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Hyperbolicity of two by two systems
with two independent variables

T. Nishitani

Abstract

We study the simplest system of partial differential equations: that is,
two equations of first order partial differential equation with two independent
variables with real analytic coefficients. We describe a necessary and sufficient
condition for the Cauchy problem to the system to be C infinity well posed.
The condition will be expressed by inclusion relations of the Newton polygons
of some scalar functions attached to the system. In particular, we can give a
characterization of the strongly hyperbolic systems which includes a fortiori
symmetrizable systems.

1. Results.

Let us consider
Lu = 0yu — A(t, z)0u + B(t, z)u

where t,z € R and A(¢,z) is a 2 X 2 matrix valued real analytic real valued function
defined near the origin. We are concerned with the following Cauchy problem

(C.P.) { Lu=f

u(t, z) = uo(x).

We say that the Cauchy problem (C.P.) is C* well posed in a neighborhood of the
origin if there is a neighborhood W of the origin such that for any (£,%) € W and
any given ug(z) € C®(W N {t = {}) and f € C®(W) the problem (C.P.) has a C*®
solution in a neighborhood of (i, %).

After a change of local coordinates around the origin leaving the lines ¢ =const.
invariant, we may assume that

Altz) = (au(t,w) a1a(t, ) )

a21(t, 15) —au(t, (I?)

Let us denote h(t,z) — detA(t,z). It is well known that h(t,z) > 0 is necessary
for the Cauchy problem (C.P.) to be well posed in a neighborhood of the origin
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(Lax-Mizohata Theorem (3], [6]). Thus we assume h(t,z) > 0 in a neighborhood of
the origin throughout the paper.
Let us set

d= i(a12 — a2)/2, a“(alg + a21)/2 +ias;, D' = '9,a" — a'd,c!.

Suppose that h(t,z) does not vanish identically. Then |a*| does not vanish identi-
cally because h = |a*|> — |¢!|? and hA(t,z) > 0 ( see Lemma 3.1 below). From the
Weierstrass preparation theorem h(t,z)|a(t,z)|? is written as

(1.1) h(t,z)|a"(t, z)|* = 2> (t* + du(2)t* " + - + dor () E(2, 2)
where ¢;(0) =0, E(0,0) # 0 and hence factorized as

bt 2)lat(t, @) = o [[(t - t,(2))E(t, @)

i=1

where t;(z) has a Puiseux expansion

ti(e) =) Ch(xa)m, 0<zz<s,

k>0
with some p; € N. We set
Fi(A) = {Rety(z), ..., Rety (z), £z > 0}.

If r = 0 we put Fi(A) = {0}.
Let f(t,z) be real analytic near the origin and ¢4 € Fi(A). We set

fos(t,2) = f(t + ¢+(2),2)

and define the Newton polygon I'(f,,) of fs, at (0,20) as follows. For sufficiently
small |z|, £z > 0 we have

fsu(t, ) Za 1 (£ )i/P4

1,720

with some py € N then set

['(fs,) = convex hull of { U (4,7/p) + R}

We define I'(fs,) = 0 if and only if f vanishes identically.

Theorem 1.1 In order that the Cauchy problem (C.P.) is C*° well posed in a neigh-
borhood of the origin, it is necessary and sufficient that

1
D" +d'tr(AB)ls) C 3T([hla*ls), V€ Fu(A),
= 1
D" +d'tx(AB)y) C 3T([hle'l), V9 € Fu(4)
where B denotes the complex conjugate of B and trA denotes the trace of A.
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From Theorem 1.1 and [8, Theorem 1.1] it follows that the well posedness of the
Cauchy problem (C.P.) is equivalent to the well posedness of the Cauchy problems
for the following second order scalar operators:

0? — h|d*|?0% + (D' + d*tr(AB))0,,
0% — h|a*?9? 4 (D" + d"tr(AB))0,.
Corollary 1.2 Assume that D' = 0 or |c!|> < Ch with some C > 0 near the origin.

