deligne, P. Séminaire de Géométrie Algébrique du Bois-Marie (SGA 41 2). Cohomologie étale, Springer-Verlag, Berlin, Lect. Notes in Math., Tome 569 (1977) (avec la collaboration de J.-F. Boutot, A. Grothendieck, L. Illusie et J.-L. Verdier)

[28] Deligne, P. Valeurs de fonctions L et périodes d’intégrales, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, American Mathematical Society, Providence, R.I. (Proc. Sympos. Pure Math.) Tome XXXIII (1979), pp. 313-346 | Zbl 0449.10022

[29] Diamond, Fred; Taylor, R. Nonoptimal levels of mod  modular representations, Invent. Math., Tome 115 (1994) no. 3, pp. 435-462 | Article | MR 1262939

[30] Emerton, M. A local-global compatibility conjecture in the p-adic Langlands programme for GL 2/ , Pure Appl. Math. Q, Tome 2 (2006) no. 2, pp. 279-393 | Article | MR 2251474

[31] Emerton, M. On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., Tome 164 (2006) no. 1, pp. 1-84 | Article | MR 2207783 | Zbl 1090.22008

[32] Emerton, M. Locally analytic representation theory of p-adic reductive groups: a summary of some recent developments, L-functions and Galois representations, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 320 (2007), pp. 407-437 | Article | MR 2392361 | Zbl 1149.22014

[33] Emerton, M. Completed cohomology and the p-adic Langlands program, Proceedings ICM, Tome II (2014), pp. 319-342 | Zbl 1373.11039

[34] Emerton, M. Locally analytic vectors in representations of locally p-adic analytic groups, American Mathematical Society, Providence, RI, Mem. Amer. Math. Soc. (to appear)

[35] Emerton, M.; Helm, D. The local Langlands correspondence for GL n in families, Ann. Sci. École Norm. Sup. (4), Tome 47 (2014) no. 4, pp. 655-722 | Article | MR 3250061 | Zbl 1321.11055

[36] Emerton, M.; Pollack, R.; Weston, T. Variation of Iwasawa invariants in Hida families, Invent. Math., Tome 163 (2006) no. 3, pp. 523-580 | Article | MR 2207234 | Zbl 1093.11065

[37] Faltings, G. Crystalline cohomology and p-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, 1988), Johns Hopkins University Press, Baltimore, MD (1989), pp. 25-80 | Zbl 0805.14008

[38] Faltings, G. Almost étale extensions, Cohomologies p-adiques et applications arithmétiques. II, Société Mathématique de France, Paris (Astérisque) Tome 279 (2002), pp. 185-270 | Zbl 1027.14011

[39] Fontaine, J.-M. Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2), Tome 115 (1982) no. 3, pp. 529-577 | Article | Zbl 0544.14016

[40] Fontaine, J.-M. Valeurs spéciales des fonctions L des motifs, Séminaire Bourbaki, Vol. 1991/92, Société Mathématique de France, Paris (Astérisque) Tome 206 (1992), p. 205-249, Exp. No. 751 | Numdam | Zbl 0799.14006

[41] Fontaine, J.-M. Le corps des périodes p-adiques, Périodes p-adiques (Bures-sur-Yvette, 1988), Société Mathématique de France, Paris (Astérisque) Tome 223 (1994), pp. 59-111

[42] Fontaine, J.-M. Représentations p-adiques semi-stables, Périodes p-adiques (Bures-sur-Yvette, 1988), Société Mathématique de France, Paris (Astérisque) Tome 223 (1994), pp. 113-184 | Zbl 0865.14009

[43] Fontaine, J.-M.; Mazur, B. Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA (Ser. Number Theory) Tome I (1995), pp. 41-78 | Zbl 0839.14011

[44] Fontaine, J.-M.; Perrin-Riou, B. Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, Motives (Seattle, WA, 1991), American Mathematical Society, Providence, RI (Proc. Sympos. Pure Math.) Tome 55 (1994), pp. 599-706 | MR 1265546 | Zbl 0821.14013

