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SPECTRAL MULTIPLIERS AND MULTIPLE-PARAMETER STRUCTURES
ON THE HEISENBERG GROUP

ELIAS M. STEIN

Department of Mathematics
Princeton University

Fine Hall
Washington Road

Princeton, New Jersey

My purpose here is to describe some recent results obtained jointly with Detlef
Miiller and Fulvio Ricci (see [MS], [MRS I], and [MRS2]) regarding an extension of the
Marcinkiewicz multiplier theorem to the context of Heisenberg-like groups. I shall con-
centrate here on the background, the motivations, and a sketch of some of the main ideas
of the proofs. The details will be found in the cited literature.

It may be interesting to point out here that the original multiplier theorem of
Marcinkiewicz [Ma] had as its motivation the proof of Lp analogues of Schauder esti-
mates, and that these results preceded the Calderon-Zygmund theory [CZ] of singular
integrals.
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§1. THE CLASSICAL CASE: R71

The Marcinkiewicz theorem dates from 1939. Later versions are due to Mihim [Mi],

1957, and Hormander [H], 1960. We take up first the relevant special case: functions of

the Laplacian.

n a2

Thus let A = ^ —^^ - ^
j==i c/^

be the Laplacian on R^, and consider the operator T given as a function m(—A), a

^'spectral multiplier." We can also write the operator T as a Fourier multiplier, i.e.

(1.1) 7W(0 =m(\^)f(^

When m is a bounded function on (O.oo), then (1.1) gives us a bounded operator on

^(R^). The first question is that of appropriate sufficient conditions that guarantee

that T is bounded on P^R^ 1 < p < oo.

Theorem A We can conclude that T is bounded on L9\ 1 < p < oo^ if the following

assumptions hold:

(*) |m^(A)| < A\~3, forO < j < k, if k> n/2.

Or more generally:

(**) (A sharper L2 variant}: sup [| ^(-) m(t') \\jj2 < oo
———— t>o oc

if a > n/2.

Here \ is a non-zero smooth cut-off function of compact support which vanishes near

the origin.

One proof of this theorem goes as follows. We realize T as a convolution operator,

T{f) = f * K, with A'^) = m(|^|2). Then the assumptions (*) or (**) imply that T
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is a Calderon-Zygmund operator, and the result then follows from the theory of singular

integrals. In fact hypothesis (*) implies (at least morally) estimates of the form

(1.2) \K^\x)\ < AH-^'

while hypothesis (**) guarantees (see [H]) the condition

(1.3) f \K(x - y ) - K{x)\dx < A.
\x\>2\y\

Remarks:

(i) The analysis above works as well if the radial multiplier in (1.1) is replaced by a

more general non-radial one. The conditions (*) and (**) have obvious analogues.

(ii) The theory has a natural invariance with respect to a one-parameter family of

scalings, i.e. "dilations." In fact, if m(A) satisfies the hypotheses (*) or (**)

above, then so does m^A), for each 6 > 0, uniformly in <?. The corresponding

scalings on the ^-space are ^ —> 61/2^ and in terms of the kernels the dilations

are given by K{x) -^ 6^2 K(8-l/2x).

This dilation-invariance is not only an esthetic adornment of the theory, but is also

a basic structural fact. For example, in analyzing estimates such as (1.2) or (1.3), one

can decompose the kernel K into a sum over all (dyadic) scales, and then carry out the

estimates by rescaling to unit scale via the dilations. This kind of argument occurs in

many instances.

(iii) Two examples illustrate the relevance of the sharp restriction a > n / 2 occurring in

the theorem. Consider first the important Bochner-Riesz operators, corresponding

to m(A) = (1—A)^.. The restriction 6 > n—1- is equivalent with 772 6 L\^ a > n/2,

and it gives the "critical index" for Lp sumability, for all p. (Of course there are

subtler phenomena corresponding to other restrictions of 6).
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(iv) Another example of interest is given by the fractional integrals of maginary order,

i.e. (-A)^, 7 real.

Here the corresponding kernel is given by a distribution kernel which away from the

origin is

K(x) = G.H-714-2^ 7 ^ 0

where C^ (up to harmless factors) equals ^^2^i^.

