Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

DANIEL W. Stroock
An estimate on the hessian of the heat kernel
Journées Équations aux dérivées partielles (1995), p. 1-4
<http://www.numdam.org/item?id=JEDP_1995
\qquad A21_0>

© Journées Équations aux dérivées partielles, 1995, tous droits réservés.
L'accès aux archives de la revue «Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

AN ESTIMATE ON THE HESSIAN OF THE HEAT KERNEL

Daniel W. Stroock

Abstract

Let M be a compact, connected Riemannian manifold, and let $p_{t}(x, y)$ denote the fundamental solution to Cauchy initial value problem for the heat equation $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u$, where Δ is the Levi-Civita Laplacian. The purpose of this note is to describe the behavior of the Hessian of $\log p_{T}(\cdot, y)$ for small $T>0$.

Emphasis is given to the difference between what happens outside, where the behavior is like $\frac{1}{T}$, as opposed to at the cut locus, where it is like $\frac{1}{T^{2}}$.

§0: Introduction

Let M be a compact, connected, d-dimensional Riemannian manifold, denote by $\mathcal{O}(M)$ with fiber map $\pi: \mathcal{O}(M) \longrightarrow M$ the associated bundle of orthonormal frames \mathfrak{e}, and use the Levi-Civita connection to determine the horizontal subspace $H_{\mathfrak{e}}(\mathcal{O}(M))$ at each $\mathfrak{f} \in \mathcal{O}(M)$. Next, given $\mathbf{v} \in \mathbb{R}^{d}$, let $\mathfrak{E}(\mathbf{v})$ be the basic vector field on $\mathcal{O}(M)$ determined by properties that

$$
\mathfrak{E}(\mathbf{v})_{\mathfrak{e}} \in H_{\mathfrak{e}}(\mathcal{O}(M)) \quad \text { and } \quad d \pi \mathfrak{E}(\mathbf{v})_{\mathfrak{e}}=\mathfrak{e} \mathbf{v} \quad \text { for all } \mathfrak{e} \in \mathcal{O}(M) .
$$

(Here, and whenever convenient, we think of \mathfrak{e} as a isometry from \mathbb{R}^{d} onto $T_{\pi(\mathfrak{e})}(M)$.) In particular, if $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right\}$ is the standard orthonormal basis in \mathbb{R}^{d}, then we set $\mathfrak{E}_{k}(\mathfrak{e})=\mathfrak{E}\left(\mathbf{e}_{k}\right)_{\mathfrak{e}}$. If, for $\mathcal{O} \in \mathcal{O}(d)$ (the orthogonal group on $\left.\mathbb{R}^{d}\right) R_{\mathcal{O}}: \mathcal{O}(M) \longrightarrow$ $\mathcal{O}(M)$ is defined so that

$$
R_{\mathcal{O}} \mathfrak{e} \mathbf{v}=\mathfrak{e} \mathcal{O} \mathbf{v}, \quad \mathfrak{e} \in \mathcal{O}(M) \text { and } \mathbf{v} \in \mathbb{R}^{d}
$$

then it easy to check that

$$
\begin{equation*}
d R_{\mathcal{O}} \mathfrak{E}(\mathbf{v})_{\mathfrak{e}}=\mathfrak{E}\left(\mathcal{O}^{\top} \mathbf{v}\right)_{R_{\mathcal{O}} \mathfrak{e}}, \quad \mathfrak{e} \in \mathcal{O}(M) \text { and } \mathbf{v} \in \mathbb{R}^{d} . \tag{0.1}
\end{equation*}
$$

Given a smooth function F on $\mathcal{O}(M)$, we define $\nabla F: \mathcal{O}(M) \longrightarrow \mathbb{R}^{d}$, Hess (F) : $\mathcal{O}(M) \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, and $\Delta F: \mathcal{O}(M) \longrightarrow \mathbb{R}$ by

$$
\begin{gather*}
\nabla F=\sum_{1}^{d} \mathfrak{E}_{k} F \mathbf{e}_{k}, \quad \operatorname{Hess}(F)=\left(\left(\mathfrak{E}_{k} \circ \mathfrak{E}_{\ell} F\right)\right)_{1 \leq k, \ell \leq d} \tag{0.2}\\
\text { and } \quad \Delta F=\sum_{1}^{d} \mathfrak{E}_{k}^{2} F .
\end{gather*}
$$