[45] Fouquet, O. The Equivariant Tamagawa Number Conjecture for Modular Motives with coefficients in the Hecke algebra (2015) (arXiv:1604.06411 )

[46] Fouquet, O.; Ochiai, T. Control theorems for Selmer groups of nearly ordinary deformations, J. reine angew. Math., Tome 666 (2012), pp. 163-187 | MR 2920885 | Zbl 1248.11041

[47] Fujiwara, K. Deformation rings and Hecke algebras in the totally real case (2006) (arXiv:0602606 )

[48] Fukaya, T.; Kato, K. A formulation of conjectures on p-adic zeta functions in noncommutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical Society, Vol. XII, American Mathematical Society, Providence, RI (Amer. Math. Soc. Transl. Ser. 2) Tome 219 (2006), pp. 1-85 | MR 2276851 | Zbl 1238.11105

[49] Genestier, A.; Tilouine, J. Systèmes de Taylor-Wiles pour GSp 4 , Formes automorphes. II. Le cas du groupe GSp (4), Société Mathématique de France, Paris (Astérisque) Tome 302 (2005), pp. 177-290 | Zbl 1142.11036

[50] Godement, R.; Jacquet, H. Zeta functions of simple algebras, Springer-Verlag, Berlin-New York, Lect. Notes in Math., Tome 260 (1972) | MR 342495 | Zbl 0244.12011

[51] Greenberg, R. Iwasawa theory for p-adic representations, Algebraic number theory, Academic Press, Boston, MA (Adv. Stud. Pure Math.) Tome 17 (1989), pp. 97-137 | Article | MR 1097613 | Zbl 0739.11045

[52] Greenberg, R. Iwasawa theory for motives, L-functions and arithmetic (Durham, 1989), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 153 (1991), pp. 211-233 | MR 1110394 | Zbl 0727.11043

[53] Greenberg, R. Galois theory for the Selmer group of an abelian variety, Compositio Math., Tome 136 (2003) no. 3, pp. 255-297 | Article | MR 1977007 | Zbl 1158.11319

[54] Greenberg, R.; Vatsal, V. On the Iwasawa invariants of elliptic curves, Invent. Math., Tome 142 (2000) no. 1, pp. 17-63 | Article | MR 1784796 | Zbl 1032.11046

[55] Grothendieck, A. On the de Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Études Sci. (1966) no. 29, pp. 95-103 | Article | Numdam | MR 199194 | Zbl 0145.17602

[56] Grothendieck, A. Dix exposés sur la cohomologie des schémas, North-Holland Publishing Co., Amsterdam, Advanced Studies in Pure Mathematics, Tome 3 (1968)

[57] Grothendieck, A. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7). Groupes de monodromie en géométrie algébrique. I, Springer-Verlag, Berlin-New York, Lect. Notes in Math., Tome 288 (1972) (avec la collaboration de M. Raynaud et D. S. Rim) | Zbl 0237.00013

[58] Harris, M.; Taylor, R. The geometry and cohomology of some simple Shimura varieties, Princeton University Press, Princeton, NJ, Annals of Math. Studies, Tome 151 (2001) | MR 1876802 | Zbl 1036.11027

[59] Helm, D. The Bernstein center of the category of smooth W(k)[ GL n (F)]-modules, Forum Math. Sigma, Tome 4 (2016) (e11, 98 p.) | Article | MR 3508741

[60] Helm, D. Curtis homomorphisms and the integral Bernstein center for GL n (2016) (arXiv:1605.00487 )

[61] Helm, D. Whittaker models and the integral Bernstein center for GL n , Duke Math. J., Tome 165 (2016) no. 9, pp. 1597-1628 | MR 3513570

[62] Helm, D.; Moss, G. Converse theorems and the Local Langlands Correspondance in families (2016) (arXiv:1610.03277 )

