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Long-time Behavior of
Nonlinear Elastic Waves

Thomas C. Sideris

Department of Mathematics
University of California

Santa Barbara, CA 93106

Introduction. The equations of motion for the displacement of an isotropic,
homogeneous, hyperelastic material form a quasilinear hyperbolic system in three
space dimensions. We shall consider the initial value problem in the whole space
for smooth data of small amplitude e. First we shall describe a simplified proof,
appearing in [10], of John^s almost global existence result [6], that the initial value
problem possesses smooth solutions up to a time of order exp(A/£). Within the class
of hyperelastic materials, we further distinguish a subclass whose nonlinearities fulfill
a null condition leading to global existence of small solutions, [11]. The null condition
turns out to be complementary to the genuine nonlinearity condition of John for which
there is formation of singularities in finite time in the spherically symmetric case, [4].

What makes the elasticity system different from the case of the scalar wave equa-
tion, for which such a scenario is known [I], [7], [8], [9], is the presence of two speeds
of propagation in the linear equation which results in absence of Lorentz invariance.
The proof of the existence results combines generalized energy estimates and decay
estimates as in the scalar case. However, here only the nonrelativistic invariance
of the equation under translation, rotation, and change of scale is available. Thus,
new decay estimates are obtained in order to compensate. First, we show how the
generalized energy gives decay of the local Z^-norm, and then use this to control
the L^-noim. This can be done without appealing to the explicit formula for the
fundamental solution.

We begin with a brief description of the PDE's. We then give a more complete
statement of the results. Finally, in order to simplify the exposition, the main ideas
will be illustrated in the scalar case.

The equations of motion. Assume that R3 is filled by an elastic material. The
basic unknown of the problem y(f,a") is a smooth deformation y^,') : R3 —^ R3

giving the position at time t > 0 of a particle which is at position x in the reference
configuration. For hyperelastic materials, there is a potential energy density given by
a function <r, called the stored energy function, of the deformation gradient Vy = F.
It is required that F > 0. Isotropy and homogeneity, in turn, imply that the stored
energy function depends on F only through the principal invariants ^1,^2^3 of the
Cauchy-Green strain matrix B = FF71. (That is, Zk is the elementary symmetric
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function of degree k in the eigenvalues of B.) The PDE's are derived by applying
Hamilton^ principle to

j j [I l^l2 ~ a^ ̂  ̂ )] dxdt.

For more information see [2] or [3].
We will only consider small displacements from the reference configuration. There-

fore, it is convenient to use the variables u(t^x} = ^{t^x) — x^ G = F — J, and
C = B - I = G + G T + GGT instead of y, F , and B. We write ji,j2,j3 for the
invariants of C which can be expressed as linear functions of zi.^^s. The resulting
Euler-Lagrange equations have the form

92^_^_9__9^__
9t2 ^9^9Gi,~ ' z-1^3 '

In three space dimensions, the global existence of small amplitude solutions to
nonlinear hyperbolic systems hinges on the specific form of the quadratic portion of
the nonlinearity in relation to the linear part. Therefore, we will only compute the
PDE^s to second order in u. (The higher order terms could be included here, but
since we are only considering small displacements they do not affect the existence
results.) Expanding the stored energy function and keeping only the terms of order
^ 3 in (5, we have

a = ^0 + ̂ ijl + ̂ lljl + <^2j2 + 1^111^ + ̂ 12jl]2 + ̂ 3j3 + • . .

the constants o-o? o'ii etc., standing for the partial derivatives of a at jk = 0. The
values of these parameters reflect the properties of the material under consideration.

We impose the conditions O-Q = o-i = 0 which means that the reference configuration
is a stress-free state. ^From the linear theory, the Lame constants A = 4((7n +02) and
^ = —2o-2 are assumed to be positive. This makes the equations hyperbolic. Setting
A + 2/^ == c^ and fi = cj, the linear portion of the equation is given by

(1) Lu = Q]u - c^Au - {c\ - c^)V(V • u).

The constants ci and 03 correspond to the speeds of spherical and rotational waves,
respectively. For example, if u{t,x) = V<^,;r), then Lu = (<9^ - <^A)u, while if
u(t, x) = V A A(t, x), then Lu = (9^ - c|A)u.