[^0]In particular, when f is a smooth function on M, we set

$$
\nabla f \equiv \nabla(f \circ \pi), \quad \operatorname{Hess}(f) \equiv \operatorname{Hess}(f \circ \pi), \quad \text { and } \quad \Delta f \equiv \Delta(f \circ \pi)
$$

Starting from (0.1), it is an easy matter to check that

$$
\begin{gathered}
(\nabla f) \circ R_{\mathcal{O}}=\mathcal{O}^{\top} \nabla f, \quad(\operatorname{Hess}(f)) \circ R_{\mathcal{O}}=\mathcal{O}^{\top} \operatorname{Hess}(f) \mathcal{O} \\
\text { and } \quad(\Delta f) \circ R_{\mathcal{O}}=\Delta f .
\end{gathered}
$$

Hence, $|\nabla f|,\|\operatorname{Hess}(f)\|_{\text {H.S. }}$ (the Hilbert-Schmidt norm), and Δf are all welldefined on M. In fact, Δf is precisely the action of the Levi-Civita Laplacian on f.

Now consider Cauchy initial value for the heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u, \quad t \in(0, \infty) \quad \text { with } \quad \lim _{t>0} u(t, x)=f(x), \quad x \in M
$$

By standard elliptic regularity theory, one knows that there is a unique, smooth function $(t, x, y) \in(0, \infty) \times M \times M \longmapsto p_{t}(x, y) \in(0, \infty)$ such that

$$
u(t, x)=\int_{M} f(y) p_{t}(x, y) \lambda_{M}(d y), \quad(t, x) \in(0, \infty) \times M \text { and } f \in C(M ; \mathbb{R})
$$

where λ_{M} denotes the normalized Riemann measure on M. Moreover, because Δ is essentially self-adjoint in $L^{2}\left(\lambda_{M}\right), p_{t}(x, y)=p_{t}(y, x)$.

§1: The Results

We begin by considering the logarithmic gradient $\nabla \log p_{T}(\cdot, y)$, for which our initial result depends only on the dimension d and the lower bound

$$
\begin{equation*}
\alpha \equiv \min _{\mathfrak{e} \in \mathcal{O}(M)} \min _{\mathbf{v} \in S^{d-1}}(\mathbf{v}, \operatorname{Ric}(\mathfrak{e}) \mathbf{v})_{\mathbb{R}^{d}} \tag{1.1}
\end{equation*}
$$

for the Ricci curvature. One (cf. [SZ]) can then show that there is a
$C(d, \alpha)<i \infty$ such that, for each $\epsilon \in(0,1)$,

$$
\begin{equation*}
\left|\nabla \log p_{T}(\cdot, y)\right|(x) \leq \frac{\left((1+\epsilon) e^{\alpha T}\right)^{\frac{1}{2}} \rho(x, y)}{T}+\frac{C(d, \alpha)}{(\epsilon T)^{\frac{1}{2}}}, \quad(T, x, y) \in(0,1] \times M^{2} \tag{1.2}
\end{equation*}
$$

where we have introduced $\rho(x, y)$ to denote the Riemannian distance between x and y.

Notice that the preceding result does not feel the cut locus. To get a result which does, we look at what happens asymptoticly as $T \searrow 0$. What one finds (cf. the first part of Theorem 3.12 in $[\mathrm{KS}]$) is that

$$
\begin{align*}
& y \text { ouside the cut locus of } x \equiv \pi(\mathfrak{e}) \Longrightarrow \\
& \qquad \lim _{T \searrow 0} T\left[\nabla \log P_{T}(\cdot, y)\right](\geq)=\mathbf{v}(\mathfrak{e}, y) \tag{1.3}
\end{align*}
$$

where $\mathbf{v}(\mathfrak{e}, y)$ is the element of \mathbb{R}^{d} which is determined by the requirement that the path $\mathfrak{f} \in C^{1}([0,1] ; \mathcal{O}(M))$ satisfying

$$
\begin{equation*}
\mathfrak{f}(0)=\mathfrak{e} \text { and } \dot{\mathfrak{f}}(t)=\mathfrak{E}(\mathbf{v}(\mathfrak{e}, y))_{\mathfrak{e}(t)} \tag{1.4}
\end{equation*}
$$

is the horizontal lift to \mathfrak{e} of the (unique) minimal geodesic going from x to y. When y is at the cut locus of x, one should not expect (1.3) to hold. In fact, take $S(x, y)$ in $T_{x}(M)$ to be the set of initial directions in which minimal geodesics from x to y can proceed. When $S(x, y)$ forms a non-trivial differentiable submanifold, then one can use the second part of Theorem 3.12 in [KS] to see that the limit on the left side of (1.3) exists and is a non-trivial convex combination of elements of $\mathfrak{e}^{-1}(S(x, y))$. In particular, since all elements of have the same length, this limit has length strictly less than $\rho(x, y)$ in this case. For example, when M is the circle centered at the origin in \mathbb{R}^{2} with unit circumference,

