On some coupled PDE-ODE systems in fluid dynamics
Journées équations aux dérivées partielles (2018), Exposé no. 5, 13 p.

In this note we will present some existence and uniqueness issues for three coupled PDE-ODE systems. The common frame is that they arise as the asymptotical dynamics of a regular, incompressible two-dimensional flow interacting with:

  • points at which the vorticity is highly concentrated (point vortices);
  • an obstacle shrinking to a steady point;
  • rigid bodies contracting to moving massive particles.

We will mainly focus on the last situation, corresponding to the article [11], which is a joint work with Christophe Lacave.

Publié le :
DOI : 10.5802/jedp.665
Miot, Evelyne 1

1 CNRS-Université Grenoble Alpes Institut Fourier UMR 5582 100, rue des mathématiques 38610 Gières France
@article{JEDP_2018____A5_0,
     author = {Miot, Evelyne},
     title = {On some coupled {PDE-ODE} systems in fluid dynamics},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:5},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2018},
     doi = {10.5802/jedp.665},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.665/}
}
TY  - JOUR
AU  - Miot, Evelyne
TI  - On some coupled PDE-ODE systems in fluid dynamics
JO  - Journées équations aux dérivées partielles
N1  - talk:5
PY  - 2018
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.665/
DO  - 10.5802/jedp.665
LA  - en
ID  - JEDP_2018____A5_0
ER  - 
%0 Journal Article
%A Miot, Evelyne
%T On some coupled PDE-ODE systems in fluid dynamics
%J Journées équations aux dérivées partielles
%Z talk:5
%D 2018
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.665/
%R 10.5802/jedp.665
%G en
%F JEDP_2018____A5_0
Miot, Evelyne. On some coupled PDE-ODE systems in fluid dynamics. Journées équations aux dérivées partielles (2018), Exposé no. 5, 13 p. doi : 10.5802/jedp.665. http://www.numdam.org/articles/10.5802/jedp.665/

[1] Ambrosio, Luigi Transport equation and Cauchy problem for non-smooth vector fields, Calculus of variations and nonlinear partial differential equations (Lecture Notes in Mathematics), Volume 1927, Springer, 2008, pp. 1-42 | Zbl

[2] Ambrosio, Luigi Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications (2017) (preprint)

[3] Crippa, Gianluca; De Lellis, Camillo Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46 | Zbl

[4] Crippa, Gianluca; Filho, Lopes Milton C.; Miot, Evelyne; Nussenzveig Lopes, Helena J. Flows of vector fields with point singularities and the vortex-wave system, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 5, pp. 2405-2417 | Zbl

[5] DiPerna, Ronald J.; Lions, Pierre-Louis Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | Zbl

[6] Glass, Olivier; Lacave, Christophe; Sueur, Franck On the motion of a small body immersed in a two dimensional incompressible perfect fluid, Bull. Soc. Math. Fr., Volume 142 (2014) no. 3, pp. 489-536 | Zbl

[7] Glass, Olivier; Lacave, Christophe; Sueur, Franck On the motion of a small light body immersed in a two dimensional incompressible perfect fluid with vorticity, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 1015-1065 | Zbl

[8] Hölder, Ernst Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit, Math. Z., Volume 37 (1993), pp. 727-738 | Zbl

[9] Iftimie, Dragoş; Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J. Two dimensional incompressible ideal flow around a small obstacle, Commun. Partial Differ. Equations, Volume 28 (2003) no. 1-2, pp. 349-379 | Zbl

[10] Lacave, Christophe; Miot, Evelyne Uniqueness for the vortex-wave system when the vorticity is initially constant near the point vortex, SIAM J. Math. Anal., Volume 41 (2009) no. 3, pp. 1138-1163 | Zbl

[11] Lacave, Christophe; Miot, Evelyne The vortex-wave system with gyroscopic effects (2019) (https://arxiv.org/abs/1903.01714)

[12] Majda, Andrew J.; Bertozzi, Andrea L. Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, 2002 | Zbl

[13] Marchioro, Carlo On the Euler equations with a singular external velocity field, Rend. Semin. Mat. Univ. Padova, Volume 84 (1990), pp. 61-69 | Zbl

[14] Marchioro, Carlo; Pulvirenti, Mario On the vortex-wave system, Mechanics, analysis, and geometry: 200 years after Lagrange (North-Holland Delta Series), North-Holland, 1991, pp. 79-95 | Zbl

[15] Marchioro, Carlo; Pulvirenti, Mario Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, 96, Springer, 1994 | Zbl

[16] Miot, Evelyne Quelques problèmes relatifs à la dynamique des points vortex dans les équations d’Euler et de Ginzburg-Landau complexe, Université Pierre et Marie Curie - Paris VI (France) (2009) (Ph. D. Thesis)

[17] Moussa, Ayman; Sueur, Franck On a Vlasov–Euler system for 2D sprays with gyroscopic effects, Asymptotic Anal., Volume 81 (2013) no. 1, pp. 53-91 | Zbl

[18] Starovoǐtov, Victor N. Solvability of the problem of motion of concentrated vortices in an ideal fluid, Din. Splosh. Sredy, Volume 85 (1988), pp. 118-136

[19] Starovoǐtov, Victor N. Uniqueness of a solution to the problem of evolution of a point vortex, Sib. Math. J., Volume 35 (1994) no. 3, pp. 625-630 | Zbl

[20] Stein, Elias M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | Zbl

[21] Wolibner, Witold Un théorème sur l’existence du mouvement plan d’un fluide parfait homogène, incompressible, pendant un temps infiniment long, Math. Z., Volume 37 (1933) no. 1, pp. 698-726 | Zbl

[22] Yudovich, Viktor I. Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., Volume 3 (1963) no. 6, pp. 1032-1066 English translation in USSR Comput. Math. Math. Phys. 3 (1963), no. 6, p. 1407-1456

Cité par Sources :