The F quotient is of order |7[7^2 as 7 —> oo, which corresponds n/2 derivatives of the

multiplier m(A) = A~^, and which again shows that Lp inequalities (in fact weak-type

L1) cannot be expected if a < n/2.

§2. MULTI-PARAMETER (PRODUCT) THEORY IN R71

Instead of dealing only with functions of the Laplacians we can consider the general

Fourier multiplier T,

(2.1) (W(Q =m(0/(^) ,

a function of the n commuting self-adjoint operators,

1 9 1 9 1 9 . _ /I 9 1 9 9 \
_ ___ _ ——— — ——— u p Ji —• fj-^ j — ——— — ——— ^ ^ ^ ———— j
i 9x^ i Qx^ " ' i Qxn ' ' \i 9x^ i 9x^ i9xn}

^From this point of view it becomes of interest to stress the n-parameter family of

dilations of R71,

(2.2) (^ 6, ... ^n) -> (S^ 8^ . . . <Un), ^ > 0,

in place of the one-parameter family considered in the previous section. For us the main

distinction between the original Marcinkiewicz theorem and versions like Theorem A is

that the former enjoys an invariance with respect to the multi-parameter dilations (2.2).
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We formulate a variant of the theorem

Theorem B Suppose

(2.3)
n / -) \ i jn(^ "(o < A

wz^ 6 -̂ == 0 or 1. Then T given by (2.1) is bounded on Lp^ 1 < p < oo.

Remarks:

(1) The differential inequalities on m can be relaxed to appropriate L1 analogues.

(2) The regularity and decay properties of m envisaged by theorems A and B can be

compared as follows: take e.g. n == 2; certain characteristics singularities of m

are allowed in Theorem B along the "cross" (the <^i and ^2 axes); while Theorem

A (see Remark (2)) allows only similar singularities for m at the origin.

(3) The "product structure" displayed by the multipliers above is also clearly re-

flected in the properties of the convolution kernel corresponding to T\ i.e. for

which T(/) = / * K. Again, when n == 2, if we take conditions like (2.3) (but

with Cj allowed to be sufficiently large) then one has | K (^1,^2) | < A |^i|~1 •

\x^\~1 and more generally | 9^ 9^ K (a-i, x^}\ < A | x^ \~l~a | x^ I"1"6 for appro-

priate a and b.

However, for kernels that possess this product structure there is no straight-

forward adaptation of the Calderon-Zygmund theory. Thus a proof of Theorem

B has to be quite different from that outlined for Theorem A.

§3. HEISENBERG GROUP

Having summarized the theory in R71, we pass to the Heisenberg group. Let H71 =

{{z,t) G C71 x R}, with group low (z,t) • {z'\t'} = (z + z^t + t ' + 2 I m z • z ' } . We

recall the automorphic dilations: {z^t} —> (Sz^ S2!)^ 8 > 0.
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A basis of the left-invariant lie algebraic is given by Xk 1 ^ k ^ 2n, and T, with

X - — ^ -L 9.1 £) V 9 o <?A^ - a^ + 47, J7, A,+» = ̂  - 2x, ̂

z] = X j + i y j , 1 ^ j ^ n, T = ^.

These vector fields satisfy the commutation relations

PQ+,, X,} == 4T

The basic analogue of the Laplacian is the sub-Laplacian C, and its variants C,^ given
by

In
(3.1) r = -\ ̂  x], r» = r + zaT

j'=i

We also recall the homogeneous .... | • | on H" given by | x \ = (\z\4- 4- t2)1/4 w
\z\ + | f |1/2 if x = (^, ^), and note that | 6x | == 6 \ x \ if 8 • x denotes the automorphic

dilation of x. Finally, Q will denote the homogeneous dimension of H", Q = 2n + 2.

With these notations we can now state the analogue of Theorem A in this context.

It is due in various forms to DeMichele, Mauceri, Hulanicki, the author, Jenkins, Meda,
and Christ (see[Cj).

Theorem C

(a) Suppose Im^A)) ^ AX-3 jw_ 0 < j <. N, mth N sufficiently large. Then

m{C) is bounded on ^(H"), 1 < p < oo. Moreover m{C)f = f * K,

with \K{x)\ ^ Ala - ] - 9 and

| X; K{x) | ^ A | A \-Q-a for appropriate a.

