Journées ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Erik Balslev
ERIK Skibsted
Resonance functions of two-body Schrödinger operators

Journées Équations aux dérivées partielles (1988), p. 1-12
<http://www.numdam.org/item?id=JEDP_1988 \qquad A14_0>
© Journées Équations aux dérivées partielles, 1988, tous droits réservés.
L'accès aux archives de la revue «Journées Équations aux dérivées partielles » (http://www. math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

RESONANCE FUNCTIONS OF TWO-BODY SCHRÖDINGER OPERATORS

Erik Balslev and Erik Skibsted
Aarhus University.

We consider the Schrödinger operator $-\Delta+V$ in $L^{2}\left(\mathbb{R}^{n}\right), n \geq 3$, where V is a short-range, dilation-analytic potential in an ange S_{α}. A resonance λ_{0} appears as a discrete eigenvalue of the com-plex-dilated Hamiltonian [2], a pole of the S-matrix [3] and as a pole of the analytically continued resolvent, acting from an exponentially weighted space to its dual $[4,5]$. In [2] resonance functions are obtained as square-integrable eigenfunctions of the com-plex-dilated Hamiltonian, corresponding to the eigenvalue λ_{0}, in [5] they are defined as certain exponentially growing solutions f of the Schrödinger equation $\left(-\Delta+V-\lambda_{0}\right) f=0$. In [6] it is proved that for a dilation-analytic multiplicative potential V with resonance λ_{0}, the resonance functions of [2] and [5] are simply the restrictions of one analytic, $L^{2}\left(S^{n-1}\right)$-valued function f on S_{α} to rays $e^{i \varphi} \mathbb{R}^{+}$with $2 \varphi>-\operatorname{Arg} \lambda_{0}$ and to \mathbb{R}^{+}, respectively.

Moreover, the precise asymptotic behaviour $f(z)=e^{i k_{0}} z^{z}$ $z^{\frac{1-n}{2}}\left(\tau+0\left(|z|^{-\varepsilon}\right)\right)$ with $\tau \in L^{2}\left(S^{n-1}\right)$, where $k_{0}^{2}=\lambda_{0}$, is established together with asymptotics for $\mathrm{f}^{\prime}(\mathrm{z})$. These imply exponential decay in time of resonance states, defined as suitably cut-off resonance functions, as proved in [8].

In this note we shall give a brief account of results on resonance functions, referring for details to [5] and [6].

We introduce the weighted L^{2}-spaces $L_{\delta, b}^{2}=L_{\delta, b}^{2}\left(\operatorname{IR}^{n}\right)$ for $\delta, b \in I R \quad b y$

$$
L_{\delta, b}^{2}=\left\{\left.f\left|\|f\|_{\delta, b}^{2}=\int_{\mathbb{R}^{n}}\right| f(x)\right|^{2}\left(1+r^{2}\right)^{\delta} e^{2 b r} d x<\infty\right\}
$$

where $x \in \mathbb{R}^{n}, r=|x|$. The weighted Sobolev spaces are defined by

$$
H_{\delta, b}^{2}=\left\{f \mid\|f\|_{2, \delta, b}^{2}=\sum_{|\alpha|_{\leqq 2}}\left\|D^{\alpha} f\right\|_{\delta, b}^{2}<\infty\right\}
$$

We set $L_{\delta, 0}^{2}=L_{\delta}^{2}, H_{\delta, 0}^{2}=H^{2}$ and $h=L^{2}\left(S^{n-1}\right), S^{n-1}=$ $\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$. We assume that the dimension $n \geqq 3$

$$
\mathbb{\mathbb { C }}^{+}=\{\mathbf{k} \in \mathbb{\mathbb { C }} \mid \operatorname{Im} \mathrm{k}>0\}, \widetilde{\mathbb{T}}^{+}=\overline{\mathbb{X}^{+}} \backslash\{0\}
$$

$B\left(H_{1}, H_{2}\right)$ and $C\left(H_{1}, H_{2}\right)$ denote the spaces of bounded and compact operators from H_{1} into H_{2}, respectively.

The free Hamiltonian H_{0} in L^{2} is defined for $u \in D_{H_{0}}=H^{2}$ by $H_{0} u=-\Delta u$ with resolvent $R_{0}(k)=\left(H_{0}-k^{2}\right)^{-1} \in B\left(L^{2}\right)$ for $k \in \mathbb{C}^{+}$.

