JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

OMAR DEBBAJ

Régularité höldérienne de certains problèmes aux limites elliptiques singuliers

Journées Équations aux dérivées partielles (1983), p. 1-12 http://www.numdam.org/item?id=JEDP_1983____A7_0

© Journées Équations aux dérivées partielles, 1983, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

REGULARITE HÖLDERIENNE DE CERTAINS PROBLEMES

AUX LIMITES ELLIPTIQUES SINGULIERS

par O. DEBBAJ

Soient Ω un ouvert borné assez régulier dans \mathbb{R}^n et Ψ une fonction positive dans Ω assez régulière et équivalente à la distance au bord. Soit L un opérateur du second ordre, elliptique dans Ω et dégénéré au bord Γ = $\partial\Omega$, du type

$$L = \Lambda^* \Lambda + \psi^2 P + \psi \Lambda Q + R$$

avec Λ un champ de vecteurs réels, C^{∞} et transversal à Γ , P un opérateur différentiel du second ordre à coefficients C^{∞} dans $\overline{\Omega}$ et Q et R deux opérateurs différentiels du premier ordre à coeffcients C^{∞} dans $\overline{\Omega}$.

Soit γ l'application trace sur $\Gamma.$ On va donner ici un résultat de régularité Höldérienne du problème du Dirichlet

(*)
$$\begin{cases} L u = f \text{ dans } \Omega \\ \gamma u = \psi \text{ sur } \Gamma \end{cases}$$

L'étude de la régularité H^S des problèmes de type (*) est classique voir par exemple M.S. Baouendi [2], M.I. Višik-V.V. Grušin [16], P. Bolley-J. Camus-B. Helffer [4],... La régularité Höldérienne pour les problèmes aux limites elliptiques est étudié par S. Agmon-A. Douglis-L. Nirenberg [1]. La régularité Höldérienne des problèmes aux limites pour d'autres opérateurs elliptiques dégénérés est étudiée récemment par C. Goulaouic-N. Shimakura [12] et aussi par Damlakhi [8] avec, pour ce dernier, des donnés dans des espaces de Hölder avec poids.

Dans le cas qui nous intéresse ici, on suivra une méthode totalement différente de [12] et [8], on construit les "noyaux de Poisson et de Green" du problème (*), puis on étudie leurs actions sur les espaces de Hölder. Pour étudier l'action du noyau de Green sur les espaces de Hölder on aura besoin d'étudier l'action des opérateurs OPS^{m,k} de L. Boutet de Monvel [6] sur ces espaces.

Avant de préciser les hypothèses et l'énoncé du résultat principal je tiens à remercier J. Camus pour sa contribution à la réalisation de ce travail ainsi que G. Métivier et J.F. Nourrigat.

Précisons maintenant les hypothèses et l'énoncé du résultat. Soit Ω un ouvert borné de \mathbb{R}^n de bord Γ . On suppose que $\overline{\Omega}$ est une variété à bord de classe C^{∞} . On se donne une fonction $\Psi \in C^{\infty}(\mathbb{R}^n,\mathbb{R})$ et vérifiant :

$$\begin{cases}
\Omega = \{x \in \mathbb{R}^n ; \ \varphi(x) > 0\} \\
\Gamma = \{x \in \mathbb{R}^n ; \ \varphi(x) = 0\} \\
\text{grand } \varphi \neq 0 \text{ sur } \Gamma
\end{cases}$$

Pour $\mu \in]0,1[$ nous notons

$$c^{\mu}(\overline{\Omega}) = \{ u \in c^{\circ}(\overline{\Omega}) ; ||u||_{\mu} = \sup_{\Omega} |u| + \sup_{\substack{\Omega \times \Omega \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{\mu}} < +\infty \}$$

Plus généralement, pour $\ell \in \mathbb{N}$, $\mu \in]0,1[$ et comme ci-dessus

nous notons

$$\begin{cases} c^{\ell+\mu}(\overline{\Omega}) = \{u \in c^{\circ}(\overline{\Omega}) ; \ \partial^{\alpha}u \in c^{\mu}(\overline{\Omega}) \text{ pour } |\alpha| \leq \ell \} \\ \\ c^{\ell+1+\mu}(\overline{\Omega}) = \{u \in c^{\ell+1+\mu}(\overline{\Omega}) ; \psi^{2}u \in c^{\ell+2+\mu}(\overline{\Omega}) \} \\ \\ c^{\ell+1+\mu}(\overline{\Omega}) = \{u \in c^{\ell+1+\mu}(\overline{\Omega}) ; \Lambda^{2}u \in c^{\ell+\mu}(\overline{\Omega}) \} \end{cases}$$

munis des normes naturelles.