(b) The U' boundedness holds under the less restrictive (analogous to

(**) in Theorem A) that
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assumption sup || ^ ( • )m(<-) ||^2 < oo,
——————— t>o

zf a > Q/2.

§4. PROBLEMS AND MOTIVATIONS

The theory for R71 and the above initial result for H71 leads us to raise a series of

questions regarding spectral multipliers on the Heisenberg group. We shall formulate

these as three problems, whose solution will then be described below.

Problem 1: Is Q/2 the right sharp condition in Theorem C, or should it be rather

half the Euclidean dimension, n + 1/2?

Problem 2: Consider now functions of C and 1 T, m(C, 1 T). (Note that C and T

commute.) Are there analogues of the Marcinkiewicz theorem guaran-

teeing that m (.C, x T) is bounded on P3?

Problem 3: Suppose K is the convolution kernel corresponding to m(/^ ^T\ i.e.

m(^C, } T ) f = / * K. Does K display a "product" structure?

How does one characterize the K in terms of the m?

The motivation for dealing with such problems comes not only from the understand-

able desire to generalize the R^ theory, but arises also (as in much of previous research

on the Heisenberg group) from the intimate connection with several complex variables.

I will now describe this.

We start with the unit ball in C71"1"1. In its unbounded realization it is given by the

domain 0 = {Im w > \ z^ |2 + .. . | ̂ n |2}. The boundary of H, &n, is in a natural way

identifiable with H^. We let p = Im w— \ z\ |2 . . . — | Zn |2 be the "height" function with

respect to the boundary, then (a-, /?), x 6 H71, p € R will be useful (non-halomorphic)

coordinates for what follows.

The 9 complex, and its boundary analogue the 9b complex lead one to two kinds of

Laplacians which in the present case of the model domain Q, have simple expressions.
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For the boundary complex one has the Kohn-Laplacian D^ on (0, q) forms, which is

essentially Ca = C + iaT with a = n — 2q. (Recall that T = —) .

For the 9 complex, except for some minor inaccuracies, the corresponding Laplacian

is
82

L a p = £ - T 2 - ——
9p2

The <9-Neumann problem then consists of

Lap [u) = f in n

(ft+^•ir;)u^=o

This elliptic equation (with non-elliptic boundary condition) can be solved by inverting

an appropriate boundary operator. These are in fact a pair of such operators D± :

(C — 712)1/2 ± zT, one for the upper-half space, and the other for the lower half space.

(One should note that remarkably D-^- D_ = £, and that to be more precise, C needs to

be replaced by Co}' In any case, these considerations lead me to consider the following

functions of C and }T, among others: T (C - T2)-1/2, C 1 ' 2 [C - T2)-1/2, C{C - T2)-1,

. . . , which are of the form m(£, } T) with m(A, ^) = ^ (A + ^}~1'2, A1/2 (A + /^2)-1/2,

A (A + /,2)-1, . . . , f o r A > 0 .

Kernels of some of these operators were computed by Phong and the author in [PS].

Other kernels, displaying some similar features, arose earlier in the work of G. Henkin

(ca. 1970) in writing integral representations for solutions of 9u = f in terms of Cauchy-

Fantappie formulas. All of these kernels have the common feature that they are (sums) of

products of parts having different kinds of homogeneities. The two kinds of homogeneities

are

(a) isotropic: (^) ~^ (^ ^)? 6 > 0

(b) non-isotropic: {^it) —> (<^ ^t}-> 6 > 0
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That parts of the kernels should have isotropic homogeneity is natural given the

elliptic nature of the operator Lap. Unfortunately, this homogeneity gives unacceptable

scalings, since these are not automorphisms of H^. That the non-isotropic homogeneity

is represented is of course due to the nature of the domain H and the group EP.

A particular kernel of interest which well represents the situation is

K ( , t } - n(^ 1
A^ - (|^|2+^ | ^ | 2 + ^

where H is smooth for z ^ 0, and homogeneous of degree 0, and satisfies the cancellation

property

/ n(^) = o
M=i

^5. THE MAIN RESULTS

After this discussion of the background and motivation for Problems 1-3 we come to

the main results. These are contained in the papers [MS], [MRS1], and [MRS2], and can

be summarized in the following four theorems.