The interaction Q is assumed to be a symmetric, short-range, S_{α}-dilation-analytic operator in L^{2}. Thus, $Q \in C\left(H_{-\delta_{0}}^{2}, L_{\delta_{0}}^{2}\right)$ for some $\delta_{0}>\frac{1}{2}$, and if $\{U(\rho)\} \quad$ is the dilation group on L^{2} defined by

$$
(U(\rho) f)(x)=\rho^{\frac{n}{2}} f(\rho x)
$$

then the function $Q(\rho)=U(\rho) Q U\left(\rho^{-1}\right)$ on \mathbb{R}^{+}has an analytic, $C\left(H_{-\delta_{0}}^{2}, L_{\delta_{0}}^{2}\right)$-valued analytic extension to the angle

$$
S_{\alpha}=\left\{\rho e^{i \varphi}|\rho>0,|\varphi|<\alpha\}\right.
$$

Moreover, $\quad Q(z) \in C\left(H_{-\delta_{0}, b}^{2}, L_{\delta_{0}, b}^{2}\right)$ for $a l l \quad b \in I R$. (This follows from $Q \in C\left(H_{-\delta_{0}}^{2}, L_{\delta_{0}}^{2}\right)$ if Q is local).

The Hamiltonian $H=H_{0}+Q$ is self-adjoint on $D_{H}=H^{2}$, and associated with H is a self-adjoint, analytic family of type A , $\mathrm{H}(\mathrm{z})$, given by

$$
H(z)=z^{-2} H_{0}+Q(z),
$$

and $H\left(\rho e^{i \varphi}\right)=U(\rho) H\left(e^{i \varphi}\right) U\left(\rho^{-1}\right)$, so $\sigma(H(z))=\sigma\left(H\left(e^{i \varphi}\right)\right)$ for $\rho>0$, $z=\rho e^{i \varphi}$.

We define the operators H_{z} and their resolvents $R_{z}(k)$ by

$$
H_{z}=H_{0}+z^{2} Q(z)=z^{2} H(z), R_{z}(k)=\left(H_{z}-k^{2}\right)^{-1} .
$$

We note that $R_{z}(z k)=z^{-2}\left(H(z)-k^{2}\right)^{-1}$.
We have $\sigma_{e}(H(z))=e^{-2 i \varphi} \overline{\mathbb{R}^{+}}$and $\sigma_{d}(H(z)) \backslash \mathbb{R} \subset\{\lambda \mid-2 \varphi<\operatorname{Arg} \lambda$ <0\}.

We define $R(\varphi)$ by $R(\varphi)=\left\{k \mid 0>\operatorname{Argk}>-\varphi, k^{2} \in \sigma_{d}(H(z))\right\}$, $R=\underset{0<\varphi<\alpha}{\mathrm{U}} \mathrm{R}(\varphi)$. The points $\lambda=\mathrm{k}^{2}, k \in R$, are called resonances. For our analysis we need the following result, proved in [5]:

Lemma 1.1. For $\delta>0$ let $S_{\alpha}^{\delta}=\left\{k \in S_{\alpha} \mid \operatorname{Im}\left(e^{i(\alpha-\delta)} k\right)<\varepsilon\right\}$. There exists S_{α}-dilation-analytic interactions V_{ε} and W_{ε} with $Q=V_{\varepsilon}+W_{\varepsilon}$, such that $H_{0}+V_{\varepsilon}$ has no resonances outside $\left(S_{\alpha}^{\delta}\right)^{2}$ and W_{ε} decays faster than any exponential. This holds with $W_{\varepsilon}=g_{\varepsilon} Q g_{\varepsilon}$, where $g_{\varepsilon}(r)=\exp \left(-\varepsilon r^{\beta}\right), \beta=\frac{\pi}{2 \alpha}$, for ε small.

Using Lemma 1.1 one can prove all results for fixed $\delta>0$ with S_{α} replaced by $S_{\alpha}-S_{\alpha}^{\delta}$, using the splitting $Q=V_{\varepsilon}+W_{\varepsilon}$, and then let $\delta \downarrow 0$. To simplify the presentation, we assume from the outset (although this can strictly speaking not be obtained) that $H_{1}=H_{0}+V$ has no resonances and fix ε, setting $g=g_{\varepsilon}$, $W=Q g, V=\Omega-g W$. We denote $b_{y} H_{1 z}, R_{1 z}(k)$ etc. the operators obtained by replacing Q by V.

