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I. INTRODUCTION

We survey various relations between hyperbolic conservation laws arising
in gas dynamics and Boltzmann formalism. Recent results show that these two
formalisms are equivalent in the case of a single conservation law and in the
case of the 2x2 system of isentropic gas dynamics. For the 3x3 system of gas
dynamics, so precise results do not hold, but the kinetic formalism is still
interesting, at least for numerical applications.

Of course the original motivation is to understand the Euler limit of the
Boltzmann equation (see C. Cercignani [ C e ] ) , but it appears that it can also
be useful to derive new mathematical results using the tools of kinetic
equations (L^ a priori estimates, compactness, approximation methods). This
requires to know a large family of entropies, and it turns out that the
kinetic formulation of scalar conservation laws or isentropic gas dynamics
equations, as stated in P . L . Lions, B. Perthame, E. Tadmor [LPT1, LPT2] is a

way to represent by a single equation all the family of entropies.
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II. SCALAR CONSERVATION LAWS

The following results are due to P . L . Lions, B. Perthame and E. Tadmor
[LPT1].

We consider a multidimensional scalar conservation law

. n 8A,(u)
( 1 ) ^+ S -^T—'0 • t £ 0 • x € R n

1=1 " î

and we require that the solution satisfies the additional entropy conditions

„(;/„•> n Q^; (u)(2) ^1 + ̂  -^- a ° 1" »•

for all convex functions S ( o ) and with

(3) ^ ( o ) == 5 ^ ( 0 ) a ^ ( o ) , a ^ ( o ) = A^ ( o ) e C^R) .

It is wellknown (see C. Bardos [ B a ] , J. Smoller [S] for instance) that,
even for smooth initial data, solutions to ( 1 ) have discontinuities. This
prevents ( 2 ) to hold as an equality. S . N . Kruzkov [ K ] has shown that, adding
the family of inequalities ( 2 ) , the problem ( 1 ) - ( 3 ) has a unique solution u
e L°°(IR^ ; L^IR11) ) for an initial data u ( x , t = o) e L^IR11) .

1 1 . 1 . Kinetic formulation
Let us introduce an additonal real parameter v and set

^(u;v) = ^
+1 if o ^ v 2S u ,
-1 if u ^ v ^ o ,
0 otherwise
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Then, we say that the function u ( x , t ) satisfies the kinetic formulation
of ( 1 ) if

(4) There is a bounded non-negative measure m on IR11 x IR x R^ such that
X v \»

^(u(x,t);v) , ̂ .̂  ^(u(x,t);v) = |2 in ̂ (^ x ̂  ).

where the vector field a ( v ) is defined in ( 3 ) .

Theorem 11.1. Let u e L00^; L1 nL^ClR11) ) , then u satisfies (1) - (3) if

and only if u satisfies (4) .

Proof of theorem 11.1. Being given u as in the statement of theorem
1 1 . 1 . , define the distribution m by

Q pV n v
(5) m : = — ^(u(x , t ) ; w)dw + ^ —— a (w) ^ (u (x , t ) ; w) dw,

"o 1=1 i ^o

or equivalently

a
( 6 ) ^ ^( u , v ) + a ( v ) ^ V ^ ( u , v ) = 8^ m.

9Multiplying this equality by S ' ( v ) where S is a C function, we get

(7 ) ^ f S ' ( v ) ^(u.v)dv + S ^j-f a^(v) S ' C v ) ^(u,v)dv

= < S ' C v ) , a m > = - < S " ( v ) , m > .
Notice that, since m is expected to be bounded, we are allowed in ( 7 ) to

take S with bounded second derivatives. Finally, ( 7 ) can be written
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9 n a
^i-S(u(x,t)) + ^ —- 7 ) (u (x , t ) ) = - < S" (v ) ,m >

1=1 "i 1

and thus the set of inequalities ( 2 ) for any S" £ o is equivalent to the
non-negativity of the distribution m , which is therefore a measure.

The following bounds are obtained choosing successively S" = 1 , 5 (v)

(8) f + n+1 ^(^.t) ^ L 1KB2 n .
•'IR x R^1 2 ° VCIR")

(9) f dm(x,v,t) ss [|u || , , Vv e IR ,

\\ .n o^l^n)

(10) m ( e , v , < » ) = o if v ^ [inf u , sup u ] ,

where u^(x) = u ( x , t = o) is the initial data for the scalar conservation law.