Theorem 1 Suppose m(A,^) is given on R"1" x R and

satisfies
\(^i9^b{\9x)am{\,^l)\ < Aa^ all a and b.

Then
m[C^T} is bounded on Lp^ 1 < p < oo.

A more precise version of the conditions on m is in Theorem 4 below.

Theorem 2 An operator m (C^ ^T) is of the above kind if and only if m (C^ ^T) f =

f * K ^ with K a distribution which is smooth when z ^ 0 and satisfies

(1) \K {z , t ) \ < A\z\-2n\ \z\2 + it\-1

| ̂  Q^ K {z, t) | ^ A^ \ z |-2— [ [ z |2 + zt |-1-6
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(2) A cancellation property.

(3) It is radial in z, i.e. invariant under the action of the unitary group U{n) on
H71. —

The cancellation property can be stated as the requirement that sup | K(r)s) | < A,
where i]s {z, t) = rj (6^z, 6^t), and rj runs over a "normalized75 family at "bump" functions;

together with similar requirements involving only z (or t) integration.

Theorem 3 Suppose K is a kernel which satisfies (1) and (2) above, but not necessarily

(3). Then f —> f ̂  K is bounded on L^, 1 < p < oo.

Theorem 4

(i) Far m(£) in Theorem C (§3) we need only a > n + 1/2.

(ii) For: m{£, }T) it suffices to have

sup || x(-.-)^r, ^ 2 - ) Ik2 < oo
< 1 , < 2 > 0 a ' / 3

where a > n^ /3 > 1/2.

(m) these requirements are best possible

The mixed Sobolev space L^ Q is given by

11 f^^} I I L ^ = I I ( i + i ^ i r ( i + i < 9 , i + \9,\ff 11^.

The result in (i) was proved independently by W. Hebisch, [He], by a different method
than the one we outline below.

§6. IDEAS OF THE PROOFS

We shall emphasize three ideas which play a central role.

XVI.10



(1) "Freeing" or "lifting." One proceeds by adding variables so as to introduce a

homogeneity which was not present (or realizable) at the start. This approach,

previously used in the context of analysis of vector fields, finds a simple expression

here via the technique of "transference" (for which see [CW]).

(2) Square functions. The idea is to compare S (m {C^ ^T) f) with S (jf) for appro-

priate Littlewood-Paley-type square functions S. For the background of this see

[Ma], [S], [FS].

(3) Harmonic analysis on HP and in particular the explicit formulae for the Fourier

transform of radial functions via the Laguerre formalism. The latter was devel-

oped in [P] and [G].

Remarks: The conclusions based on the techniques (1) and (2) have wide generaliza-

tions, but those that also need (3) are restricted to Heisenberg-like groups.

Regarding (I): Suppose we wrote G = G\ x G^^ where G\ = H^ = {(2:,^)}, and

G^ = R = {u}. Let C\ be the sub-Laplacian on G\ and C^ == 1 ~^~' Let N be

the sub-group of G = {{z,t,u) : z = 0, t = u}, Then G/N w tP. The crucial

observation is that if we can prove that m (/^i, ^2) is bounded on Lp ((9), then it follows

by transference that m (£, 4r) is bounded on V (H^). Note that on G = G\ x G^ we

have a two-parameter family of (automorphic) dilations, in distinction to what happens

on H71.

The following (formal) identity is also relevant: if K^ (z^ t^ u) is the convolution kernel

on G. then

00

(6.1) K ( z , t ) = f K * { z , t - u , u ) d u
—00

is the corresponding kernel on EP.

Regarding square functions, we indicate how these can be used to prove that m (>Ci, ^2)

is bounded on U (G).
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/ \1 /2
We write S ( f ) = ElIM/)!2 ,

V I /

where I = (ij) is a double-index set, with Hi (/) = y (2-21 £1) y (2-^' ̂  where y) is

an appropriate smooth function of compact support, vanishing near the origin. Because

of the product situation, it follows that |[ / HLP(G) ̂  || S (f) \\LP(G), 1 < P < oo. One
writes Hi (/) = / * 77, and m(/:i, ^2) / = / * J<. Also, 77 = 7^* ̂  with the 7^
similar to the 77.