Then for the Cauchy problem (C.P.) to be C* well posed in a neighborhood of the
origin, it is necessary and sufficient that

(1.2 P(t[r(AB)s) C 5T(he), V€ Fu(A).
In particular, the Cauchy problem.(C.P.) is C well posed if B = 0.
If D¥ = 0 then both the conditions in Theorem 1.1 are reduced to
(13) C(tla'tx(AB)]e) C 5T(Ala"Ls), V€ Fu(d).
By the definition, it is easy to check that the condition (1.2) is equivalent to (1.3).

We now suppose that |c!|? < Ch with some C > 0 and D" does not vanish identically.
Then it is clear that

(14) D) C 5T(ha), 6 € Fa(A)

Since T'(¢[0:c"]4) = F(tatcgs) C I‘i(cg,) we have

[(t[a'd,c")y) = T(ak)+ I(¢[0ic']y) C T'(ah) + I(ch)
C ST(IetPle) + 50ks) = 3T(Ala"PL0)

A similar argument shows that I'(¢[c*d;a"]4) C T'([h|a%|%]4)/2 and hence
1
(15) [(tD}) € S(AlaPle), Vi€ Fa(A)

Thus both the conditions in Theorem 1.1 are reduced to (1.3) and the rest of the
proof is clear. O

REMARK 1.1: Let us consider a second order scalar equation with two independent
variables:

Pv = 82v — a(t,z)0% + b(t,z)dv = f.

With u! = 9,v, u!! = §,v and u = *(u!, u!!) the equation is reduced to the following

2 X 2 system:
01 0 0 0
Lu—atu—(a 0>8zu+(b O)u—(f)
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It is clear that a* = (1 + a)/2, D' = i8,a/2 and h = a. Since a*(0,0) # 0, the set
F+(A) coincides with that defined in [8] for the scalar operator P. On the other
hand from

[(t[dkals) = T(t0i1a5) C T(ag) C 5T(ay)

the condition (1.4) is verified. Thus the conditions in Theorem 1.1 are reduced to
1
L(t[tr(AB)]s) = L'(ths) C 5T(as), Vo € Fi(A).
This is exactly the same condition obtained in [8, Theorem 1.1].

Corollary 1.3 Assume that h(t,z) vanishes identically. Then in order that the
Cauchy problem (C.P.) is C*® well posed in a neighborhood of the origin, it is nec-
essary and sufficient that

D'+ a'tr(AB) =0, D'+ d*r(AB)=0.

In the case h vanishes identically, a necessary and sufficient condition for the
well posedness of (C.P.) was obtained in [4], [5] and in [10]. See also [2] and the
references given there. We examine that the conditions given in Corollary 1.3 are
equivalent to that obtained in [10]. Since A2 = O one can write

A— [ Kor Ko?
" \-Kp? —Kop

where o and p are relatively prime. It is clear that ¢! = iK(0? + p?)/2 and o =
K(0? — p?)/2 +iKop. 1t is not difficult to check that D¥ = K(pd;oc — cO;p)a’. Let

1 1
o= (i )
Since tr(AB) = K[bio? — bjp? + (b} — b2)op] it follows that
D! + a'tr(AB) = d"K[pd,0 — 00;p + b20? — blp® + (b] — b2)ap).
Thus the conditions given in Corollary 1.3 are equivalent to
pdio — adip + b2a? — bip® + (b} — b2)op =0

which is exactly the Levi condition obtained in [10].

We turn to strong hyperbolicity. We say that L is strongly hyperbolic near
the origin if the Cauchy problem (C.P.) is C*® well posed near the origin for all
B(t,z) € C™.

Theorem 1.4 For L to be strongly hyperbolic near the origin it is necessary and
sufficient that

P(tDE) € ST(Rlat o), T(tlasle) C 5T(he), V6 € Fa(d).
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REMARK 1.2: Let
A= tx 12 — g2
T\t —tz )

Then the second condition of Theorem 1.4 is verified while the first condition is
not. This example shows that in order that L is strongly hyperbolic the strong
hyperbolicity of the second order scalar operators

0?7 — h(t,z)0% + a;;(t, )0,

is necessary but not sufficient.

2. Examples.

In this section we give several examples to explain Theorem 1.1.