On notera P_2 , Q_1 et R_1 les parties principales respectivement de P, Q et R. On fait les hypothèses suivantes :

- (H_o) L'opérateur L est elliptique dans Ω .
- (H₁) Pour tout $x \in \Gamma$ et pour tout $\xi \in T_x^* \Gamma \setminus \{0\}$ le polynôme $P(\tau) = \tau^2 + i Q_1(x,\xi)\tau + P_2(x,\xi) \text{ admet deux racines } \tau_+(x,\xi)$ et $\tau_-(x,\xi)$ telles que Im $\tau_+(x,\xi) > 0$ et Im $\tau_-(x,\xi) < 0$.

Pour tout $x \in \Gamma$, pour tout $\xi \in T_{\mathbf{v}}^{*} \Gamma \setminus \{0\}$ tel que le problème (H_2)

$$\begin{cases} L_{o}(x,t,\xi,D_{t}) & u(t) = 0 \\ u(o) = 0 \end{cases}$$

n'admet que la solution u = 0 dans $\Im(\overline{\mathbb{R}}_{1})$.

 $L_{O}(x,t,\xi,D_{t})$ étant l'opérateur différentiel défini par

$$L_o(x,t,\xi,D_t) = D_t^2 + t^2 P_2(x,\xi) + i Q_1(x,\xi)t D_t + R_1(x,\xi).$$

On peut, maintenant, énoncer le résultat principal :

Sous les hypothèses (H), (H₁) et (H₂) on a : pour $\ell \in \mathbb{N}$ et $\mu \in]0,1[$, pour $f \in \mathcal{C}^{\ell+\mu}(\overline{\Omega})$ et $\psi \in \mathcal{C}^{\ell+1+\mu}(\Omega)$ si $u \in \mathcal{H}^{\mathcal{S}}(\overline{\Omega})$ avec $s > \frac{1}{2}$ est

$$\begin{cases} & L \ u = f \ dans \ \Omega \\ & \gamma \ u = \psi \ sur \ \Gamma \end{cases}$$
 alors $u \in \Gamma_{\varphi}^{\ell+1+\mu}(\overline{\Omega})$.

Pour établir ce théorème on construit un noyau de Poisson $\mathcal{F} \in \mathcal{Z}(C^{\infty}(\Gamma), C^{\infty}(\overline{\Omega})) \text{ et un noyau de Green } \mathcal{G} \in \mathcal{Z}(C^{\infty}(\overline{\Omega}), C^{\infty}(\overline{\Omega})) \text{ qui se prolongent respectivement de } C^{\ell+1+\mu}(\Gamma) \text{ dans } C^{\ell+1+\mu}(\overline{\Omega}) \text{ et de } C^{\ell+\mu}(\overline{\Omega}) \text{ dans } C^{\ell+1+\mu}(\overline{\Omega})$ et tels que :

$$\begin{array}{c|c}
\Gamma & \mathcal{P} \Psi = C^{\infty}(\overline{\Omega}) \\
 & \gamma & \mathcal{P} \Psi = C^{\infty}(\overline{\Omega})
\end{array}$$

et

$$\begin{cases} L & \text{Gf} - f \in C^{\infty}(\overline{\Omega}) \\ & & \\ & & \\ & & \\ & & \\ & &$$

De la régularité H^S du problème (*) on déduit que $\mathbf{v} = \mathbf{u} - (\mathbf{\hat{q}} \mathbf{f} + \mathbf{\hat{J}} \mathbf{\Psi}) \in C^{\infty}(\overline{\Omega}). \text{ Il en résulte que } \mathbf{u} \in \mathbf{L}^{\ell+1+\mu}(\overline{\Omega}).$