Remarks : A similar formalism has been used for numerical purposes by Brenier
[Br] who relates the entropy inequalities a Gibb's variational principle. For
any non-decreasing function ̂

( 1 1 ) inf -jf ^(v)f(v)dv ; -1 ̂  f ( v ) ^ + 1 , vf(v) 2= o , and f f(v)dv = ul
^IR ^ )

is attained for the function f = ^ ( u ; v ) .

1 1 . 2 . Applications

This kinetic formulation can be used for several purposes. A first
possibility is the construction of a semilinear hyperbolic approximation to
the quasilinear hyperbolic equation ( 2 ) , ( 3 ) . This was achieved in
B. Perthame, E. Tadmor [PT] using the model
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f— f + a(v).7 f + (f - x(u v) )/e = o
/' i Q ^ j O L c , A o t, t,

| f ( x , v , t = o) = ^(u (x) ,v) . u (x, t) = f f (x,v,t)dv .
e ° c JR c

this non-linear equation has a unique solution which converges! to the
solution of ( 1 ) - ( 3 ) as e tends to o. A clear relation with ( 4 ) is described in
[LPT1L Indeed

r^r ^m (x,v,t) : = ^(u (x , t ) ,w) - f (x.w, t ) /e dwe j ^ c c j

is a non-negative function, applying for instance the variational principle
( 1 1 ) .

A second kind of applications developed in [LPT1], is the derivation of
L̂  (O^x IR" 1') estimates for the solution of ( 1 ) - ( 2 ) with an initial data in L2,loc
for some p > 2 depending on the non-linearity of the field A ( u ) . This kind of
result (variations are possible) relies on the moments lemma which provides
the integrability of moments in v , locally in space for the solution of
kinetic equations (see B. Perthame [ P ] , P . L . Lion, B. Perthame [ L P ] ) . This is
related to the dispersion effect of the variable a ( v ) in ( 4 ) .

The most spectacular application of this formulation is still a
regularizing effect proved in [LPT1]. Under suitable assumptions on the
non-linearity A ( u ) , the solution of ( 1 ) , ( 2 ) with an initial data in
L n L (R ) , belongs to a Sobolev space in x and t. More precisely for any
e > o
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(13) Hw3^ (c.^x^) ^ ^^M.K) with s = ̂

where M = ||uj|̂  K = [[uj[^ and a is given by the non degeneracy condition

(14) sup [mes{|v[ ^ M, IT + a(v)^| ^ 6} ; |$|2 + J T J 2 = 1 ] ^ C ̂

this result is based on the version by R. Di Perna, P.L. Lions, Y. Meyer [DLM]

of the averaging lemmas [GLPS]. In one space dimension and for a strictly

convex non-linearity A(u), Oleinik's entropy condition gives

^j a(u) ^ C/t

(see [S ] for Instance) which Implies a BV estimate showing that the
regularity (13) is not optimal. In this case it gives indeed s = 1/3 (a=l)
while any s < 1 works. Finally, let us point out that the condition (14) is a
multidimensional extension of the non-degeneracy condition introduced in one
dimension by L. Tartar [ T ] to prove, using compensated compensation, that a
family of initial data u^ bounded in L2^) gives rise to a compact family of
solutions u^x.t) in L2 (ff^x I R " ^ ) .loc

III. ISENTROPIC GAS DYNAMICS

The above results are due to P.L. Lions, B. Perthame, E. Tadmor [LPT2].

We now consider the 2x2 system of isentropic gas dynamics in one space

dimension

a a
( ^ p ̂ ^ ° -

Q r\ r^

(15) . iT pu + ̂ (pu + P) = o . t 2: o, x e IR
^

^ p(p) = Kp7, y > 1, K = ^—— .
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The unknowns are the density p ( x , t ) and the momentum q = p u ( x , t ) which
are conservative quantities. Following the classification introduced by P . D .
Lax [ L ] , ( 1 5 ) is a hyperbolic system which eigenvalues are u ± c, c = Vp9 ( p ) .
Thus they are distinct except when p = o .

11 I . I . Entropy inequalities

Let us seek the addi tonal conservation laws that can be deduced of
(15) for smooth solutions i . e . the couples ( T ) , F ) such that

(16) |̂ 7)(p,u) + |̂| F(p,u) = o .

