The threshold theorem for geometric nonlinear wave equations
Journées équations aux dérivées partielles (2018), Exposé no. 10, 15 p.

The aim of these notes is to provide a brief overview of a large body recent work whose aim was to prove the Threshold Theorem for energy critical geometric nonlinear wave equations. Within the class of geometric wave equations we include nonlinear wave evolutions which have a geometric structure and origin, including a nontrivial gauge group. The problems discussed here include Wave Maps, Maxwell–Klein–Gordon, as well as the hyperbolic Yang–Mills flow. In a nutshell, the Threshold theorem asserts that these problems are globally well-posed for initial data below the ground state energy.

Publié le :
DOI : 10.5802/jedp.670
Mots clés : nonlinear wave equation, energy critical, threshold theorem, renormalization
Tataru, Daniel 1

1 University of California Berkeley USA
@article{JEDP_2018____A10_0,
     author = {Tataru, Daniel},
     title = {The threshold theorem for geometric nonlinear wave equations},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:10},
     pages = {1--15},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2018},
     doi = {10.5802/jedp.670},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.670/}
}
TY  - JOUR
AU  - Tataru, Daniel
TI  - The threshold theorem for geometric nonlinear wave equations
JO  - Journées équations aux dérivées partielles
N1  - talk:10
PY  - 2018
SP  - 1
EP  - 15
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.670/
DO  - 10.5802/jedp.670
LA  - en
ID  - JEDP_2018____A10_0
ER  - 
%0 Journal Article
%A Tataru, Daniel
%T The threshold theorem for geometric nonlinear wave equations
%J Journées équations aux dérivées partielles
%Z talk:10
%D 2018
%P 1-15
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.670/
%R 10.5802/jedp.670
%G en
%F JEDP_2018____A10_0
Tataru, Daniel. The threshold theorem for geometric nonlinear wave equations. Journées équations aux dérivées partielles (2018), Exposé no. 10, 15 p. doi : 10.5802/jedp.670. http://www.numdam.org/articles/10.5802/jedp.670/

[1] Bourgain, Jean Global solutions of nonlinear Schrödinger equations, Colloquium Publications, 46, American Mathematical Society, 1999 | Zbl

[2] Candy, Timothy; Herr, Sebastian On the Division Problem for the Wave Maps Equation (2018) (https://arxiv.org/abs/1807.02066)

[3] Gursky, Matthew; Kelleher, Casey Lynn; Streets, Jeffrey A conformally invariant gap theorem in Yang–Mills theory (2017) (https://arxiv.org/abs/1708.01157)

[4] Kenig, Carlos E.; Merle, Frank Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., Volume 201 (2008) no. 2, pp. 147-212 | Zbl

[5] Klainerman, Sergiu; Machedon, Matei Space-time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221-1268 | Zbl

[6] Koch, Herbert; Tataru, Daniel Dispersive estimates for principally normal pseudodifferential operators, Commun. Pure Appl. Math., Volume 58 (2005) no. 2, pp. 217-284 | Zbl

[7] Krieger, Joachim Global regularity of wave maps from R 2+1 to H 2 . Small energy, Commun. Math. Phys., Volume 250 (2004) no. 3, pp. 507-580 | Zbl

[8] Krieger, Joachim; Lührmann, Jonas Concentration compactness for the critical Maxwell–Klein–Gordon equation, Ann. PDE, Volume 1 (2015) no. 1, 5, 208 pages | Zbl

[9] Krieger, Joachim; Schlag, Wilhelm Concentration compactness for critical wave maps, EMS Monographs in Mathematics, European Mathematical Society, 2012 | Zbl

[10] Krieger, Joachim; Schlag, Wilhelm; Tataru, Daniel Invent. Math., 171 (2008) no. 3, pp. 543-615 | Zbl

[11] Krieger, Joachim; Schlag, Wilhelm; Tataru, Daniel Renormalization and blow up for the critical Yang–Mills problem, Adv. Math., Volume 221 (2009) no. 5, pp. 1445-1521 | Zbl

[12] Krieger, Joachim; Sterbenz, Jacob Global regularity for the Yang–Mills equations on high dimensional Minkowski space, Mem. Am. Math. Soc., Volume 223 (2013) no. 1047 | Zbl