EXAMPLE 1: We give an example of A with h(¢,z) > 0 outside ¢t = 0 for which no
B(t,z) could be taken so that (C.P.) is well posed (such an example was given in
[4, Example 5] for the first time when h vanishes identically and was called ”stably
non hyperbolic” operator there). Let

2 _ 44 2 2
A=(:v /2 z? + «t )

—z? 4+ zt? —(2? —11/2)
It is easy to see that
h=18/4, & =i2?, o' = ot + i(2? — t*/2), D" = 2iz3t + 22245,
Suppose that B(t,z) = (b;;(t,)) is given. It is easy to check that a*tr(AB) has the

form
Cyoz? + C312°t% + Cog2®t* + Cie2t® + Cost®

where C;;(t, ) is a linear combination of b;;(t, ). On the other hand we have
hla")? = t3(z* + 3/4) /4 = z*t8/4 4 t*®/16.
Taking ¢ = 0 we easily see that
P(U[D* + atx(AB))) ¢ 5T([Ala"()
for any B because D! + a'tr(AB) has the form
223t + 22213 + Cyoz? + Cs12%t% + Couz®t* + Ciezt® + Cost®

and no B cancels 2:23t.

EXAMPLE 2: Symmetric systems

ar a2
A= y Q12 = A21.
a1 —an
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In this case we have
¢ =0, D'=0, |an|<I|d, |ar|=|ax| <|d'|, b= o’
and hence |tr(AB)|? < Ch for every smooth B. In particular, this shows that (1.2) is

verified for every B and hence Corollary 1.2 is available.

EXAMPLE 3: We give two examples for which (1.2) is a necessary and sufficient
condition for the C*™ well posedness of (C.P.) while the assumption in Corollary
1.2 is not necessarily verified. Let

_ f(t,2) f(t,2) = o(t, 2)
4= (—f(t,x)—g(t,x) —f(t,:l:) )

then it is clear that

h=g*, & =if, d=—g+if, D' =i(¢0.f — fd.g).

We take f, g so that C|f| > |g| and ['(g4) # ['(fs) for some ¢. Since

%p(hd,) =TI'(gs) C T(fs)Tx(c})

the assumption in Corollary 1.2 does not hold. On the other hand the same argu-
ment employed in the proof of Corollary 1.2 shows that (1.5) is verified. Then the
condition (1.2) is necessary and sufficient for C* well posedness of (C.P.).

Let
_(dte)  atz)
A‘(b(m) —d(t,x>)

and assume that A = d*> + ab > &d? in a neighborhood of the origin with some
positive constant § > 0. Note that a*(a + b)/2 + id and

D! = £(adib~ bdia) - %(a@td _ ddya — bdd + dib).
It is easy to see that
a’v?, a*d?, b*d* < Chld*|?
in a neighborhood of the origin with some C' > 0 because
a®+ b+ |ab| + > < Cla*|?, d® + |ab| < Ch

with some C > 0 by the assumption. Then repeating the same argument as in
Corollary 1.2 we conclude that (1.5) holds and hence (1.2) is again necessary and
sufficient for C*° well posedness (a related result can be found in [9]).

EXAMPLE 4: Uniformly diagonalizable 2 x 2 hyperbolic systems with two indepen-
dent variables. Assume that for every (¢,z) near the origin there is a U(t, z) such
that

U(t,z) *A(t, z)U(t, z)
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becomes diagonal matrix and ||U(t, z)||, ||U(¢,z)7!|| < C with some C > 0 which is
independent of (t,z) where ||U||* = tr(U*U). Let us denote AV = U™ AU = (af}).
Note that (see (3.1) below)

h 1 h 1 __ -
(@ = 5+ FIAYIE 2 5 + ZC Al > O

On the other hand since AU is diagonal and tr(AY) = 0 we have |(aV)!|? = h. This
shows that
|a*]? < C*h.

Thus we have |c!|2 < 2|a*|? < C’h and hence (1.5) holds as we have seen in the proof
of Corollary 1.2. On the other hand |a;;|* < 4|a*|? < C"h proves

[(tlaile) € Maile) C 5T(hs), V6 € Fi(A).

Thus the conditions in Theorem 1.1 are satisfied.

EXAMPLE 5: A non symmetrizable strongly hyperbolic system. Let

A=¢m@(gé).

