Radix enumeration of rational languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 19-36.

We prove that the function that maps a word of a rational language onto its successor for the radix order in this language is a finite union of co-sequential functions.

DOI : https://doi.org/10.1051/ita/2010003
Classification : 68Q45,  68Q70
Mots clés : finite automata, rational functions of words, sequential transducers
@article{ITA_2010__44_1_19_0,
     author = {Angrand, Pierre-Yves and Sakarovitch, Jacques},
     title = {Radix enumeration of rational languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {19--36},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {1},
     year = {2010},
     doi = {10.1051/ita/2010003},
     zbl = {1186.68243},
     mrnumber = {2604933},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2010003/}
}
TY  - JOUR
AU  - Angrand, Pierre-Yves
AU  - Sakarovitch, Jacques
TI  - Radix enumeration of rational languages
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2010
DA  - 2010///
SP  - 19
EP  - 36
VL  - 44
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2010003/
UR  - https://zbmath.org/?q=an%3A1186.68243
UR  - https://www.ams.org/mathscinet-getitem?mr=2604933
UR  - https://doi.org/10.1051/ita/2010003
DO  - 10.1051/ita/2010003
LA  - en
ID  - ITA_2010__44_1_19_0
ER  - 
Angrand, Pierre-Yves; Sakarovitch, Jacques. Radix enumeration of rational languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 19-36. doi : 10.1051/ita/2010003. http://www.numdam.org/articles/10.1051/ita/2010003/

[1] P.-Y. Angrand, J. Sakarovitch and R. De Souza, Sequential transducer cascades. In preparation.

[2] J. Berstel, Transductions and Context-Free Languages. Teubner (1979). | Zbl 0424.68040

[3] V. Berthé, Ch. Frougny, M. Rigo and J. Sakarovitch, On the cost and complexity of the successor function, in Proc. WORDS 2007, edited by P. Arnoux, N. Bédaride and J. Cassaigne, Tech. Rep., Institut de mathématiques de Luminy (Marseille) (2007) 43-56.

[4] V. Berthé, Ch. Frougny, M. Rigo and J. Sakarovitch, On the concrete complexity of the successor function. In preparation.

[5] Ch. Choffrut, Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles. Theoret. Comput. Sci. 5 (1977) 325-337. | Zbl 0376.94022

[6] Ch. Choffrut and M.P. Schützenberger, Décomposition de fonctions rationnelles, Proc. STACS'86 , edited by B. Monien, G. Vidal-Naquet. Lect. Notes Comput. Sci. 210 (1986) 213-226. | Zbl 0605.68071

[7] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press (1974). | Zbl 0359.94067

[8] P. Lecomte and M. Rigo, Numeration systems on a regular language. Theor. Comput. Syst. 34 (2001) 27-44. | Zbl 0969.68095

[9] D. Perrin, Finite automata. Handbook of Theoretical Computer Science Vol. B, edited by J. van Leeuwen. Elsevier (1990) 1-53. | Zbl 0900.68312

[10] Ch. Reutenauer, Une caractérisation de la finitude de l'ensemble des coefficients d'une série rationnelle en plusieurs variables non commutatives. C. R. Acad. Sci. Paris 284 (1977) 1159-1162. | Zbl 0357.94024

[11] J. Sakarovitch, Deux remarques sur un théorème de S. Eilenberg. RAIRO-Theor. Inf. Appl. 17 (1983) 23-48. | Numdam | Zbl 0512.68063

[12] J. Sakarovitch, Eléments de théorie des automates. Vuibert (2003). English corrected edition: Elements of Automata Theory, Cambridge University Press (2009). | Zbl 1178.68002

[13] M.P. Schützenberger, Sur une variante des fonctions séquentielles. Theoret. Comput. Sci. 4 (1977) 47-57. | Zbl 0366.68043

[14] J. Shallit, Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994) 331-347. | Zbl 0810.11006

Cité par Sources :