[13] Krieger, Joachim; Sterbenz, Jacob; Tataru, Daniel Global well-posedness for the Maxwell–Klein–Gordon equation in 4+1 dimensions: small energy, Duke Math. J., Volume 164 (2015) no. 6, pp. 973-1040 | Zbl

[14] Krieger, Joachim; Tataru, Daniel Global well-posedness for the Yang–Mills equation in 4+1 dimensions. Small energy, Ann. Math., Volume 185 (2017) no. 3, pp. 831-893 | Zbl

[15] Oh, Sung-Jin Finite energy global well-posedness of the Yang–Mills equations on 1+3 : an approach using the Yang–Mills heat flow, Duke Math. J., Volume 164 (2015) no. 9, pp. 1669-1732 | Zbl

[16] Oh, Sung-Jin; Tataru, Daniel Global well-posedness and scattering of the (4+1)-dimensional Maxwell–Klein–Gordon equation, Invent. Math., Volume 205 (2016) no. 3, pp. 781-877

[17] Oh, Sung-Jin; Tataru, Daniel Local well-posedness of the (4+1)-dimensional Maxwell–Klein–Gordon equation at energy regularity, Ann. PDE, Volume 2 (2016) no. 1, 2, 70 pages | Zbl

[18] Oh, Sung-Jin; Tataru, Daniel The hyperbolic Yang–Mills equation for connections in an arbitrary topological class (2017) (https://arxiv.org/abs/1709.08604)

[19] Oh, Sung-Jin; Tataru, Daniel The hyperbolic Yang–Mills equation in the caloric gauge. Local well-posedness and control of energy dispersed solutions (2017) (https://arxiv.org/abs/1709.09332)

[20] Oh, Sung-Jin; Tataru, Daniel The threshold conjecture for the energy critical hyperbolic Yang–Mills equation (2017) (https://arxiv.org/abs/1709.08606)

[21] Oh, Sung-Jin; Tataru, Daniel The Yang–Mills heat flow and the caloric gauge (2017) (https://arxiv.org/abs/1709.08599)

[22] Oh, Sung-Jin; Tataru, Daniel Energy dispersed solutions for the (4+1)-dimensional Maxwell–Klein–Gordon equation, Am. J. Math., Volume 140 (2018) no. 1, pp. 1-82 | Zbl

[23] Raphaël, Pierre; Rodnianski, Igor Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems, Publ. Math., Inst. Hautes Étud. Sci.

[24] Rodnianski, Igor; Sterbenz, Jacob On the formation of singularities in the critical O(3) σ-model, Ann. Math., Volume 172 (2010) no. 1, pp. 187-242

[25] Rodnianski, Igor; Tao, Terence Global regularity for the Maxwell–Klein–Gordon equation with small critical Sobolev norm in high dimensions, Commun. Math. Phys., Volume 251 (2004) no. 2, pp. 377-426

[26] Sterbenz, Jacob; Tataru, Daniel Energy dispersed large data wave maps in 2+1 dimensions, Commun. Math. Phys., Volume 298 (2010) no. 1, pp. 139-230

[27] Sterbenz, Jacob; Tataru, Daniel Regularity of wave-maps in dimension 2+1, Commun. Math. Phys., Volume 298 (2010) no. 1, pp. 231-264

[28] Tao, Terence Global regularity of wave maps. II. Small energy in two dimensions, Commun. Math. Phys., Volume 224 (2001) no. 2, pp. 443-544

[29] Tao, Terence Geometric renormalization of large energy wave maps, Journ. Équ. Dériv. Partielles, Volume 2004 (2004), XI, 32 pages | DOI | Zbl

[30] Tao, Terence Global regularity of wave maps VII. Control of delocalised or dispersed solutions (2009) (https://arxiv.org/abs/0908.0776)

[31] Tataru, Daniel On global existence and scattering for the wave maps equation, Am. J. Math., Volume 123 (2001) no. 1, pp. 37-77

[32] Tataru, Daniel Rough solutions for the wave maps equation, Am. J. Math., Volume 127 (2005) no. 2, pp. 293-377

Cité par Sources :