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Recent Progress on the Blow-up Problem for Zakharov Equations

By Frank Merle

Universite de Cergy-Pontoise
Mathematiques, 8 Avenue du Pare, Le Campus,

95033 Cergy-Pontoise Cedex France

In this paper, we present recent progress for the blow-up problem for Zakharov equations.

More precisely, we consider Zakharov equations

i9u/3t = -Au + nu
(I) 3n/3t= -V.v

Co-^v/Bt = -Vn - Vlul2

with initial data (u(-l),n(-l),v(-l)) = (uo,no,Vo)
whereu : R2 -> C,n :R2 -> R , v : R2 -> R2 ,

and related equations which are

the cubic nonlinear Schrodinger equation

(II) i3u/3t = -Au - lul2 u

with initial data u(-1) = UQ
where u : R2 ~> C,

and the Elliptic equation associated with (It)

(III) u = Au + lul2 u

where u : R2 —> C.

1) The local Cauchy theory for equations (I),(II).

We are interested to find a space H for equation (I) or (II) such that there is a unique
solution of the equation on [0,T) and we have the following T=+oo or T<+oo and lu(t)ly ->+oo as
t goes to T.

i)Case of the nonlinear Schrodinger equation (II)
The case of the cubic nonlinear Schrodinger equation is now well-understood. A local (in time)
Cauchy theory can be done in various natural space H^H^L2 (see [GV],[K],[CaW],[Bol]).
Moreover, one can show that the blow-up time does not depend on the Cauchy space and in fact
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we have at the blow-up a concentration phenomenon in L2.

In [MT] (see also [W2], [G1M2]), it is proved the following. Let u(t) a blow-up solution (and T
its blow-up time), there is then x(t) such that for all R>0, liming _^ T^ft^L^lx-xCOI^R) ^ a>^
where a is an universal constant (a=\Q\\2 where Q will be defined in subsection 3).

In addition, we have the following conserved quantities for all t,

luft)!^ = IUQ^ ,
E(u(t)) = E(UQ) where E(u) = l/2jlVul2 - l/4jlul4.

ii)Case ofZakharov equations (I).
A local (in time) Cauchy theory can not be done up to now in the energy space

H^Ku.n^eH^xI^xL2} for a general initial data. The result is proved for the space
H2={(u,n,v)€ H^H^H1} (see for exemple[OT2],[KePVg],[Bo2] and the references therein).

Moreover, one can show that we have at the blow-up time again the same concentration
phenomenon in L2. Indeed, let (u(t),n(t),v(t)) a blow-up solution (and T its blow-up time), there
is then x(t) such that for all R>0, liming _^ T^^lAlx-xfOI^R) ^ IQ^L2 ̂ ere Q will be defined
in subsection 3.

In addition, we have the following conserved quantities for all t,

^(^2=^2,
H(u(t),n(t),v(t)) = H(UO,HO,VO) where H(u) = JiVul2 + nlul2 + n^+lvl^Co.

iii) Blow-up problem
We are now interrested in the case T<+oo, that is the case of a blow-up solution (or

equivalently a singular solution) for equation (I) or (II). Most of the results can be extend in
dimension N>lin the case of a critical power for the nonlinear Schrodinger equation. Part of the
results for the Zakharov equation can be extend to the dimension 3 (only dimensions 2,3 are
relevant).

2) Elementary relations between equations (I)-(II)-(in)

i) Limit as CQ goes to infinity.
We can easily see that as CQ goes to infinity, the wave part of equation (I) give formally

V(n + lul2) = 0,
or equivallently

n+lul^O.
Thus equation (I) transform in equation (II) as CQ goes to infinity.
If the initial data are compatible, this result of convergence has been rigourously proved by
several authors ([AA2], [OT1], [KePVe]) when the limit solution u(t) (of equation (II)) is
regular. Near the blow-up time, we do not have convergence results and in some sense we can
not expect some. For example, in [G1M2], there is the case of a blow-up solution of equation (II)
with initial data Ugsuch that for all finite CQ and all HQ.VQ the solution of (I) (u,n,v)(t) is globally
defined in time. Therefore, in some sense at the singularity, equation (I) when c^ is large, can
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not be consider as a perturbation of equation (II).