The quadratic nonlinear terms have the form 7V(u, u) with

(2) N(u^v)'1 = D^^9^(9^nU:)9nVk)^ (summation convention)

for certain constants 2%^, which depend on the parameters (TH, 0-2, o-m, <7i2,0-3. The
coefficients D^^ have important symmetries which are used in the energy estimates.
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Here are the rather unpleasant explicit formulas:

-D^ = 4(<rni+ San +^)[i^J

+2(<7n - <7i2 + <72 - <T3)[2(2C^J + 3^]

-2(^+<T3)[2(4C'^J+5C'^]

-^-a^C^+rC^+sC^}
^ r ^u^ i

~crWu^mnh

with the pCy^ expressed in terms of Kronecker ^s,

l̂ n = W^ 5^ = 8^

2^ == ̂ '̂  + ̂ A) 6C^ = i(<^<<^ + ̂ <%W

3^ = ̂ fc^ 7^1 = i(^<^ + ̂ fc^^^
4^ = K^^^ + ̂ ^^) 8^ = J(<^<^ + ̂ ^fc^)

9^=J(^W+^^^)

The (truncated) equations of motion are then

Lu = N{u^u).

The interested reader will find more details [11].
The null condition is satisfied when

D^ r^r^r7' — 0-u^mnx x x — u-

This turns out to be true provided we take

^11 = al2 ^d 3ai2 + 2(7in = 0,

leaving only (73 free. Nevertheless, within the class of isotropic, hyperelastic materials,
the null condition can be fulfilled.

T
In the spherically symmetric case, u(t^ x) = —'0(^ r) ('0 a scalar), the null condition

r
reduces to 3o"i2 + 2crni = 0 which is the opposite of John's genuine nonlinearity
condition.

Long-time behavior of solutions. We now state the results on almost global
and global existence of small amplitude solutions. For simplicity we take smooth
initial in the Schwartz class to avoid detailed statements about regularity and decay
at infinity. For completeness, we include a statement of John's blow-up theorem
where it is essential that the data have compact support.

Theorem.^) Almost Global Existence (John [6], Klainerman-Sideris [10]).' Let
f^g G <?(7?3). There exist A > 0, Co > 0 such that for all 0 < e < Co the initial value
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problem

Lu = N{u,u)

^(0)=6/, 9tu{0)=eg
with the notation ( 1 ) , (2 ) , has a unique classical solution defined on [0,7^) x R3 for
Te > exp(A/£).

(u) Global Existence (Szderis [11];; Let f,g = /\h G S{R3). Suppose that the null
condition is satisfied:

1̂1 = cri2 and 3o-i2 + 2am = 0.

There exists an eo > 0 such that for all 0 < e < Co the initial value problem

Lu = N{u,u)

^(0)=6/, 9tu(0) =eg
has a unique global classical solution.

(zii) Formation of Singularities (John [5]): Let f,g e C^°(R3) be spherically sym-
metric. Suppose that the genuine nonlinearity condition holds:

3o-i2 + 2(7in > 0.

Then there exists a constant A' > A > 0 such that the lifespan T, of the solution in
(i) is bounded above: Te < exp(A//e).

Remarks on the existence proofs. To illustrate the ideas behind the proof, it
is enough to look at a simple scalar model:

(3) D u = 9^u ~^u= Qi^uQ^u) = N(u, u).
The generators of translations, rotations, and changes of scale are given by

f <9= ( < 9 o , . . . , % ) = 09,, V)
r: ^ n=(ni,n2,n3)=^AV

[ S=t9t+x^=t9i+r9r.

The 9 and H commute with D, while [S, D] = D. With the notation V = jT^ • • • r^
for a generic derivative of order |a| = k, we find for solutions of (3)

(4) D^au=Na(u,u),

in which A^,^) represents a sum of terms of the form Q^Q^uQnVu}, with \b\ +
|c| < |a|.