On va donner les grandes lignes de la démonstration de ce théorème. D'abord on commence par localiser le problème. On notera $\mathbf{x}=(\mathbf{x}',\mathbf{x}_n)\in\mathbb{R}^{n-1}$ x \mathbb{R} et $\xi=(\xi',\xi_n)\in\mathbb{R}^{n-1}$ x \mathbb{R} . Dans une carte locale convenable l'opérateur L s'écrit sous la forme :

$$L = D_{\mathbf{x}_{n}}^{2} + \sum_{j=1}^{n-1} a_{j}(\mathbf{x}) \times_{n} D_{\mathbf{x}_{n}} D_{\mathbf{x}_{n}} + \sum_{j,k=1}^{n-1} b_{jk}(\mathbf{x}) \times_{n}^{2} D_{\mathbf{x}_{n}} D_{\mathbf{x}_{k}} + c(\mathbf{x}) D_{\mathbf{x}_{n}} + \sum_{j=1}^{n-1} d_{j}(\mathbf{x}) D_{\mathbf{x}_{j}} + e(\mathbf{x}).$$

où les coefficients sont des fonctions C^{∞} sur $\overline{\mathbb{R}}^n_+$.

Soient ($\rm H_0$)', ($\rm H_1$)' et ($\rm H_2$)' les hypothèses ($\rm H_0$), ($\rm H_1$) et ($\rm H_2$) traduites dans le demi-espace :

 $(H_0)'$ L'opérateur L est elliptique pour $x_n \neq 0$

 $(\mathtt{H}_1)' \qquad \text{Pour tous } \mathtt{x'} \in \mathbb{R}^{n-1} \text{ et } \xi' \in \mathbb{R}^{n-1} \backslash \{0\} \text{ le polynôme en } \xi_n$ $\xi_n^2 + \sum_{j=1}^{n-1} a_j(\mathtt{x'}, \mathtt{o}) \xi_j \xi_n + \sum_{j,k=1}^{n-1} b_{jk}(\mathtt{x'}, \mathtt{o}) \xi_j \xi_k \text{ admet deux racines}$ $\xi_n^+(\mathtt{x'}, \xi') \text{ et } \xi_n^-(\mathtt{x'}, \xi') \text{ avec Im } \xi_n^+(\mathtt{x'}, \xi') > 0 \text{ et Im } \xi_n^-(\mathtt{x'}, \xi') < 0.$

(H₂)' Pour tous $x' \in \mathbb{R}^{n-1}$ et $\xi' \in \mathbb{R}^{n-1} \setminus \{0\}$ le problème

$$\begin{cases} L_o(x,\xi',D_{x_n}) & u(x_n) = 0 \\ u(o) = 0 \\ u \in \mathcal{G}(\overline{\mathbb{R}}_+) \end{cases}$$

n'admet que la solution identiquement nulle.

On commence par étudier le noyau de Poisson associé à L.

Noyau de Poisson:

Un noyau de Poisson $\mathscr{T}\in\mathcal{X}^m$ est un opérateur de $C^\infty_{\text{comp}}(\mathbb{R}^{n-1})$ dans $C^\infty_{\text{loc}}(\bar{\mathbb{R}}^n_+)$ tel que

$$\mathcal{G}_{\Psi}(\mathbf{x}) = (2\Pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} e^{i\mathbf{x}' \cdot \xi'} p(\mathbf{x}, \xi') \hat{\psi}(\xi') d\xi'$$

où $p(x,\xi')$ est une fonction C^{∞} sur \mathbb{R}^n_+ x \mathbb{R}^{n-1} qui vérifie pour tous $M \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$ et $\beta' \in \mathbb{N}^{n-1}$ et pour tout compact K de $\overline{\mathbb{R}}^n_+$ il existe une constante C > 0 telle que

$$|\mathbf{x}_{\mathbf{n}}^{\mathsf{M}} \partial_{\mathbf{x}}^{\alpha} \partial_{\xi'}^{\beta'} p(\mathbf{x},\xi')| \leq C(1+|\xi'|)^{\mathsf{m}} - |\beta'| + \frac{\alpha_{\mathbf{n}}}{2} - \frac{\mathsf{M}}{2}$$

pour tous $x \in K$ et $\xi' \in \mathbb{R}^{n-1}$.

