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AN ESTIMATE ON THE HESSIAN
OF THE HEAT KERNEL

DANIEL W. STROOCK

ABSTRACT. Let M be a compact, connected Riemannian manifold, and let p¢(z,y)
denote the fundamental solution to Cauchy initial value problem for the heat equation
8“ = —Au, where A is the Levi-Civita Laplacian. The purpose of this note is to
descnbe the behavior of the Hessian of log pr( - ,y) for small T > 0.

Emphasis is given to the difference between what happens outside, where the

behavior is like %, as opposed to at the cut locus, where it is like #

§0: INTRODUCTION

Let M be a compact, connected, d-dimensional Riemannian manifold, denote by
O(M) with fiber map 7 : O(M) — M the associated bundle of orthonormal
frames ¢, and use the Levi—Civita connection to determine the horizontal subspace
H.(O(M)) at each f € O(M). Next, given v € RY, let €(v) be the basic vector
field on O(M) determined by properties that

¢(v). € H(O(M)) and dr¢(v).=ev forallee O(M).

(Here, and whenever convenient, we think of e as a isometry from R¢ onto Tr(ey(M).)

In particular, if {e;,...,es} is the standard orthonormal basis in R%, then we set
€r(e) = E(ex).. If, for O € O(d) (the orthogonal group on R%) Ry : O(M) —
O(M) is defined so that

Roev=¢0v, ¢€O(M)andveR?
then it easy to check that
(0.1) dRo€(v), = G(OTV)RM, e € O(M) and v € R

Given a smooth function F on O(M), we define VF : O(M) — R<, Hess (F) :

O(M) — RI@R? and AF : O(M) — R by

d

VF=) &Fey Hess(F)=((€o&F))  ,cq

- <k <
(0.2) J
and AF =) G}F
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In particular, when f is a smooth function on M, we set
Vf=V(for), Hess(f)=Hess(for), and Af=A(fon).
Starting from (0.1), it is an easy matter to check that

(Vf)oRo=0TVf, (Hess(f))oRo=0OTHess(f)O,
and (Af)oRp =Af.

Hence, |Vfl, ”Hess (f)”HS (the Hilbert-Schmidt norm), and Af are all well-
defined on M. In fact, Af is precisely the action of the Levi—Civita Laplacian
on f.

Now consider Cauchy initial value for the heat equation

Ju . .
i sAu, te(0,00) with tll\r}gu(t,x) = f(z), zeM.

By standard elliptic regularity theory, one knows that there is a unique, smooth
function (¢, z,y) € (0,00) x M x M — py(z,y) € (0, 00) such that

u(t,z) = /M F@) pelz, 9) A (dy),  (t,2) € (0,00) x M and f € C(M:R),

where Apr denotes the normalized Riemann measure on M. Moreover, because A
is essentially self-adjoint in L%(Apr), pt(z,y) = pi(y, z).

§1: THE RESULTS

We begin by considering the logarithmic gradient Vlogpr(-,y), for which our
initial result depends only on the dimension d and the lower bound

1. = i i Ri
) "= B 2, (9 R

for the Ricci curvature. One (cf. [SZ]) can then show that there is a
C(d, a) < ico such that, for each € € (0, 1),

(1.2) )
€)e?T) 2 p(z «@

(T,z,y) € (0,1] x M?,

where we have introduced p(z,y) to denote the Riemannian distance between =
and y.

Notice that the preceding result does not feel the cut locus. To get a result which
does, we look at what happens asymptoticly as T\, 0. What one finds (cf. the
first part of Theorem 3.12 in [KS]) is that

y ouside the cut locus of z = 7(e) =
1.3 . .
(1:3) %@)T[VlogPT( SYI) = v(ey),
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where v(e, y) is the element of R? which is determined by the requirement that the
path f € C1([0, 1]; O(M)) satisfying

(1.4) (0) = e and f(t) = €(v(e, 1)) )

is the horizontal lift to e of the (unique) minimal geodesic going from z to y. When
y is at the cut locus of z, one should not expect (1.3) to hold. In fact, take S(z,y) in
Tz (M) to be the set of initial directions in which minimal geodesics from z to y can
proceed. When S(z,y) forms a non-trivial differentiable submanifold, then one can
use the second part of Theorem 3.12 in [KS] to see that the limit on the left side of
(1.3) exists and is a non-trivial convex combination of elements of ¢~ (S(z,y)). In
particular, since all elements of have the same length, this limit has length strictly
less than p(z,y) in this case. For example, when M is the circle centered at the
origin in R? with unit circumference,

(15) pr(6,3) = (27T)" Zexp( —T‘—’"—)—)
meEZL

and so it is clear that
1 . l o
h\m0 I [V logpr (-, 2)] (0)=0.

The analysis of the Hessian of logpr( -, y) is more challenging. What it leads to
is a general estimate (cf. [S]) of the form

_% < [Hesslogpr(-,y)](e) < C (5,1? + g_(_%g)j)

for ¢ € 771(z) and (T, z,y) € (0,1] x M2.

(1.6)

Unlike the constant in (1.2), the C in (1.6) depends on more than the lower bound
a in (1.2). In fact, asymptotic analysis based on [KS] gives

y outside the cut locus of —

1
(0 }i{fl()T[Hess log pr(-,y)](e) = -1 +/0 (1 —t)?Sec(f(t), v(e,y)) dt,

where v(e,y) € R? and f € C*([0,1]; O(M)) are defined as above (cf. (1.4)) and
Sec: O(M) x R4 +— R4 @ R4 is the (unnormalized) sectional curvature given by

(€,Sec(g, v)n)ga = (Riemg(&, v)n, V).
On the other hand, when y is at the cut locus of  and the set S(z,y)
has the sort of structure described in the preceding paragraph, then one can

show that

7lwi\‘mo T?[Hesslog pr(-,y)](e) exists and is strictly positive definite.
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For example, in the case of the circle considered above,
lim 72 [Hesslogpr (-, 1)] (0) = l
T\,0 2 4

The proofs of these results are based on probabilistic representations of pr( -, y)
and its derivatives in terms of the Brownian motion on M (cf. (2.2) and (2.12) in

[SD).
Remark: Because, by an old result of Varadhan’s, one knows that
. _ plz,y)?
%er})Tlong(x,y) == for all z,y € M,

the expression on the right hand side of (1.7) must equal the Hessian of 1p(-,y)2.
However, to date, the author has found no corroboration in differential geometry
texts.
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