Solutions are constructed by controlling the generalized energy norm based on the
I\. First, define the usual energy

E,(u(t)} = J fm^x^+^u^xWx
J JX°
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and then the higher order generalized energy

Ek{u(t))= ^ ^(F^)).
|a|<A;-l

To estimate £^., we proceed as usual: multiply (4) by Q^u^ integrate over R3^ and
sum on |a| < k to get

—Ek{u{t}}= ̂  / N^u^Wudx.
Oil.' i i - , J fi\ci\<^k

The terms on the right with derivatives of order k + 1 are handled using integration
by parts, pulling a time derivative outside the integral, and then absorbing them on
the left, as is possible for small solutions. Applying Cauchy-Schwartz, the outcome
is an inequality of the form

/ \

|̂ W) < c ^ liwr^vru]!^ £^(<))1/2.
|b|+|c|<fe
\b\+2<k
\ |c|+l<fc

In a moment we will describe decay estimates which yield the bound

C
•Ek(u(t))

1+t
,1/2for the terms H^Vr^VI^uH^. Once this is proven however, it follows that E\

remains of order e up to a time of order exp(A/6).
Now we briefly discuss the two decay estimates we use. Let a{z) == (1 + ^2)1/2.

Then for small solutions of (3), we have for k >_ 6

^ivr^.^i < CEk{u(t}Y'\ | a | + 3 < f c
a^a^-r^QT^t.x^ ^ CEk{u(t)Y/2, | a | + 4 ^ f c

la^-r^Vr^^.r)!!^^) < C7£,(u(<))1/2, |a|+2^.

(5)
(6)
(7)

The generalized energy of order k controls a weighted L°°-norm of order k — 2 in
(5), (6) and a weighted I^-norm of order k in (7). The weight a(t — r) gives decay
away from the light cone t = r, and the factor a(r) gives decay away from the origin,
r > t /2 . Taken together, they give t~1 decay in the whole space.

The first of these (5) follows from an inequality of Sobolev type which gives

K^vr^,^)! <c ^ livr^,^)^, \a\+3<k.
|a|+KA;

Note that the right-hand side is bounded by E^. This also holds with the degenerate
factor a[t — r) inserted on both sides. Thus, (6) can obtained from (7).
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The local L2 decay (7) is derived in several steps. One begins by showing pointwise
bounds

(8) a(t-r)[\/\u(t,x)\+\9tVu{t,x)\]<C ^ ̂ u^x)} + t\ D u(t,x)
Ja|<l

This hold for arbitrary C2 functions, and it is based on the algebraic properties of the
operators F, A, and D. In fact, the argument is quite simple. A direct computation
show that

(t2 - r2)^ == t9tSu - r9rSu - t9tU + r9rU - r^Au - 9^u) - t2 D u,

2 1
and now observe that Au-9^u = -9r+—fl2u. This can also be applied to derivatives

r r "
of u. (More work is needed in order to bound first derivatives.)

Next, by squaring and integrating (8) one gains control of \\a{t - r)9^Tau(t, x}\\^
in terms of E^2^)) and t\\ D F^H^, using the argument of Garding's inequality.
Only now do we use the equation. The nonlinear terms are interpolated between L°°
and L2, similar to what we do in the next paragraph to complete the derivation of
energy inequality.

We now return to the energy inequality. Recall that we needed a bound for the
terms

[l^vr^vr^n^.
Introduce the weight a(r}a(t - r) and use the inequality 1 ̂  a(r}a{t - r)/(l +1) to
get the upper bound

(1 + ^)-l||a(r)a(^ - ̂ Wr^VF^H^.

^From here, the strategy is to interpolate between L°° and L2, taking a(r) times the
smaller derivative in L°°. The factor a(t - r) goes with the term with two derivatives.
Then apply the estimates (5), (6), (7).

We conclude with a few words about the null condition and global existence. Non-
linearities which satisfy the null condition have additional decay along the light cone.
This comes from the decomposition

V^^ -^AH,
r r2

in terms of radial and angular derivatives. Thus, if we replace the derivatives in
^/mn^QrnU3 9nVk} by this decomposition, the leading term with only radial deriva-
tives vanishes precisely when D^^x^xmxn = 0. This gives an enhanced decay rate
of t~2 along the cone. On the other hand, we get the the same enhancement from
the degenerate factor a(t - r) which can be introduced into both the L00- and the
^-norms. The price of this is that we need (5), (6) for VFu, now. This requires us
to introduce the smoothing operator \D\~1. This works out in the end thanks to the
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fact that the equation is in divergence form, however it forces us to use a nonlocal
version of the energy, which explains the strange assumption about the initial data g .
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