Basic to our approach is an extended limiting absorption principle proved in [7] and generalized in [5] to non-symmetric, short-range potentials like Q_{z}. The idea is to consider $-\Delta$ and $-\Delta+Q_{Z}$ as operators H_{0}^{-b} and H_{z}^{-b} acting in the space $L_{0,-b}^{2}, b \geq 0$. The spectrum of H_{0}^{-b} and the essential spectrum of H_{z}^{-b} coincide with the parabolic region $P_{b}=$ $\left\{\mathrm{k}^{2}| | \operatorname{Imk} \mid \leqq b\right\}$, and it is then proved that the resolvents $\left(H_{0}^{-b}-(a+i b+i \varepsilon)^{2}\right)^{-1}$ and $\left(H_{z}^{-b}-(a+i b+i \varepsilon)^{2}\right)^{-1}$ have boundary values as $\varepsilon \downarrow 0$ in $B\left(L_{\delta,-b}^{2}, H_{-\delta-b}^{2}\right)$ for $\frac{1}{2}<\delta \leqq \delta_{0}$, except at the so-called singular points.

The singular sets $\sum_{z}^{C}, \sum_{z}^{r}$ and \sum_{z} are defined for $z=$ $\rho e^{i \varphi}, \varphi>0$, by

$$
\begin{aligned}
& \sum_{z}^{C}=\left\{k \in \mathbb{C}^{+} \mid k^{2}=z^{2} \lambda, \lambda \in \sigma_{d}(H(z))\right\} \\
& \sum_{z}^{r}=z R \cap \mathbb{R}^{+}, \quad \sum_{z}=\sum_{z}^{C} \cup \sum_{z}^{r}
\end{aligned}
$$

and for $\varphi<0$ by $\sum_{z}^{C}=-\overline{\sum_{\bar{z}}^{C}}$ and similar for \sum_{z}^{r} and \sum_{z}. For $\varphi=0, \quad \sum=\Sigma^{C} U \sum^{r}=\left\{k \in \widetilde{\mathbb{T}}^{+} \mid k^{2} \in \sigma_{p}(H)\right\}$.

The extended limiting absorption principle for H_{z} can then be formulated as follows:

Theorem 1.2. For fixed $z \in S_{\alpha}, 0<\delta \leqq \delta_{0}$, there exists a meromorphic $B\left(L_{\delta,}^{2}, H_{-\delta}^{2}\right)$-valued function $R_{z}^{-}(k)$ in \mathbb{C}^{+}, continuous in $\mathbb{C}^{+} \backslash \sum_{z}$, such that for $k \in \mathbb{R} \backslash \sum_{z}^{r} U\{0\}$

$$
R_{z}^{-}(k)=e^{i k r} R_{z}(k+i 0) e^{-i k r}
$$

where

$$
R_{z}(k+i 0)=\lim _{\varepsilon \downarrow 0} R_{z}(k+i \varepsilon)
$$

in the operator-norm topology of $B\left(L_{\delta}^{2}, H_{-\delta}^{2}\right)$, locally uniformly in k.

For $f \in L_{\delta,-b}^{2}, u=e^{-i k r} R_{z}^{-}(k) e^{i k r} f$ is the unique solution in $L_{\delta,-b}^{2}$ of the equation $\left(H_{z}^{-b}-k^{2}\right) u=f$, such that $D u \in L_{\delta-1,-b}^{2}$, where $\mathrm{b}=\mathrm{Imk}$ and

$$
D u=\left(D_{1} u, \ldots, D_{n} u\right), D_{j}=\frac{\partial}{\partial x_{j}}+\frac{n-1}{2 r^{2}} x_{j}-i k \frac{x_{j}}{r}
$$

(the radiation condition).

Proof. We refer to [5] for the proof of the Theorem. It utilizes the result of [7] for H_{0}, analytic Fredholm theory and control of the singular points using analyticity in k and z.