Alors en s'inspirant de certains travaux de L. Boutet de Monvel [5] et de F. Trèves [15] et en utilisant quelques résultats de P. Bolley-J. Camus-B. Helffer [4] on montre ([7] ou [8]):

Théorème 1 : (Noyau de Poisson)

Sous les hypothèses $(H_0)'$, $(H_1)'$ et $(H_2)'$ il existe $\mathcal{L} \in \mathcal{K}$

tel que

$$\int_{C} L \mathcal{D} \in \mathcal{L}(C_{comp}^{\mu}(\mathbb{R}^{n-1}), C^{\infty}(\overline{\mathbb{R}}_{+}^{n}))$$

$$\gamma \mathcal{D} - I \in \mathcal{L}(C_{comp}^{\mu}(\mathbb{R}^{n-1}), C^{\infty}(\mathbb{R}^{n-1}))$$

On a de plus,

Théorème 2 :

Un noyau de Poisson $(\overline{\mathbb{R}}^n)$ se prolonge, pour tous $\ell \in \mathbb{N}$ et $\mu \in [0,1[$, en un opérateur linéaire continu de $\mathcal{C}^{\ell+1+\mu}_{comp}(\mathbb{R}^{n-1})$ dans $\mathcal{C}^{\ell+1+\mu}_{x_n,loc}(\mathbb{R}^n) = \{u \in \mathcal{C}^{\ell+1+\mu}_{loc}(\mathbb{R}^n); x_n^2 u \in \mathcal{C}^{\ell+2+\mu}_{loc}(\mathbb{R}^n) \text{ et } \partial_{x_n}^2 u \in \mathcal{C}^{\ell+\mu}_{loc}(\mathbb{R}^n) \}$.

Pour démontrer le théorème 2, on étudie le noyau distribution $K(x',x_n,y')$ de S et on montre (cf [11]), en procédant un peu comme dans [7] ou [3], que $K(x',x_n,y') \in C^{\infty}(\mathbb{R}^{n-1} \times \mathbb{R}_+ \times \mathbb{R}^{n-1})$ et se prolonge en une fonction C^{∞} sur $\mathbb{R}^{n-1} \times \overline{\mathbb{R}}_+ \times \mathbb{R}^{n-1} - \Delta$ où $\Delta = \{(x',o,y'), x' = y'\}$ et vérifie

(i)
$$\forall$$
 K compact $\subseteq \mathbb{R}^{n-1}$, $\forall \alpha \in \mathbb{N}^n$ avec $|\alpha| \leqslant 1$, \exists $C_K > 0$ tel que

$$|\partial_{\mathbf{x}}^{\alpha} K(\mathbf{x',x_n,y'})| \leq C_K(|\mathbf{x'-y'}| + \mathbf{x_n^2})^{-n+1-|\alpha'|}$$

pour tous $x' \in K$, $x_n \in]0,1[, y' \in \mathbb{R}^{n-1}]$

(ii) $\forall \ \chi \in C_0^\infty(\mathbb{R}^{n-1}), \ \text{la fonction} \ \int K(x',x_n,y') \ \chi(x'-y') \, \mathrm{d}y' \ \text{se prolonge en une fonction} \ C^\infty \ \text{sur} \ \overline{\mathbb{R}}^n_+. \ \text{De plus,} \ \forall \ R \geqslant 1, \ \forall \ K \ \text{compact de} \ \mathbb{R}^{n-1}, \ \mathcal{J} \ C > 0 \ \text{tel que} \ \forall \ \delta \in \]0,\mathbb{R}[\ , \ \forall \ x' \in K \ \text{et} \ x_n \in \]0,\mathbb{R}[$

$$\left| \int K(x',x_n,y') dy' \right| \leq C$$

$$\delta < |x'-y'| \leq R$$

Nous obtenons par un découpage d'intégrales comme dans [14],

Théorème 3 :

Soit $K(x',x_n,y') \in C^{\infty}(\mathbb{R}^{n-1} \times \overline{\mathbb{R}}_+ \times \mathbb{R}^{n-1} - \Delta)$ et vérifiant (i) et (ii) ci-dessus. Alors l'opérateur A défini par

$$A u(x) = \int K(x', x_n, y') u(y') dy'$$

se prolonge, pour tout $\mu \in]0,1[$, en un opérateur linéaire continu de $C_{comp}^{\mu}(\mathbb{R}^{n-1})$ dans $C_{loc}^{\mu}(\overline{\mathbb{R}}_{+}^{n})$.