$$
\begin{equation*}
p_{T}\left(\theta, \frac{1}{2}\right)=(2 \pi T)^{-\frac{1}{2}} \sum_{m \in \mathbb{Z}} \exp \left(-\frac{\left(\theta-\frac{1}{2}-m\right)^{2}}{2 T}\right) \tag{1.5}
\end{equation*}
$$

and so it is clear that

$$
\lim _{T \searrow 0} T\left[\nabla \log p_{T}\left(\cdot, \frac{1}{2}\right)\right](0)=0
$$

The analysis of the Hessian of $\log p_{T}(\cdot, y)$ is more challenging. What it leads to is a general estimate (cf. [S]) of the form

$$
\begin{align*}
-\frac{C}{T} \leq\left[\operatorname{Hess} \log p_{T}(\cdot, y)\right](\mathfrak{e}) \leq & C\left(\frac{1}{T}+\frac{\rho(x, y)^{2}}{T^{2}}\right) \tag{1.6}\\
& \text { for } \mathfrak{e} \in \pi^{-1}(x) \text { and }(T, x, y) \in(0,1] \times M^{2} .
\end{align*}
$$

Unlike the constant in (1.2), the C in (1.6) depends on more than the lower bound α in (1.2). In fact, asymptotic analysis based on [KS] gives

$$
y \text { outside the cut locus of } \Longrightarrow
$$

$$
\lim _{T \searrow 0} T\left[\operatorname{Hess} \log p_{T}(\cdot, y)\right](\mathfrak{e})=-\mathbf{I}+\int_{0}^{1}(1-t)^{2} \operatorname{Sec}(\mathfrak{f}(t), \mathbf{v}(\mathfrak{e}, y)) d t
$$

where $\mathbf{v}(\mathfrak{e}, y) \in \mathbb{R}^{d}$ and $\mathfrak{f} \in C^{1}([0,1] ; \mathcal{O}(M))$ are defined as above (cf. (1.4)) and Sec: $\mathcal{O}(M) \times \mathbb{R}^{d} \longmapsto \mathbb{R}^{d} \otimes \mathbb{R}^{d}$ is the (unnormalized) sectional curvature given by

$$
(\xi, \operatorname{Sec}(\mathfrak{g}, \mathbf{v}) \eta)_{\mathbb{R}^{d}}=\left(\operatorname{Riem}_{\mathfrak{g}}(\xi, \mathbf{v}) \eta, \mathbf{v}\right)_{\mathbb{R}^{d}}
$$

On the other hand, when y is at the cut locus of x and the set $S(x, y)$
has the sort of structure described in the preceding paragraph, then one can show that

$$
\lim _{T \searrow 0} T^{2}\left[\operatorname{Hess} \log p_{T}(\cdot, y)\right](\mathfrak{e}) \text { exists and is strictly positive definite. }
$$

For example, in the case of the circle considered above,

$$
\lim _{T \searrow 0} T^{2}\left[\operatorname{Hess} \log p_{T}\left(\cdot, \frac{1}{2}\right)\right](0)=\frac{1}{4}
$$

The proofs of these results are based on probabilistic representations of $p_{T}(\cdot, y)$ and its derivatives in terms of the Brownian motion on M (cf. (2.2) and (2.12) in [S]).

Remark: Because, by an old result of Varadhan's, one knows that

$$
\lim _{T \searrow 0} T \log p_{T}(x, y)=\frac{\rho(x, y)^{2}}{2} \text { for all } x, y \in M
$$

the expression on the right hand side of (1.7) must equal the Hessian of $\frac{1}{2} \rho(\cdot, y)^{2}$. However, to date, the author has found no corroboration in differential geometry texts.

References

[KS] Kusuoka, S. \& Stroock, D., Asymptotics of certain Wiener functionals with degenerate extrema, Comm. Pure \& Appl. Math. XLVII, 477-501.
[S] Stroock, D., An estimate on the Hessian of the hear kernel (to appear).
M.I.T., 2-272, 77 Mass. Ave., Cambridge, MA 02139, USA

E-mail address: dws@math.mit.edu
XXI. 4

[^0]: Support was provided, in part, by NSF grant 9302709-DMS