The trace operators $T_{0}(k), T_{z}(k) \in B\left(L_{\delta}^{2}, h\right)$ are defined for $z \in S_{\alpha}$, by

$$
\left(T_{0}(\pm k) f\right)(k, \cdot)=\left(F_{ \pm} f\right)(k, \cdot), \quad k \in \mathbb{R}^{+}
$$

where

$$
\begin{aligned}
\left(F_{ \pm} f\right)(k, \omega) & =(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{\mp i k \omega \cdot x} f(x) d x \\
T_{z}(k) & =T_{0}(k)\left(1-Q_{z} R_{z}(k+i 0)\right), \quad k \in \mathbb{R} \backslash \sum_{z}^{r} .
\end{aligned}
$$

We set

$$
T_{0}(k)=T_{0}(k) e^{i k r}, T_{z}^{+}(k)=T_{z}(k) e^{i k r} .
$$

The following result is proved in [5].

Theorem 1.3. For $\frac{1}{2}<\delta \leqq \delta_{0}, z \in S_{\alpha}$, the $B\left(L^{2}{ }_{\delta}, h\right)$-valued function $\mathrm{T}_{\mathrm{z}}^{+}(\mathrm{k})$ has a continuous extension to $\widetilde{\mathbb{T}}^{+} \backslash \Sigma_{z}$ meromorphic in \mathbb{C}^{+}with poles at \sum_{z}^{C}. The function $T_{\bar{z}}^{+*}(\bar{k})$ defined for $k \in \widetilde{\mathbb{C}}^{-} \backslash\left(-\sum_{z}\right)$ is analytic in $\mathbb{C}^{-} \backslash\left(-\sum_{z}^{C}\right)$ and continuous in $\widetilde{\mathbb{C}}^{-} \backslash\left(-\Sigma_{z}\right)$ as a $B\left(h, H_{-\delta}^{2}\right)$-valued function.

We recall the following formulas from the stationary scattering theory:

$$
\begin{equation*}
R(k+i 0)=R(-k+i 0)+\pi i k^{n-2} T^{*}(k) T(k), k \in \mathbb{R}^{+} \backslash \sum_{r} \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
T(k)=S(k) R T(-k) \tag{3}
\end{equation*}
$$

where $(R \tau)(\omega)=\tau(\omega)$ for $\tau \in h$.
Inserting (1.3) in (1.2), we obtain
$R(k+i 0)=R(-k+i 0)+\pi i k^{n-2} T *(k) S(k) R T(-k)$

The S-matrix $S(k)$ of $\left(H_{0}, H\right)$ is given for $k \in \mathbb{R}^{+} \sum_{r}$ by
$S(k)=1-\pi i k^{n-2} T_{0}(k)(Q-Q R(k+i 0) Q) T_{0}^{*}(k)$
and the s-matrix $S_{1}(k)$ of $\left(H_{0}, H_{1}\right)$ by (1.5) with Q and R replaced by V and R_{1}.

The following result is proved in [3].

Theorem 1.4. The S-matrix $S(k)$ has a meromorphic extension $\widetilde{S}(k)$ from \mathbb{R}^{+}to S_{α} with poles at R. The S-matrix $S_{\gamma}(k)$ has an analytic extension $\widetilde{S}_{1}(k)$ from \mathbb{R}^{+}to S_{α}. Moreover, for $k>0,0<\varphi<\alpha, \tilde{S}_{1}\left(k e^{-i \varphi}\right)=S_{1, e^{i \varphi}}^{(k)}$, where $S_{1, e^{i \varphi}}^{(k)} \quad$ is the S-matrix of $\left(\mathrm{H}_{0}, \mathrm{H}_{1, e^{i \varphi}}\right)$ at the point k.

From (1.4) and Theorem 1.2 we obtain

Theorem 1.5. For any $b>0$ the $B\left(L_{0, b}^{2}, H_{0,-b}^{2}\right)$-valued function $R(k)$ has a meromorphic continuation $\widetilde{R}(k)$ from \mathbb{C}^{+}across \mathbb{R}^{+}to $S_{\alpha, b}=\left\{k \in S_{\alpha} \mid-b<\operatorname{Im} k<0\right\}$, given by

$$
\begin{equation*}
\widetilde{R}(k)=R(-k)+\pi i k^{n-2} T *(\bar{k}) \widetilde{S}(k) T(-k) \tag{1.6}
\end{equation*}
$$

The $B\left(L_{0, b}^{2}, H_{0,-b}^{2}\right)$-valued function $R_{1}(k)$ has an analytic continuation $\widetilde{R}_{1}(k)$ from $\mathbb{C}^{+} \sum_{1 c}$ across \mathbb{R}^{+}to $S_{\alpha, b}$, given by (1.6) with R, T and S replaced by R_{1}, T_{1} and S_{1}.