Par suite, du théorème 3, on déduit qu'un noyau de Poisson $\widehat{\mathcal{D}}\in \mathcal{K}^{\circ}(\overline{\mathbb{R}}^n_+)$ se prolonge en un opérateur linéaire continu de $C^{\mu}_{\text{comp}}(\mathbb{R}^{n-1})$ dans $C^{\mu}_{\text{loc}}(\mathbb{R}^{n-1})$. Et par "dérivation et intégrations par parties" on déduit le théorème 2.

On étudie maintenant le noyau de Green :

Noyau de Green:

On commence par prolonger les coefficients de l'opérateur L en des fonctions C^{∞} sur \mathbb{R}^n de sorte que la condition d'ellipticité (H_0) soit satisfaite pour tout $\mathbf{x}_n \neq 0$. Soit alors \sum la variété caractéristique associée à L; vu l'hypothèse $(H_0)'$, $\sum = \{(\mathbf{x}, \xi) \in \mathbb{R}^n \times \mathbb{R}^n \setminus \{0\}, \mathbf{x}_n = \xi_n = 0\}$.

On notera $\Omega=\mathbb{R}^n_+$ et on dira qu'on opérateur P sur \mathbb{R}^n admet la propriété de transmission si pour tout $u\in C^\infty_{\operatorname{comp}}(\overline{\Omega})$, $P(u^\circ)\big|_{\Omega}\in C^\infty(\overline{\Omega})$; u° désignant le prolongement de u à \mathbb{R}^n par 0 dans \mathbb{R}^n . Et on notera par P^Ω l'opérateur $u\to P(u^\circ)\big|_{\Omega}$.

En utilisant encore certains travaux de Boutet de Monvel [5] et [6] on montre [11].

<u>Théorème 4</u>: (Noyau de Green)

Sous les hypothèses $(H_0)'$, $(H_1)'$ et $(H_2)'$ il existe $Q \in \mathit{OPS}^{-2,-2}(\mathbb{R}^n, \Sigma)$, possèdant la propriété de transmission et un opérateur $Q \in \mathit{OPS}^{-1}(\mathbb{R}^n, \Sigma)$ tels que l'opérateur $Q = Q^\Omega - Q^\Omega + Q^\Omega + Q^\Omega$ vérifie

$$L \subseteq -I \in \mathcal{I}(\mathcal{C}_{comp}^{\mu}(\overline{\Omega}), \mathcal{C}^{\infty}(\overline{\Omega}))$$

$$\gamma \hat{q} \in \mathcal{I}(\mathcal{C}_{comp}^{\mu}(\overline{\Omega}), \mathcal{C}^{\infty}(\Gamma))$$

(\widehat{f} étant un noyau de Poisson appartenant à \widehat{f} proprement supporté associé à I opérateur I).

De $(H_0)'$ et $(H_1)'$ on déduit que L est transversalement elliptique. Ceci permet de construire explicitement le symbole q de Q sous forme d'un développement asymptotique. Et alors on vérifie que q satisfait la "condition de transmission". Pour construire H on utilise une méthode un peu analogue à celle utilisée pour construire le noyau de Poisson.

Théorème 5:

Le noyau de Green G, défini ci-dessus, se prolonge pour $\ell \in \mathbb{N}$ et $\mu \in]0,1[$ en un opérateur linéaire continu de $\mathcal{C}_{comp}^{\ell+\mu}(\overline{\mathbb{R}}^n)$ dans $\mathcal{C}_{x_n}^{\ell+1+\mu}(\overline{\mathbb{R}}^n)$.

Remarque: On retrouve et on améliore, dans un cas particulier, un résultat de régularité Höldérienne à l'intérieur obtenu récemment par L. Rothschild-E. Stein [13]. Pour démontrer le théorème 5, on est amené à étudier essentiellement l'action des opérateurs $OPS^{-2}, ^{-2}(\mathbb{R}^n, \Sigma)$ sur les espaces de Hölder. En fait, on étudie les opérateurs $OPS^{-1}, ^{-2}(\mathbb{R}^n, \Sigma) \subset OPS^o, ^o(\mathbb{R}^n, \Sigma) \subset OPS^o, ^o(\mathbb{R}^n, \Sigma)$ et par dériva-

tion on déduit le résultat pour les opérateurs $OPS^{-2}, ^{-2}(\mathbb{R}^n, \mathbb{Z})$. Pour ceci on a besoin de faire une étude fine des noyaux distribution associés aux opérateurs $OPS^{-1}, ^{-2}(\mathbb{R}^n, \mathbb{Z})$. Soit $\mathcal{K}(x, x-y)$ le noyau distribution associé à un opérateur $A \in OPS^{-1}, ^{-2}(\mathbb{R}^n, \mathbb{Z})$ modulo un régularisant. Alors $\mathcal{K}(x, z) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \setminus \{0\})$ et vérifie (cf [11]).