[63] Henniart, G. Sur la conjecture de Langlands locale pour GL n , J. Théor. Nombres Bordeaux, Tome 13 (2001) no. 1, pp. 167-187 | Article | MR 1838079

[64] Hida, H. Galois representations into GL 2 (Z p [[X]]) attached to ordinary cusp forms, Invent. Math., Tome 85 (1986) no. 3, pp. 545-613 | Article | MR 848685

[65] Hida, H. Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Tome 19 (1986) no. 2, pp. 231-273 | Article | Numdam | MR 868300 | Zbl 0607.10022

[66] Hida, H. Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math., Tome 110 (1988) no. 2, pp. 323-382 | Article | MR 935010 | Zbl 0645.10029

[67] Hida, H. Hecke fields of analytic families of modular forms, J. Amer. Math. Soc., Tome 24 (2011) no. 1, pp. 51-80 | Article | MR 2726599 | Zbl 1282.11058

[68] Hodge, W. V. D. The theory and applications of harmonic integrals, Cambridge University Press, Cambridge, England; Macmillan Company, New York (1941) | Zbl 0024.39703

[69] Ihara, Y. On modular curves over finite fields, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, Bombay (1975), pp. 161-202 | Zbl 0343.14007

[70] Illusie, L. Autour du théorème de monodromie locale, Périodes p-adiques (Bures-sur-Yvette, 1988), Société Mathématique de France, Paris (Astérisque) Tome 223 (1994), pp. 9-57

[71] Iwasawa, K. On p-adic L-functions, Ann. of Math. (2), Tome 89 (1969), pp. 198-205 | Article | Zbl 0186.09201

[72] Kato, K. Iwasawa theory and p-adic Hodge theory, Kodai Math. J., Tome 16 (1993) no. 1, pp. 1-31 | Article | MR 1207986 | Zbl 0798.11050

[73] Kato, K. Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dR . I, Arithmetic algebraic geometry (Trento, 1991), Springer, Berlin (Lect. Notes in Math.) Tome 1553 (1993), pp. 50-163 | Article | MR 1338860

[74] Kato, K. p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III, Société Mathématique de France, Paris (Astérisque) Tome 295 (2004), pp. 117-290 | Zbl 1142.11336

[75] Langlands, R. P. Modular forms and -adic representations, Modular functions of one variable, II (Antwerp, 1972), Springer, Berlin (Lect. Notes in Math.) Tome 349 (1973), pp. 361-500 | Article | MR 354617 | Zbl 0279.14007

[76] Manin, Yu. I. Periods of cusp forms, and p-adic Hecke series, Mat. Sb. (N.S.), Tome 92(134) (1973), p. 378-401, 503 | MR 345909 | Zbl 0293.14007

[77] Mazur, B. Rational points of abelian varieties with values in towers of number fields, Invent. Math., Tome 18 (1972), pp. 183-266 | Article | MR 444670 | Zbl 0245.14015

[78] Mazur, B. Notes on étale cohomology of number fields, Ann. Sci. École Norm. Sup. (4), Tome 6 (1973), pp. 521-552 | Article | Numdam | Zbl 0282.14004

[79] Mazur, B. On the arithmetic of special values of L functions, Invent. Math., Tome 55 (1979) no. 3, pp. 207-240 | Article | MR 553997 | Zbl 0426.14009

[80] Mazur, B. The theme of p-adic variation, Mathematics: frontiers and perspectives, American Mathematical Society, Providence, RI (2000), pp. 433-459 | MR 1754790 | Zbl 0959.14008

[81] Nekovář, J. Selmer Complexes, Société Mathématique de France, Paris, Astérisque, Tome 310 (2006) | Zbl 1211.11120

[82] Newton, J. Level raising for p-adic Hilbert modular forms, J. Théor. Nombres Bordeaux (to appear) (arXiv:1409.6533 ) | MR 3610690 | Zbl 06697271

[83] Nizioł, W. On uniqueness of p-adic period morphisms, Pure Appl. Math. Q, Tome 5 (2009) no. 1, pp. 163-212 | Article | MR 2520458 | Zbl 1200.14037

