We prove that the function that maps a word of a rational language onto its successor for the radix order in this language is a finite union of co-sequential functions.
Classification : 68Q45, 68Q70
Mots clés : finite automata, rational functions of words, sequential transducers
@article{ITA_2010__44_1_19_0, author = {Angrand, Pierre-Yves and Sakarovitch, Jacques}, title = {Radix enumeration of rational languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {19--36}, publisher = {EDP-Sciences}, volume = {44}, number = {1}, year = {2010}, doi = {10.1051/ita/2010003}, zbl = {1186.68243}, mrnumber = {2604933}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2010003/} }
TY - JOUR AU - Angrand, Pierre-Yves AU - Sakarovitch, Jacques TI - Radix enumeration of rational languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 DA - 2010/// SP - 19 EP - 36 VL - 44 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2010003/ UR - https://zbmath.org/?q=an%3A1186.68243 UR - https://www.ams.org/mathscinet-getitem?mr=2604933 UR - https://doi.org/10.1051/ita/2010003 DO - 10.1051/ita/2010003 LA - en ID - ITA_2010__44_1_19_0 ER -
Angrand, Pierre-Yves; Sakarovitch, Jacques. Radix enumeration of rational languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 19-36. doi : 10.1051/ita/2010003. http://www.numdam.org/articles/10.1051/ita/2010003/
[1] Sequential transducer cascades. In preparation.
, and ,[2] Transductions and Context-Free Languages. Teubner (1979). | Zbl 0424.68040
,[3] On the cost and complexity of the successor function, in Proc. WORDS 2007, edited by P. Arnoux, N. Bédaride and J. Cassaigne, Tech. Rep., Institut de mathématiques de Luminy (Marseille) (2007) 43-56.
, , and ,[4] On the concrete complexity of the successor function. In preparation.
, , and ,[5] Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles. Theoret. Comput. Sci. 5 (1977) 325-337. | Zbl 0376.94022
,[6] Décomposition de fonctions rationnelles, Proc. STACS'86 , edited by B. Monien, G. Vidal-Naquet. Lect. Notes Comput. Sci. 210 (1986) 213-226. | Zbl 0605.68071
and ,[7] Automata, Languages and Machines, Vol. A, Academic Press (1974). | Zbl 0359.94067
,[8] Numeration systems on a regular language. Theor. Comput. Syst. 34 (2001) 27-44. | Zbl 0969.68095
and ,[9] Finite automata. Handbook of Theoretical Computer Science Vol. B, edited by J. van Leeuwen. Elsevier (1990) 1-53. | Zbl 0900.68312
,[10] Une caractérisation de la finitude de l'ensemble des coefficients d'une série rationnelle en plusieurs variables non commutatives. C. R. Acad. Sci. Paris 284 (1977) 1159-1162. | Zbl 0357.94024
,[11] Deux remarques sur un théorème de S. Eilenberg. RAIRO-Theor. Inf. Appl. 17 (1983) 23-48. | Numdam | Zbl 0512.68063
,[12] Eléments de théorie des automates. Vuibert (2003). English corrected edition: Elements of Automata Theory, Cambridge University Press (2009). | Zbl 1178.68002
,[13] Sur une variante des fonctions séquentielles. Theoret. Comput. Sci. 4 (1977) 47-57. | Zbl 0366.68043
,[14] Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994) 331-347. | Zbl 0810.11006
,Cité par Sources :