ii) Periodic solutions of (I),(II)
By direct calculation, we can check that ifw(x) is a solution of equation (III) then

- u(t,x) = e11 w(x) is a periodic solution of equation (II)
- (u(t,x),n(t,x),v(t,x)) = ( e11 w(x),- Iv^x)!2^) is also a periodic solution of equation (I).

iii)Conformally self-similar blowing-up solution
For this power in two dimension, the nonlinear Schrodinger equation has one more

invariance : ifu(t,x) is a solution of equation (II) then
l/tua/t.x/OexpQlxpMt)

is also a solution of equation (II).
In particular, if w(x) is a real solution of the equation (III), then

l^x/Oexp^i/t+ilxPMt)
is also a solution of equation (II) which blow-up at T = 0. We then obtain explicit blow-up
solutions of equation (II).

Unfortunatly, such invariance does not exist for the Zakharov equation. In particular, there
is no direct way to obtain explicit blow-up solutions of Zakharov equations.

3) On minimal solutions of (III)

In this section, we recall briefly some results on the elliptic equation (III). From [BeL],[St]
it is now classical that equation (III) have infinitly many solutions in H1 (up to the invariance of
the equation).
Let us defined the unique positive radially symmetric solution of equation (in) (see [Kw] for
uniqueness). We have in fact that the solution w=0 is isolated in the set of solution in L2. More
preciselly,

i)Assume that w(x) is a nonzero solution of equation (III) then lwl^2^ IQ1^2.
ii) Moreover, we have the following carracterisation of the minimal solution (or ground

state) of equation (III). Assume that w is a nonzero solution of equation (III) and lwl^2 = IQIr2
then up to the invariance of the equation w = Q (that is there exist x',co,6 such that w(x) =
e^coCKoXx-x'))).

4) Equation (II)
The problem of singularity for equation (II) has been studied in the last 20 years, and we

give here part of results obtained.

i) No blow-up for small data
In [W I], it has been proved that for u e H1, we have the following

l/4jlul4 ^l/2jlVul2 {Jiul2 /JQ2 }.
It follows from this identity that if

luo^lQlL2

then there is non blow-up phenomon and the solution is globally defined in time.

ii)blow-up for large data
For this equation there are two way to obtain blow-up solutions.

- explicit blow-up solution.
From the conformal invariance of the equation if w(x) is a real solution of the equation (III),
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then
1/t w(x/t) exp(-i/t + ilxl^t)

is also a solution of equation (II) which blow-up at T = 0.
In particular S(t,x) = 1/t Q(x/t) exp(-i/t + ilxl^t)
is a blow-up solution such that luo^s IQI^.

-Viriel identity.
From [SoSyZ], [Gla], we have the following property of the solution of equation (II).
Assume that Ixlug e L2 then for all time t, Ixlug e L2 and

d^dt2 { JlxAu^x)!2 dx } = 16 E(U()).
From this viriel identity, we have that

ifE(uo) < 0 then the solution blow-up in finite time (T<+oo).

iii)Minimal blow-up solutions
Since if lugl^ IQ1^2 then there is non blow-up, and there is blow-up solution in the case

where luolL2= IQ1^2 , one can ask is it possible to carracterize all minimal blow-up solutions in
L2 (that is solution which blows-up and such that lug^s IQI^).
In [Ml] (see also [M4] for a another approach of the proof), the following is proved.
Assume that u(t) is a blow-up solution with minimal mass (and u(t) is an H1 solution of equation
(II)), that is IUQ^S IQI^. Then up to the invariance of the equation, we have

u(t,x) = S(t,x) =l/t Q(x/t) exp(-i/t + ilxl^t)
(that is there exist x\ x'\co,9 such that u(t,x) = e^oyt Q((x-x')oVt -x") exp^ico2/! + ilx-x'pMt)).