(i)
$$\forall \text{ compact } K \subseteq \mathbb{R}^n, \ \exists \ C_K > 0 \text{ tel que } \forall \ \alpha, \ \beta \in \mathbb{N}^n \text{ avec}$$

$$|\alpha'| + |\beta'| \leqslant 1 \text{ et } \alpha_n + \beta_n = 1 \text{ on ait}$$

$$\left\{ \begin{array}{l} |\partial_{\mathbf{x}}^{\alpha'}, \ \partial_{\mathbf{z}}^{\beta'}, \ \chi(\mathbf{x}, \mathbf{z})| \leqslant C_K(|\mathbf{z}'| + z_n^2)^{-n} | \ Log(|\mathbf{z}'| + z_n^2)| \end{array} \right.$$

$$\left\{ \begin{array}{l} |\partial_{\mathbf{x}_n}^{\alpha}, \ \partial_{\mathbf{z}_n}^{\beta}, \ \chi(\mathbf{x}, \mathbf{z})| \leqslant C_K(|\mathbf{z}'| + z_n^2)^{-n} | \ Log(|\mathbf{z}'| + z_n^2)| \end{array} \right.$$

 $\forall x \in K \text{ et } z \in \mathbb{R}^n \setminus \{0\}.$

(ii) Il existe des fonctions $\mathcal{K}_{j} \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n} \setminus \{0\})$; j = 1, ..., n-1, telles que $\mathcal{K} = \sum_{j=1}^{n-1} \partial_{z_{j}} \mathcal{K}_{j}$ et vérifiant pour tout compact $K \subseteq \mathbb{R}^{n}$, il existe une constante $C_{K} > 0$ telle que, pour tout j = 1, ..., n-1, $|K_{j}(x,z)| \leq C_{K}(|z'| + z_{n}^{2})^{-n} + \frac{3}{2}$

pour tous $x \in K$ et $z \in \mathbb{R}^n \setminus \{0\}$.

Soit $\theta \in C_0^\infty(\mathbb{R}^n)$ avec θ = 1 dans un voisinage de z = 0 et soit $K_{\theta}(x,.)$ la distribution sur \mathbb{R}^n associé à $\mathcal{K}(x,.)$ défini pour $u \in C_0^\infty(\mathbb{R}^n)$ par

$$\langle K_{\theta}(x,.), u \rangle = \int \mathcal{K}(x,z) (u(z) - u(0)\theta(z)) dz$$

Soit maintenant \mathcal{K}_{θ} l'opérateur défini sur $\operatorname{C}_{o}^{\infty}(\operatorname{I\!R}^{n})$ par

$$\mathcal{K}_{\theta} u(x) = (K_{\theta}(x, .) * u)(x)$$
$$= \left[\mathbf{K}(x, z) (u(x-z) - u(x)\theta(z)) dz \right]$$

Alors par un découpage d'intégrale nous obtenons (cf [11]) :

L'opérateur θ , défini ci-dessus, se prolonge pour tout $\mu \in]0,1[$, en un opérateur linéaire continu de $\mathcal{C}^{\mu}_{comp}(\mathbb{R}^n)$ dans $\mathcal{C}^{\mu}_{loc}(\mathbb{R}^n)$.

Du théorème 6, on déduit que A se prolonge en un opérateur linéaire continu de $C_{comp}^{\mu}(\mathbb{R}^n)$ dans $C_{loc}^{\mu}(\mathbb{R}^n)$. En fait on a :

Un opérateur $A \in OPS^{-1,-2}(\mathbb{R}^n, \mathbb{N})$, se prolonge en un opérateur linéaire continu de $C^{\mu}_{comp}(\mathbb{R}^n)$ dans $C^{\mu}_{x_n,loc}(\mathbb{R}^n) = \{u \in C^{\mu}_{loc}(\mathbb{R}^n) ; x_n^2 \ u \in C^{1+\mu}_{loc}(\overline{\mathbb{R}}^n_+)\}$.