Now, Hi (m (£1, /:2) /) = f * A' * 77 = f * J< * 7^ * 7^

= fi ^ Ki, where /j = / * 7^ and A"/ = J< * 7^

However, one prove that | g * KI [ < G M(^) for some (strong) maximal function.

This is done by rescaling to unit scale with the available two-parameter family of dila-
tions. Thus one gets that

/ \ 1/2
|| m(£i,r2)/ \\LP^ C || ^(^/r))2 HLP,

\ i I

and the proof is concluded by appealing to the vector-valued maximal inequality.

To prove that the kernel of the operator m (/:, \T} satisfies conclusion (1) and (2) of

Theorem 2, we consider first the kernel K* of the corresponding operator m (/^i, ^2) in

G. One shows, using a Littlewood-Paley decomposition as above, that, e.g.

\K*{z,t,u}\ < A\\z\2 + zfir^H-2

with corresponding estimates on derivatives. The result for K (z, t) is then a consequence
of the formula (6.1).

We next give a few indications about the proof of Theorem 3. Starting with a kernel

J<, that satisfies (1) and (2) we lift it to a kernel K* on G via the formula
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K^(z,t,u) = \z\-2^(t|\z\2}K{z,t + u),

where \ is smooth, supported in [1/2, I], and J \{u)du = 1.

One then shows that K^ satisfies the estimates expected for the product theory on

G\ x C?2. However, to prove that such kernels lead to bounded operators via the square

function inequalities brings up a difficulty we did not need to face until now. It is

connected with the commutativity

K * Vi * 7^ = 7^ * K * 7^

that we exploited previously, which commutativity follows because the functions in ques-

tion are radial. In the present circumstance a substantially more complicated substitute,

involving an approximate commutativity, needs to be used.

We now pass to the harmonic analysis on H71. For each real ^, ^ 7^ 0, there is

associated the usual unitary representation TT^ of H71. If K is any distribution which

is radial, then the operator TT^ (J<) is diagonal in the "Hermite" basis. The diagonal

elements <^,A;) corresponding to K are given by the formula

8(^k) = f A-(^)e-^4(2M M2)
H"

dzdt

where ̂  are the Laguerre functions given by:

M-l ^ x / 2 f d\k

p , (^\ — ___w e____ . f i r^4^-1 p-^
tk^- n{n+l).^(n+k-l) [ d x ) {x e )

For the correspondence K ^ <?, a basic fact is that {\z |2 — it} K corresponds to

[ ̂  — ^j ^k) ^(^? k) of fi < 0 and n = 1, with a similar formula for ^ > 0 and also
for general n.

As a consequence, one can show that if K is the kernel corresponding to m(£),

(m{£)f = f * J<), with m supported in [0,1], then

XVI.13



(6.2) / \\x^ K ^ ^ d x ^ A || m |[^,
H^

wherever /3 > a — 1/2, and a ^ 2.

This surprising conclusion represents a gain of 1/2 over what can be proved in analogy

with R^, and it yields assertion (i) of Theorem 4.

For conclusion (ii) one uses estimates related to (6.2) to show that

II ^(m(r,^r)/) ||, < A, || ^(/) Up,
t

when 2 < p < oo, with appropriate square functions 61 and S^. Here, because of the

minimal smoothness hypotheses, the analysis is done on H^ and not on G = H71 x R.

Finally, a word why the results are sharp. One considers the kernel K^ of the operator

C^. Now K^ (x) = | x l-^-2^ H^ [x\ where H^ (x) is homogeneous of degree 0 as a

function of x. The behavior of H^ as a function of 7 is not simple, but one can show

that [ H^{x) | > C [7 [n+l/2 as 7 —> oo, for x in a neighborhood of the point (1,0). It

is a curious fact that when x = (0,1) the behavior in question is even worse, but relates

explicitly to the ^-function on the boundary of the critical strip. The formula giving this

in [MS] contains an error which we wish to correct. It should read in the case n == 1,

that H^ (0,1) is a constant multiple of

2^(1 -2^)F(2 + n) cosh(77r/2)C(-n),

which is not 0 (| 7 |2) as 7 —^ oo (7 real).
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