The functions $\widetilde{R}(k)$ and $\widetilde{R}_{1}(k)$ are connected by the analytically continued symmetrized resolvent equation

$$
\begin{equation*}
\widetilde{R}(k)=\widetilde{R}_{1}(k)-\widetilde{R}_{1}(k) g\left(1+W \widetilde{R}_{1}(k) g\right)^{-1} W \widetilde{R}_{1}(k) \tag{1.7}
\end{equation*}
$$

The following result is proved in [5]:

Theorem 1.6. $\widetilde{R}(k)$ and $\widetilde{S}(k)$ have the same poles and of the same order in $S_{\alpha, b} \cdot$

2. Resonance functions

Let k_{0}^{2} be a resonance, and fix $b>-\operatorname{lm} k_{0}$. Then k_{0} is a pole of $\widetilde{R}(k) \in B\left(L_{0, b}^{2}, H_{0,-b}^{2}\right)$, defined in Theorem 1.5. Let C be a circle separating k_{0} from other poles and let

$$
P=-\frac{1}{2 \pi i} \int_{C} \widetilde{R}_{2}(k) d k^{2}
$$

be the residue of $\widetilde{R}_{2}(k)$ at $k_{0}, P \in B\left(L_{0, b}^{2}, H_{0,-b}^{2}\right)$ is of finite rank.

The space F of resonance functions associated with k_{0} is defined by

$$
F=\left\{f \in R_{p} \mid\left(-\Delta+Q-k_{0}^{2}\right) f=0\right\}
$$

The following result is proved in [5]:

Theorem 2.1. F is the isomorphic image of $N\left(\widetilde{S}^{-1}\left(k_{0}\right)\right)$ and of $N\left(1+W \widetilde{R}_{1}\left(k_{0}\right) g\right)$ via the following maps:

$$
\begin{aligned}
N\left(\widetilde{S}^{-1}\left(k_{0}\right)\right) \ni \tau & \rightarrow T *\left(\bar{k}_{0}\right) \tau=f \in F \\
N\left(1+W \widetilde{R}_{1}\left(k_{0}\right) g\right) \ni \phi & \rightarrow \widetilde{R}_{1}\left(k_{0}\right) g \phi
\end{aligned}=f \in F=
$$

Remark. From the representation $\mathrm{F}=\mathrm{T}$ * $\left(\overline{\mathrm{k}}_{0}\right) \tau$ we conclude by Theorem 1.3 and the uniqueness part of Theorem 1.2 that $f \in H_{-\delta,-b_{0}}^{2} \backslash \mathrm{~L}_{\delta-1,-\mathrm{b}_{0}}^{2}$ for every $\delta>\frac{1}{2}$ and $\mathrm{b}_{0}=-\mathrm{Im} \mathrm{k}_{0}$. A further analysis yields precise asymptotic estimates. We first establish the analyticity properties, using the second isomorphism.

$$
\text { Applying (1.4) to the operator } H_{1 z} \text { at a point } \mathrm{zk}_{0} \text { with }
$$ Arg $\mathrm{zk}_{0}=0$ and noting that by Theorem $1.4, \quad \mathrm{~S}_{1 \mathrm{z}}\left(\mathrm{zk}_{0}\right)=\widetilde{S}_{1}\left(\mathrm{k}_{0}\right)$ we obtain

$$
\begin{align*}
& R_{1 z}\left(z k_{0}+i 0\right)=R_{1 z}\left(-z k_{0}+i 0\right)+\pi i\left(z k_{0}\right)^{n-2} \\
& T_{1 \bar{z}}^{*}\left(\overline{z k}_{0}\right) \widetilde{S}_{1}\left(k_{0}\right) R_{1 z}\left(-z k_{0}\right) \tag{1.7}
\end{align*}
$$

By Theorems 1.2 and 1.3 we obtain from (1.7)