In this case we have
=1 +1t%)/2, & =ip(1 —t?)/2, D' = ipp®t, h=t*p
We note that
L(tfs) = T(¢) + Tx(fy) C T([tf]s)
because I'(t) C ['(t4). Then remarking |ta;;|> < Ch, [tD*|? < Ch|a¥|? we see that
1 1
[(t[aijls) € D[tagle) C 5T(hy), T(tDy) C T([tD's) C 5T((hla'[]y)

and hence the conditions in Theorem 1.4 are verified.

EXAMPLE 6: Some not strongly hyperbolic systems. Let

A=¢m@(gé>.

For this A we have
a' = (1 +1%)/2, & = ip(1 —t1)/2, D' = 2it3y?, h = 'y

Since F(ths) C T'([k]a*]?]4)/2 is clear the condition (1.2) is necessary and sufficient
for the C*° well posedness of (C.P.). Denoting

bi b2
B =
(b21 bzz)
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the condition (1.2) is reduced to I'(t[¥ba1]s) C T'(hg)/2. This is equivalent to
621(0, IZ?) =0.
We now let

B a(z) a(z) + b(z)
A=1(t,z) (_a(g;) + b(z) —a(z) ) .

It is clear that A = ¥?b(z)?, D' = 0 and hence (1.2) is necessary and sufficient for
the C* well posedness by Corollary 1.2. Since

tr(AB) = a(bi1 + bar — b1z — ba2) + b(bar + bi2)y
the condition (1.2) is reduced to
[(t[a(biy + ba1 — biz — ba2)]g) C ['(by), Vo € Fi(A).
Since b is independent of ¢ this is further reduced to

F(a(bu + b21 - b12 - b22)) C F(b)

3. Sketch of the proof of Theorem 1.1.

We now sketch our strategy to prove Theorem 1.1. Let

and study T7'LT which turns out to be d, — A*9, + B where

b(s. 2 (a2 — a2)/2 (a12 + a21)/2 + tan
At 2) (((112 +az1)/2 —iay; —i(a1z — az1)/2 )

_ (a”l(t,x) a‘{ﬁ(t,x) )

ay(t,x) —aj,(t, )
Note that a! = a!,, af = a,, ¢! = a!, and
3.1) agzanzlhﬂ +tr(A'A)/4, h= (a‘il)2 + atizaum - |atil|2 + |a§212.
In particular, the first identity shows that, with AT = T~'A(z)T = (a];(z))

|(a1)"| = laia

for every orthogonal matrix T'. Moreover since h > 0, for any non singular S, there

is C = C(S) > 0 such that
(32) C"1|a§2| < |(ady)'] < CI“M-

It is clear from A(¢,z) > 0 that



Lemma 3.1 We have
2

|at{2| = |aﬁ21| 2 |a’i1|, 4|a§2|2 2 tr(AtA) = Z a?j(x)a Iag2|2 2 h.
i,5=1
In particular, a'5(t,z) = 0 is equivalent to A(t,z) = O.

Let us set
M=08,+A9,+C+~B' - A"

and study L!M where ©B" denotes the cofactor matrix of B* and A = 9,A*. This
turns out

I'M = 8% —hd* + (A'— A'C + tx(AB)I)d,
+(B'+“B'+ C — AL)d, + LNC + “B' — A%).
In fact taking B*A"— At B = BYAt1co(BYAY) = tr(A'B")I = tr(AB)I into account
the identity is easily seen. With C' = (c;;) the coefficient A'— A*C +tr(AB) becomes

(3.3) 8ta§1—a'ilcu —a‘izczl +tr(AB) nata'b—aqlclg—agzcn
atazl-i-auczl—aglcn —ata11+a§1czg— a"zlc12+tr(AB)

We determine c;; by
(3.4) daly, —aliers—alyen =0, Bial, 4+l e —dlie =0
so that (3.3) will be diagonal. Then (3.3) becomes

Y(t, 5”)/“”21 — carh(t, 93)/“”21 0
( 0 Z(t,x)/a‘{2 — clzh(t,w)/agz)

where
Y(t,z) = aglatagl - aglatagl + agltr(AB)7
Z(t,x) = —d',0,d", +d',8.d", + dl tr(AB).
We take ¢12 = 0 and ¢z; = 0 so that (3.4) implies
= atagl/agh €22 = atagz/aﬁr
We summarize:

Lemma 3.2 Let
M =0+ A%, — AL +°B' 1+ C

# [
C = dlag (at(ulzl ) at(;w) .

with

ag; Gy
Then one can write
L'M =0} —hd*+ Q0.+ RO, + S

where

Q — dlag ( );(t,.’l:) , f(tax)
agy(t,z) ajy(t, )
and S = L}(C) + L}(B" — A).