[84] Ochiai, T. Control theorem for Greenberg’s Selmer groups of Galois deformations, J. Number Theory, Tome 88 (2001) no. 1, pp. 59-85 | Article | MR 1825991 | Zbl 1090.11034

[85] Ohta, M. On -adic representations attached to automorphic forms, Japan. J. Math. (N.S.), Tome 8 (1982) no. 1, pp. 1-47 | MR 722520 | Zbl 0505.10012

[86] Perrin-Riou, B. Fonctions L p-adiques des représentations p-adiques, Société Mathématique de France, Paris, Astérisque, Tome 229 (1995) | Numdam | Zbl 0845.11040

[87] Rapoport, M.; Zink, Th. Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math., Tome 68 (1982) no. 1, pp. 21-101 | Article | Zbl 0498.14010

[88] Raynaud, M. 1-motifs et monodromie géométrique, Périodes p-adiques (Bures-sur-Yvette, 1988), Société Mathématique de France, Paris (Astérisque) Tome 223 (1994), pp. 295-319 | Zbl 0830.14001

[89] Ribet, K. A. On modular representations of Gal (Q ¯/Q) arising from modular forms, Invent. Math., Tome 100 (1990) no. 2, pp. 431-476 | Article | MR 1047143 | Zbl 0773.11039

[90] Ribet, K. A. Raising the levels of modular representations, Séminaire de Théorie des Nombres, Paris 1987–88, Birkhäuser Boston, Boston, MA (Progress in Math.) Tome 81 (1990), pp. 259-271 | MR 1042773 | Zbl 0705.11030

[91] Saha, J. P. Purity for families of Galois representations, Ann. Inst. Fourier (Grenoble) (to appear) | MR 3669514

[92] Saito, T. Weight spectral sequences and independence of , J. Inst. Math. Jussieu, Tome 2 (2003) no. 4, pp. 583-634 | Article | MR 2006800 | Zbl 1084.14027

[93] Serre, J.-P. Facteurs locaux des fonctions zêta des variétés algébriques (Définitions et conjectures), Seminaire Delange-Pisot-Poitou (1969/70). Théorie des nombres, Secrétariat mathématique, Tome 11 (1970), pp. 1-15 | Numdam | Zbl 0214.48403

[94] Serre, J.-P.; Tate, J. Good reduction of abelian varieties, Ann. of Math. (2), Tome 88 (1968), pp. 492-517 | Article | MR 236190 | Zbl 0172.46101

[95] Shin, S. W. Galois representations arising from some compact Shimura varieties, Ann. of Math. (2), Tome 173 (2011) no. 3, pp. 1645-1741 | Article | MR 2800722 | Zbl 1269.11053

[96] Tate, J. Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Purdue Univ., 1963), Harper & Row, New York (1965), pp. 93-110 | Zbl 0213.22804

[97] Tate, J. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Société Mathématique de France, Paris (1966), p. 415-440, Exp. No. 306 | Numdam | Zbl 0199.55604

[98] Taylor, R. Galois representations, Ann. Fac. Sci. Toulouse Math. (6), Tome 13 (2004) no. 1, pp. 73-119 | Article | Numdam | Zbl 1074.11030

[99] Taylor, R.; Yoshida, T. Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc., Tome 20 (2007) no. 2, pp. 467-493 | Article | MR 2276777 | Zbl 1210.11118

[100] Tsuji, T. p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., Tome 137 (1999) no. 2, pp. 233-411 | Article | Zbl 0945.14008

[101] Wiles, A. Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), Tome 141 (1995) no. 3, pp. 443-551 | Article | MR 1333035 | Zbl 0823.11029

[102] Zelevinsky, A. V. Induced representations of reductive 𝔭-adic groups. II. On irreducible representations of GL (n), Ann. Sci. École Norm. Sup. (4), Tome 13 (1980) no. 2, pp. 165-210 | Article | Numdam | MR 584084 | Zbl 0441.22014