5) Equation (I)

Until recently, there were no results on existence of solutions which blow-up for Zakharov
equations. Indeed the two ingredients; the conformal invariance and the viriel identity which give
blow-up results for the limit equation as CQ goes to infinity do not hold. We can note that there
were numerical evidence of singular behavior of solution of equation (I) in [LPSSW] and
[PSSW].

i) No blow-up for small data
One can show (see [AA1],[SS]) as for the Schrodinger equation, that

if luolL2< IQ1^2 then ther is non blow-up phenomon and the solution is globally defined in time.

ii)blow-up for large data

As for equation (II), we are able to construct explicit blow-up solution and give
obstructions to regular behavior.

- explicit blow-up solutions.
We do not have anymore the conformal invariance to obtain explicit blow-up solutions. We use
in fact a bifurcation argument at "infinity" (using the structure of the nonlinear Schrodinger
equation) to obtain explicit blow-up solution.
In [G1M1], a family of blow-up solutions in the energy space of the form

u(t,x) = oVt P(cox/t) exp^o^i/t + ilxPMt)
n(t,x)= {cQ/^N^x/t)
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where P(x) =P(lxl) and N(x) = N(lxl)
and

P = AP +NP
(coco)-2^2!^ + 6rN^ + 6N} - AN = AP2

is investigated.
More precisely, it is proved using this kind of construction, that there are blow-up solutions
such that luolL2= IQIL2+ £, for all £>0.

We can note that the solutions constructed are numerically stable (see [LPSSW]). The
problem now is the following, we have construct blow-up solutions but we do not existence of
many (or a large set) of singular solution. For this purpose, we use a different approach.

-viriel identity.
In [M2], it is derived a perturbed viriel identity for the Zakharov equation. More precisly,

for a regular solution with decay at infinity we have
d^dt2 {1/4 JlxPlu^x)!2 dx +CQ"2 J(/ J(x.v(t,x))n(t,x) dx dt } = 2H(uo,no,Vo) - Cg-2 Jlv(t,x)12 dx.

From this pertubed viriel identity, we have in [M2] that
if H(UO,UO,VO) < 0 and the initial data are radially symmetric then the

solution blow-up in finite time (T<+oo) or in infinite time in H^ (with a concentration of u(t) in
L2 as t goes to infinity).
We suspect that in the case where H(uo,nQ,Vo) < 0 then the solution away blows-up in finite
time. This result give in particular the existence of a large class of singular solutions.

iii)Minimal blow-up solutions
Since if IUQI]^ IQ1^2 then there is non blow-up, and there are blow-up solution such that

in the case where ^0^2= IQIL2+ £ , for all £>0. one can ask, as for the nonlinear Schrodinger
equation about minimal blow-up solutions (that is solution which blows-up and such that
^2=10^2).
In [G1M2], we in fact proved that there is no minimal blow-up solution:

if luolL2= IQIL2 then there is non blow-up.
Therefore, the situation is different from the one of the nonlinear Schrodinger equation.

iv)Instability and stability results of blow-up behavior

Let us first recall some results for the nonlinear Schrodinger equation. We have explicit
blow-up solution such that the blow-up rate in H1 is of the type l/(T-t). In particular, the one
which the minimal blow-up solution has this rate of blow-up. From a physical point of view, we
can expect that this rate is stable. It is not the case. Indeed.in [LPSS] for example it is observed
numerically blow-up rate of the type LogI LoglT-tl I / (T-t)172 .
In [M3], it show for the Zakharov equation (with CQ finite but eventually very large), that the
blow-up rate is stonger than l/(T-t). More precisly, let (u,n,v)(t) a blow-up solution and T its
blow-up time, we have for t near

lu(t)lHl>c/(T-t).
This shows that in fact the blow-up rate of the type LogI LoglT-tl I / (T-t)172 is unstable with
respect to perturbations of the equation (with a term involving a wave equation). In contrary, the
one with blow-up rate l/(T-t) seem numerically stable. This in particular shows the physical
interest of the minimal blow-up solution of the nonlinear Schrodinger equation : the solution of
the form

S(t,x) =l/t Q(x/t) exp(-i/t + ilxPMt).
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