Pour avoir le théorème 7, il reste à montrer que l'opérateur (cf [11]) que K(x,x-y) s'écrit essentiellement sous la forme :

$$f(x,z) = f_1(x,z) + f_2(x,z)$$

avec $\mathcal{K}_{l}(\mathbf{x},\mathbf{z}) \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n} \setminus \{0\})$ et vérifiant les propriétés (i) et (ii) précédentes et $\mathcal{K}_2(\mathbf{x},\mathbf{z}) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \setminus \{0\})$ et vérifiant :

 \forall compact $K \subseteq \mathbb{R}^n$, \exists $C_K > 0$ tel que \forall α , $\beta \in \mathbb{N}^n$ avec (i)' $|\alpha| + |\beta| \le 1$ on ait

$$\begin{cases} |\mathcal{K}_{2}(x,z)| \leq C_{K} |x_{n}^{2}(|z'| + |x_{n}| |z_{n}|)^{-n-1} \\ |\partial_{x}^{\alpha} |\partial_{z}^{\beta} |\mathcal{K}_{2}(x,z)| \leq C_{K}|x_{n}| (|z'| + |x_{n}| |z_{n}|)^{-n-|\alpha|-|\beta|} \end{cases}$$

pour tous $x \in K$ avec $x_n \neq 0$ et $z \in \mathbb{R}^n \setminus \{0\}$.

 $J_{\kappa_{2j}(x,z)} \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \setminus \{0\}), j = 1,...,n-1, telles que pour$ (ii)' tout j = 1,...,n-1 on ait : \forall compact $K \subset {\rm I\!R}^n$, \exists $C_K^- > 0$ tel que :

$$|K_{2j}(x,z)| \le C_K |x_n| (|z'| + |x_n| |z_n|)^{-n+1}$$

 $\forall x \in K, x_n \neq 0 \text{ et } z \in \mathbb{R}^n \setminus \{0\}.$

Soit, comme précédemment, $\mathcal{K}_{2\theta}$ l'opérateur associé à $\mathcal{K}_2(x,z)$. Alors on déduit le théorème 7 du théorème 6 et du théorème 8 suivant (cf [11]):

Théorème 8: L'opérateur $K_{2\theta}$ se prolonge, pour tout $\mu \in]0,1[$, en un opérateur linéaire continu de $C^\mu_{comp}(\mathbb{R}^n)$ dans $C^\mu_{loc}(\mathbb{R}^n)$.

Par suite, par "dérivation et intégration par parties" on montre qu'un opérateur $Q \in OPS^{-2,-2}(\mathbb{R}^n, \mathbb{N})$, à fortiori un opérateur d'Hermite $\mathbb{H} \in OP\mathcal{H}^{-1}(\mathbb{R}^n, \mathbb{N})$, se prolonge, pour tous $\ell \in \mathbb{N}$ et $\mu \in]0,1[$, en un opérateur linéaire continu de $C_{comp}^{\ell+\mu}(\mathbb{R}^n)$ dans $\Gamma_{x_n,loc}^{\ell+l+\mu}(\mathbb{R}^n)$. Si de plus Q possède la propriété de transmission, Q^{Ω} se prolonge, pour tous $\ell \in \mathbb{N}$ et μ]0,1[en un opérateur linéaire continu de $C_{comp}^{\ell+\mu}(\mathbb{R}^n)$ dans $\Gamma_{x_n,loc}^{\ell+l+\mu}(\mathbb{R}^n)$. Mais si \mathbb{H} est un opérateur d'Hermite appartenant à $OP\mathcal{H}^{-1}(\mathbb{R}^n,\mathbb{N})$, \mathbb{H}^{Ω} se prolonge toujours en un opérateur linéaire continu de $C_{comp}^{\ell+\mu}(\mathbb{R}^n,\mathbb{N})$, \mathbb{H}^{Ω} se prolonge toujours en un opérateur linéaire continu de $C_{comp}^{\ell+\mu}(\mathbb{R}^n,\mathbb{N})$ dans $C_{x_n,loc}^{\ell+l+\mu}(\mathbb{R}^n)$.