), R=C-A"+B'+ B!



Here we remark that from a!, = a}, and a!, — a!, it follows that

(3.5) Y = D'+ d"tr(AB), Z = D"+ d*tr(AB)

((Zﬂ 0 ) 0= (Dﬂ + altr(AB) 0 )
0 d B 0 D'+ d*r(AB) /-

We also note that L*(C) has the form
LHO) = diag (0. (dhi/ahy) , 0 (Beal/als))

k14 ()
+ (aglax (0taﬂ21/aﬂ21) _aullam (atagz/agz) + BiC.

and hence

We next get

Lemma 3.3 Let 3
M=0,+ A, +A +*°B"+C

é = —dla»g <6t(;§27 at(;gl) .

with

a2 Gy

Then we have

where 7 v
Q = diag (T’T) ,R=C+A +B'+°B' §=M(B".
Ay Gy

Note that h, = AL A" + A*A% and A'BY — B A" = tr(A'B")I = tr(AB)I. Then
to prove the assertion it is enough to repeat similar computations as in the proof of
Lemma 3.2. O

Here we note that

a 0 0= D! + a*r(AB) 0
0 at )% 0 DY + aftr(AB) ) -

To prove the necessity of the condition we construct an asymptotic solution Uy,
depending on a large parameter A, to the Cauchy problem for L&, which results from
L" by a dilation of local coordinates such as (t,z) — (A\7Pt,A\7%) with p, ¢ € Q4.
We look for U, in the form Uy, = M)V, where M is given in Lemma 3.2. That is,
we construct an asymptotic solution V) to L&MAV,\ ~ (0 which violates an a priori
estimate derived from well posed assumption of the Cauchy problem (C.P.) for L.
Here with LM = 8? — h0? + Q0. + RO; + S we have

LAM, = 2?92 — X¥hy82 + X1Qx0, + AR\, + Sh.

o~
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We must be careful when we treat the lower order terms because @), R and S are,
in general, no more smooth at the origin because of our choice of C' (see the form
L¥C) in (3.6) for example). Then singularities of @, R, S at the origin contribute
as a positive power of A, in the resulting functions @, R) and S). A main point in
the proof of the necessity is that, with this choice of C, the existence of a desired
asymptotic solution depends upon the positive power of A in @), that is whether
diag(c;ﬁ,au)Q verifies the condition in Theorem 1.1 or not and independent of the
yielded positive powers of A in Ry and S).

Since the existence of analytic solutions with analytic data is assured by the
Cauchy -Kowalewski theorem, applying the usual limiting arguments, to prove the
sufficiency of the condition, it is enough to derive an a priori estimate of analytic
solution to L*u = f. Since u verifies

MLy = (82 — hO: 4+ (Q — hy)0y + RO, + S)u = M f

we use this equation to get an a priori estimate, where M is given in Lemma re-
foneseven. One of main ideas is that we regard the zeros of h|a*|? as characteristics.
That is, we study not only the zeros of A but also those of a* which tells us precise
behaviors of v/h|a!| near the origin. According to the behavior of v/h|a!| we divide
a neighborhood of the origin into several subregions and we derive a weighted a
priori estimate in each subregion, where the weight is chosen taking the behavior
of v/h|a!| into account. A key observation to get a weighted a priori estimate is
that we can obtain a weighted estimate even when R and S are not smooth. More
precisely if ¢(z) is a zero of v/h|a!| with respect to t and R = O((t — Ret(z))™?),
S = O((t — Ret(z))7?) as t — Ret(z) — 0, then we can obtain a weighted a pri-
ori estimate with weights (¢ — Ret(z))V, N € Z in a subregion mentioned above if
diag(a®, a*)Q verifies the condition in Theorem 1.1.

Combining a priori estimate in each subregion thus obtained, we get a priori
estimate in a full neighborhood of the origin.
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