The natural couple (17, F) is given by the energy

1 2 K y
T) = I pu + 7=T p •

Lemma III.l. (16) is satisfied iff

^ V - E ^ £ i ' • U U •

(18) F = U7} + p> (p) T) , F = pf\ + UT)p p p u u • 'p 'u

Proof of Lemma III . l . Notice that the equation of conservation of momentum

can be written

i^-i^^ ^-°
and multiply it by T} . Adding the result to the equation of conservation of
mass multiplied by T\ just yields ( 1 6 ) as soon as (18) is satisfied. Finally
( 1 8 ) . is solvable iff (17) holds, thanks to Schwartz' equality F = F andpu up
Poincare theorem.
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We are going to consider the so called weak entropies satisfying

(19) 7}(p = o ,u) = o , f] (p = o ,u) = g(u) ,

for smooth function u. We say that ( p , p u ) is an entropy solution of ( 1 5 ) if

(20) -a T) + —^ F =< o in 2T (tRx^) ,UL dx

for any ( T ) , F ) solution of (17)-(20) which is convex in ( p , p u )

(see [Ba, L, S] for motivations).

I I I . 2 . Kinetic formulation.
[LPT2] proposes to use the kinetic equilibrium given by

(21) X(P ; v-u) = (p^- (v-u)2 )^ ,

where x denotes the positive part of x, x = s u p ( o , x ) , and

(22) ^ = ?r̂ n •

Finally set

(23) e = 2^1 .

The kinetic formulation of (15) is given, setting x = ^(p(x,t) ; v-u(x,t) ) ,

by ,
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(24) there is a non-positive bounded measure m on GR11 x [R x IR'1" such thatx v L

^ X + ^j < [Ov + (l-e)u] ^ } = a^m in 2)' (ff^x IR"^) .

Theorem 111.2. [LPT2]. Let ( p , p u ) € L00̂  ; L^IR) ) have finite energy i . e .

^ pu + p^ e L00^; L ( R ) ) . Then ( p , p u ) is an entropy solution to ( 1 5 ) if and
only if (24) holds.

Proof of theorem I I I . 2 . The solutions to ( 1 7 ) . ( 1 9 ) are given by

(25) ^(p,u) = g(v) ;f(p,v-u)dv ,
JfD

( 2 6 ) F ( p , u ) = f g ( v ) [ 9 v +(l-e)u] ^(p ; v-u)dv ,
^

(see R. J. Di Perna [ D P ] , Chen [ch] or [LPT2] ) . Moreover it is proved in

[LPT2] that T] is convex in ( p , p u ) if g ( v ) is a convex function. Now
(24) is equivalent to

(27) 8 f g(v) ^dv + a f t . . . ] g(v) ^ dv
' ^IR x ̂

= f g"(v) dm
^

for any g e C ( R ) with subquadratic growth so that, by the assumption on the

energy, the two integrals on the £ . h . s . of (27) are well defined. Finally (27)
is equivalent to (20) iff m is a non-positive measure.
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III.3. Remarks.

1 . The energy is recovered using g ( v ) = v /2 and gives the estimate

(28) o .J\ ,d.(x,v,t) .J^ (ip^.^)dx

IR x IR IR

where p ( x ) , u ( x ) denote the initial data p ( x , t = o ) , u ( x , t = o)o o

2. As in the scalar case, one can easily see that m ( x , v , t ) = o for
( x , t ) € 0, v e IR if ( p , u ) is aC1 solution to ( 1 5 ) on 0 .

3. The support of ̂  is given by

r y-1 7-1 ^
2 2

V € U-p , U + p

then, setting A = 9v + (l-e)u, we have
X e [u-c, u+c]

which coincides with the natural speeds of propagation in ( 1 5 ) .

4. Multiplying (24) by ( l , v ) and integrating dv, we recover the two
equations of ( 2 5 ) . This does not seem to be a general feature (see the
other example given in [LPT2],

5. Notice that ^ is the fundamental solution of the "wave" equation ( 1 7 ) .
Indeed

^(o,v-u) = o , ^ (o , v - u ) = 5 .
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6 . The main difficulty in using this kinetic formulation is that the

advection in (24) is not purely kinetic. Nevertheless various applications are
•

given in [LPT2], For example it is easy to recover the invariant regions (see
[ S ] ) giving a priori L°° bounds on p , u depending on ||p , u || . A new estimate" 0 0" oo

is also deduced, from the version in [LP] of moments lemma,
3y~l

r^r 3 "5— 1( 2 9 ) p ( y , t ) l u ( x , t ) r + p ( y , t ) d tJ o L J

£ c ! [ p a u 2 a + p^) dx • vy € R •

which holds for any entropy solution of ( 1 5 ) . Finally, the weak * - L°°
stability is obtained for y 2= 3 using compensated compactness, thus completing
the range of y for which global existence is proved ( R . J . Di Perna [DP] did it

N+2for any y = -rr-, N > 3 and Chen [Ch] extended its proof to any

1 < y ^ 5/3].
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