Exemple:

Considérons dans \mathbb{R}^2 , l'opérateur $L_{\lambda} = \mathbb{D}_{t}^2 + t^2 \mathbb{D}_{x}^2 + \lambda \mathbb{D}_{x}$ avec $\lambda \neq -2k+1$, $k \in \mathbb{N} - \{0\}$ ([14] et [9]). Alors on a pour $\ell \in \mathbb{N}$ et $\mu \in [0,1]$, pour $f \in C_{\text{comp}}^{\ell+\mu}(\mathbb{R}^2)$ et $\psi \in C_{\text{comp}}^{\ell+l+\mu}(\mathbb{R})$ si $u \in H_{1oc}^{s}(\mathbb{R}^2)$, $s > \frac{1}{2}$ est solution du problème du Dirichlet :

$$\begin{cases} L_{\lambda} u = f \text{ dans } \mathbb{R}^2_+ \\ \gamma u = \psi \text{ sur } \mathbb{R} \end{cases}$$

alors $u \in C_{\mathbf{x}_{0}}^{\ell+1+\mu}(\overline{\mathbb{R}}^{2}_{+}) = \{u \in C_{1\text{oc}}^{\ell+1+\mu}(\overline{\mathbb{R}}^{2}_{+})/\partial_{t}^{2}u \in C_{1\text{oc}}^{\ell+\mu}(\overline{\mathbb{R}}^{2}_{+}) \text{ et } t^{2}u \in C_{1\text{oc}}^{\ell+2+\mu}(\overline{\mathbb{R}}^{2}_{+})\}.$

BIBLIOGRAPHIE

- [1]: S. AGMON A. DOUGLIS L. NIRENBERG: "Estimates near the Boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I*. Comm. on pure and applied math, Vol XII, 623-727 (1959).
- [2]: M.S. BAOUENDI: "Sur une classe d'opérateurs elliptiques dégénérés". Bull. Soc. Math. France, 95 (1967) pp. 45-87.
- [3]: M.S. BAOUENDI C. GOULAOUIC G. METIVIER: "Kernels and symbols of Analytic pseudodifferential operators". Journal of differential equations 48, 227-240 (1983).
- [4]: P. BOLLEY J. CAMUS B. HELFFER: "Sur une classe d'opérateurs partiellement hypoelliptiques". J. Math. Pures et Appl., 56, 1976, p. 131-171.
- [5]: L. BOUTET DE MONVEL: "Comportement d'un opérateur pseudo-différentiel sur une variété à bord". J. Anal. Math. 17, 1966.
- [6]: L. BOUTET DE MONVEL: "Hypoelliptic operators with double caracteristics and related pseudodifferential operators". Comm. on pure and applied, math., vol. 27, 1974.
- [7]: R.R. COIFMAN Y. MEYER: "Au-delà des opérateurs pseudo-différentiels".

 Astérisque 57, 1978.
- [8]: M. DAMLAKHI: Thèse, Orsay 1982.
- [9]: O. DEBBAJ: "Indice de certains problèmes à dérivée oblique associés à des opérateurs elliptiques singuliers". Thèse de 3ème Cycle, Rennes, Mars 1979.
- [10] : O. DEBBAJ A. SOUISSI : "Problème à dérivée oblique associé à des opérateurs elliptiques singuliers". Coll. E.D.P. de St Cast, 1979.
- [11]: O. DEBBAJ: "Régularité Höldérienne de certains problèmes aux limites singuliers". Thèse. Rennes (1983).
- [12] : C. GOULAOUIC N. SHIMAKURA : "Régularité Höldérienne de certains problèmes aux limites elliptiques dégénérés". Coll. E.D.P. St Jean de Monts, 1981.

- [13]: L. ROTHSCHILD E.M. STEIN: "Hypoelliptic differential operators and nilpotent groups". Acta Mathematica 137, 248-315.
- [14]: E.M. STEIN: "Singular integrals and differentiability properties of functions". Princeton University Press Princeton, New-Jersey, 1970
- [15]: F. TREVES: "Parametrix of generalised heat equations applied to the regularity up to the boundary of elliptic boundary value problems". (Rutgers University 1976).
- [16]: M.I. VIŠIK V.V. GRUŠIN: "On class of higher degenerate elliptic equations". Math. U.S.S.R. Sbornik, Vol. 8 (1969) N° 1.