Theorem 2.2. The $B\left(L_{\delta}^{2}, H_{-\delta}^{2}\right)$-valued function $e^{-i z k_{0} r}$ $R_{1 z}\left(z k_{0}+i 0\right) e^{-i z k_{0} r}$ has an analytic extension from $\left\{z \in z k_{0} \mid \mathbb{R}^{+}\right\}$ to $\left\{z \in S_{\alpha} \mid \operatorname{Arg} z_{0}<0\right\}$, given by

$$
\begin{align*}
& e^{-i z k_{0} r_{R_{1 z}}\left(z k_{0}\right) e^{-i z k_{0} r}=e^{-i z k_{0} r} R_{1 z}\left(-z k_{0}\right) e^{-i z k_{0} r}+} \tag{1.8}\\
& \pi i\left(z k_{0}\right)^{n-2} T_{1 z}^{*}\left(\overline{z k}_{0}\right) \widetilde{S}_{1}\left(k_{0}\right) R T_{1 z}\left(-z k_{0}\right)
\end{align*}
$$

Recalling that $W_{z}=Q_{z} g(r z)$, where $g(r z)=\exp \left\{-\varepsilon(r z)^{\beta}\right\}$ with $\beta>1$, we obtain from Theorem 2.2

Theorem 2.3. The $C\left(L^{2}\right)$-valued function $W_{z} R_{1 z}\left(z k_{0}\right) g(r z)$ has an analytic continuation from $\left\{z \in S_{\alpha} \mid \operatorname{Argzk}{ }_{0}>0\right\}$ to $\left\{z \in S_{\alpha} \mid \operatorname{Arg} \mathrm{zk}_{0} \leqq 0\right\}$, given by $W_{z} \widetilde{R}_{1 z}\left(z_{0}\right) g(r z)$.

By standard dilation-analytic arguments $\sigma\left(W_{z} \widetilde{R}_{1}\left(\mathrm{zk}_{0}\right) g(\mathrm{rz})\right.$ is constant. Let C be a circle separating -1 from the rest of $\sigma\left(W_{z} \widetilde{R}_{1}\left(\mathrm{zk}_{0}\right) \mathrm{g}(\mathrm{r} \mathrm{z})\right)$ and set

$$
P(z)=-\frac{1}{2 \pi i} \int_{C}\left(-\lambda+W_{z} \widetilde{R}_{1 z}\left(z k_{0}\right) g(r z)\right)^{-1} d \lambda .
$$

Then $P(z)$ is a dilation-analytic $B\left(L^{2}\right)$-valued function of z, and $P(z)$ is a projection on the finite-dimensional algebraic null space of $1+W_{z} \widetilde{R}_{1 z}\left(z k_{0}\right) g(r z)$. Let $\phi \in N\left(1+W \widetilde{R}_{1}\left(k_{0}\right) g(r z)\right)$ and pick an S_{α}-dilation-analytic vector η in L^{2} such that
$\phi=P(1) \eta$. Then $\phi(z)=P(z) \eta(z) \in N\left(1+W_{z} \widetilde{R}_{1 z}\left(z k_{0}\right) g(r z)\right.$, and $\phi(z)$ is dilation-analytic.

We now obtain, using the second isomorphism of Theorem 2.1,

Theorem 2.4. Let $\mathrm{f} \in \mathrm{F}$. Then there exists an S_{α}-dilationanalytic, $H_{-\delta}^{2}$-valued function $X(z)$, such that $f=e^{i k_{0} r} x(1)$ and for $\operatorname{Arg} \mathrm{z} \mathrm{k}_{0}>0$

$$
f(z)=e^{i k_{0} z r} x(z) \in N\left(H(z)-k_{0}^{2}\right)
$$

Moreover, $X(z) \notin L_{\delta-1}^{2}$ for all $z \in S_{\alpha}, \delta>\frac{1}{2}$.

