Asymptotic behavior of regularized scattering phases for long range perturbations
Journées équations aux dérivées partielles (2002), article no. 2, 12 p.

We define scattering phases for Schrödinger operators on d as limit of arguments of relative determinants. These phases can be defined for long range perturbations of the laplacian; therefore they can replace the spectral shift function (SSF) of Birman-Krein’s theory which can just be defined for some special short range perturbations (we shall recall this theory for non specialists). We prove the existence of asymptotic expansions for these phases, which generalize results on the SSF.

@article{JEDP_2002____A2_0,
     author = {Bouclet, Jean-Marc},
     title = {Asymptotic behavior of regularized scattering phases for long range perturbations},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Universit\'e de Nantes},
     year = {2002},
     doi = {10.5802/jedp.600},
     mrnumber = {1968198},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_2002____A2_0}
}
Bouclet, Jean-Marc. Asymptotic behavior of regularized scattering phases for long range perturbations. Journées équations aux dérivées partielles (2002), article  no. 2, 12 p. doi : 10.5802/jedp.600. http://www.numdam.org/item/JEDP_2002____A2_0/

[1] M. Sh. Birman, M. G. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144, 475-478 (1962). | MR 139007 | Zbl 0196.45004

[2] M. Sh. Birman, D. R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4, 833-870 (1993). | MR 1202723 | Zbl 0791.47013

[3] D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, B. Simon, Witten index, axial anomaly and Krein's spectral function in supersymmetric quantum mechanics, J. Math. Phys. 28, 1512-1525 (1987). | MR 894842 | Zbl 0643.47005

[4] N. Borisov, W. Müller, R. Schrader, Relative index, axial anomaly and Krein's spectral shift function in supersymmetric scattering theory, Commun. Math. Phys. 114, 475-513 (1988). | MR 929141 | Zbl 0663.58032

[5] J.M. Bouclet, Distributions spectrales pour des opérateurs perturbés, PhD thesis, Nantes University (2000).

[6], Traces formulae for relatively Hilbert-Schmidt perturbations, Asymptotic Analysis, to appear. | MR 1993651 | Zbl 1062.47021

[7], Spectral distributions for long range perturbations, preprint of Sussex University, (2002).

[8] V. Bruneau, Propriétés asymptotiques du spectre continu d'opérateurs de Dirac, PhD Thesis, University of Nantes, (1995).

[9] V. Bruneau, V. Petkov, Semiclassical estimates for trapping perturbations, Commun. Math. Phys. 213, No. 2, 413-432 (2000). | MR 1785462 | Zbl 1028.81020

[10] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, American Journal of Math, to appear. | MR 1914456 | Zbl 1013.35019

[11] V. S. Buslaev, Trace formulas and some asymptotic estimates of the resolvent kernel for the Schrödinger equation in three dimensional space, Problemy Mat. Fiz. 1, 82-101 (1966). | Zbl 0203.13403

[12] V. S. Buslaev, L. D. Faddeev, Formulas for traces for a singular SturmLiouville differential operator, Sov. Math. Dokl. 1, 451-454 (1960). II-11 | MR 120417 | Zbl 0129.06501

[13] Y. Colin-De-Verdière, Une formule de trace pour l'opérateur de Schrödinger dans R 3, Ann. Sci. E.N.S., IV sér. 14, 27-39 (1981). | Numdam | MR 618729 | Zbl 0482.35068

[14] C. Gérard, A. Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. I.H.P., Phys. Théor. 51, No.1, 81-110, (1989). | Numdam | MR 1029851 | Zbl 0711.35097

[15] L. Guillopé, Une formule de trace pour l'opérateur de Schrödinger dans R n, thèse de doctorat, Université de Grenoble (1981).

[16] M. Hitrik, I. Polterovich, Regularized traces and Taylor expansions for the heat semigroup, preprint, (2001). | MR 1994690

[17] H. Isozaki, H. Kitada, Modified wave operators with time independant modifiers, J. Fac. Sci., Univ. Tokyo, Sect. I A 32, 77-104 (1985). | MR 783182 | Zbl 0582.35036

[18] L.S. Koplienko, Trace formula for non trace-class perturbations, Sib. Math. J. 25, 735-743 (1984). | MR 762239 | Zbl 0574.47021

[19], Regularized spectral shift function for one dimensional Schrödinger operator with slowly decreasing potential, Sib. Math. J. 26, 365-369 (1985). | MR 792056 | Zbl 0623.47060

[20] M. G. Krein, Perturbation determinants and a formula for the trace of unitary and selfadjoint operators, Soviet Math. Dokl. 3, 707-710 (1962). | MR 139006 | Zbl 0191.15201

[21] A. Melin, Trace distributions associated to the Schrödinger operator, J. Anal. Math. 59, 133-160 (1992). | MR 1226956 | Zbl 0807.35169

[22] W. Müller, Relative zeta functions, relative determinants and scattering theory, Commun. Math. Phys. 192 (2), 309-347 (1998). | MR 1617554 | Zbl 0947.58025

[23] D. Robert, On long range scattering for perturbations of Laplace operators, J. Anal. Math. 59, 189-203 (1992). | MR 1226959 | Zbl 0813.35072

[24], Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du Laplacien, Ann. Sci. École Norm. Sup., 4ème série, No. 25, 107-134 (1992). | Numdam | MR 1169349 | Zbl 0801.35100

[25], Relative time delay for perturbations of elliptic operators and semiclassical asymptotics, J. Funct. Anal. 126, No.1, 36-82 (1994). | MR 1305063 | Zbl 0813.35073

[26] D. Yafaev, Mathematical scattering theory. General theory, vol. 105, A.M.S. Rhode Island (1992) | MR 1180965 | Zbl 0761.47001