Proof. Define $f(z)$ by

$$
f(z)=\left\{\begin{array}{l}
e^{i z k_{0} r} R_{1 z}^{+}\left(z k_{0}\right) e^{-i z k_{0} r} g(r z) \phi(z), \operatorname{Imzk}_{0}>0 \\
e^{i z k_{0} r}\left(e^{-i z k_{0} r} \widetilde{R}_{1 z}\left(z k_{0}\right) e^{-i z k_{0} r}\right) e^{i z k_{0} r} g(r z) \phi(z), \\
\operatorname{Imzk} \sum_{0} \leqq 0
\end{array}\right.
$$

where $R_{1 z}^{+}\left(z k_{0}\right)$ is defined similarly to $R_{1 z}^{-}\left(\mathrm{zk}_{0}\right)$, replacing $-b$ by b and $e^{ \pm i a r}$ with $e^{\text {〒iar }}$ in Theorem 1.2. Clearly, $f(z)$ is continuous for $\mathrm{zk}_{0} \in \mathbb{R}^{+}$. By Theorem 1.2 and $2.2, X(z)=e^{-i z k_{0} r} f(z)$ is an analytic $H_{-\delta}^{2}$-valued function in S_{α}.

It follows from the uniqueness part of Theorem 1.2 that $\chi(z) \notin L_{\delta-1}^{2}$ for $I m z k_{0}<0$. The fact that $\chi(z) \notin L_{\delta-1}^{2}$ for $\operatorname{Im} z k_{0} \geqq 0$ then follows by the next Lemma, proved in [6]:

Lemma 2.5. Let $X(z)$ be an S_{α}-dilation-analytic vector, and define $h(\varphi)$ for $\varphi \in(-\alpha, \alpha)$ by

$$
h(\varphi)=\inf \left\{s \mid x\left(e^{i \varphi}\right) \in L_{-s}^{2}\right\}
$$

Then either $h(\varphi) \equiv-\infty$ or $h(\varphi)>-\infty$ and h is convex in $(-\alpha, \alpha)$.

Using this Lemma together with a recent result of Agmon [1], giving the precise asymptotic behaviour of $f(z)$ for $\operatorname{Arg} z_{0}>0$, we finally obtain the desired asymptotic estimates of f and f^{\prime}. We refer to [6] for the proof.

Theorem 2.6. Assume that Q is an S_{α}-dilation-analytic multiplicative potential such that $|Q(z)(x)| \leqq C|x|^{-1-\varepsilon}$ for $z \in S_{\alpha}$ and $|x| \geqq R$. Let $f \in F$. Then f is an analytic, h-valued function $f(z, \cdot)$ on S_{α} of the form

$$
f(z, \cdot)=e^{i k_{0} z} z^{\frac{1-n}{2}} g(z, \cdot)
$$

where

$$
\begin{aligned}
g(z, \cdot) & =\tau+0\left(|z|^{-\varepsilon}\right) \\
g^{\prime}(z, \cdot) & =0\left(|z|^{-1-\varepsilon}\right)
\end{aligned}
$$

uniformly in any smaller angle S_{α}^{\prime} for some $\varepsilon>0$. Moreover, $\tau \in N\left(\widetilde{S}^{-1}\left(\mathrm{k}_{0}\right)\right)$ and $\mathrm{f}=\mathrm{CT} \mathrm{T}^{*}\left(\overline{\mathrm{k}}_{0}\right) \tau$,
$C=k_{0}^{\frac{n-1}{2}}(-i)^{\frac{1-n}{2}}(2 \pi)^{\frac{1}{2}}$.

REFERENCES:

[1] Agmon, S., On the asymptotic behaviour of solutions of Schrödinger type equations in unbounded domains, in Analyse Mathématique et Applications, Paris 1988, to appear.
[2] Balslev, E. and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilation-analytic interactions, Comm. Math. Phys. 22 (1971), 280-294.
[3] Balslev, E., Analytic scattering theory of two-body Schrödinger operators,
J. Funct. Anal. 29, 3 (1978), 375-396.
[4] Balslev, E., Analyticity properties of eigenfunctions and scattering matrix,
Comm. Math. Phys. vol. 114 no. 4 (1988), 599-612.
[5] Balslev, E. and E. Skibsted, Resonance theory for two-body Schrödinger operators, to appear.
[6] Balslev E., and E. Skibsted, Analytic and asymptotic properties of resonance functions, to appear.
[7] Sait̄̄ Y., Extended limiting absorption method and analyticity of the S-matrix,
J. f. d. reine u. angew. df. math., 343 (1983), 1-22.
[8] Skibsted, E., On the evolution of resonance states, to appear in Math. Anal. Appl.

