The main goal of this paper is the investigation of a relevant property which appears in the various definition of deterministic topological chaos for discrete time dynamical system: transitivity. Starting from the standard Devaney's notion of topological chaos based on regularity, transitivity, and sensitivity to the initial conditions, the critique formulated by Knudsen is taken into account in order to exclude periodic chaos from this definition. Transitivity (or some stronger versions of it) turns out to be the relevant condition of chaos and its role is discussed by a survey of some important results about it with the presentation of some new results. In particular, we study topological mixing, strong transitivity, and full transitivity. Their applications to symbolic dynamics are investigated with respect to the relationships with the associated languages.
Keywords: transitivity, chaos, symbolic dynamics, formal languages
@article{ITA_2006__40_2_333_0, author = {Cattaneo, Gianpiero and Dennunzio, Alberto and Farina, Fabio}, title = {A survey on transitivity in discrete time dynamical systems. {Application} to symbolic systems and related languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {333--352}, publisher = {EDP-Sciences}, volume = {40}, number = {2}, year = {2006}, doi = {10.1051/ita:2006016}, mrnumber = {2252643}, zbl = {1112.37005}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2006016/} }
TY - JOUR AU - Cattaneo, Gianpiero AU - Dennunzio, Alberto AU - Farina, Fabio TI - A survey on transitivity in discrete time dynamical systems. Application to symbolic systems and related languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 333 EP - 352 VL - 40 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2006016/ DO - 10.1051/ita:2006016 LA - en ID - ITA_2006__40_2_333_0 ER -
%0 Journal Article %A Cattaneo, Gianpiero %A Dennunzio, Alberto %A Farina, Fabio %T A survey on transitivity in discrete time dynamical systems. Application to symbolic systems and related languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 333-352 %V 40 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2006016/ %R 10.1051/ita:2006016 %G en %F ITA_2006__40_2_333_0
Cattaneo, Gianpiero; Dennunzio, Alberto; Farina, Fabio. A survey on transitivity in discrete time dynamical systems. Application to symbolic systems and related languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 40 (2006) no. 2, pp. 333-352. doi : 10.1051/ita:2006016. http://www.numdam.org/articles/10.1051/ita:2006016/
[1] The general topology of dynamical systems. Graduate Stud. Math. 1, American Mathematical Society, Providence (1993). | MR | Zbl
,[2] Li-Yorke sensitivity. Nonlinearity 16 (2003) 1421-1433. | MR | Zbl
and ,[3] Entropy and periodic points for transitive maps. Trans. Amer. Math. Soc. 351 (1999) 1551-1573. | MR | Zbl
, , and ,[4] A survey on the relation between transitivity and dense periodicity for graph maps. J. Diff. Equ. Appl. 9 (2003) 281-288. | MR | Zbl
, and ,[5] On Devaney's definition of chaos. Amer. Math. Montly 99 (1992) 332-334. | MR | Zbl
, , , and ,[6] Languages and subshifts, Automata on Infinite Words (Berlin), edited by M. Nivat and D. Perrin. Lect. Notes Comput. Sci. 192 (1985) 138-146. | MR | Zbl
and ,[7] Topological and measure-theoretic properties of one-dimensional cellular automata. Physica D 103 (1997) 86-99. | MR | Zbl
, and ,[8] Some properties of cellular automata with equicontinuity points, Ann. Inst. Henri Poincaré. Probab. Statist. 36 (2000) 569-582. | EuDML | Numdam | MR | Zbl
and ,[9] Periodic points for cellular automata. Indag. Math. 10 (1999) 483-493. | MR | Zbl
and ,[10] Subshift behavior of cellular automata. topological properties and related languages, Machines, Computations, and Universality, in 4th International Conference, MCU 2004 (Berlin). Lect. Notes Comput. Sci. 3354 (2005) 140-152. | Zbl
and ,[11] Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundamenta Informaticae 52 (2002) 39-80. | Zbl
, and ,[12] Solution of some conjectures about topological properties of linear cellular automata. Theoret. Comput. Sci. 325 (2004) 249-271. | Zbl
, and ,[13] Topological definitions of deterministic chaos, applications to cellular automata dynamics, in Cellular Automata, a Parallel Model, edited by M. Delorme and J. Mazoyer. Kluwer Academic Pub., Dordrecht. Math. Appl. 460 (1999) 213-259.
, and ,[14] Transitive cellular automata are sensitive. Amer. Math. Monthly 103 (1996) 58-62. | Zbl
and ,[15] The role of transitivity in Devaney's definition of chaos. Amer. Math. Monthly 102 (1995) 768-793. | Zbl
,[16] Ergodic theory on compact spaces. Lect. Notes Math. 527 (1976). | MR | Zbl
, and ,[17] An introduction to chaotic dynamical systems. Second ed., Addison-Wesley (1989). | MR | Zbl
,[18] Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 (1985) 617-656. | Zbl
and ,[19] Sensitive dependence on initial condition. Nonlinearity 6 (1993) 1067-1075. | Zbl
and ,[20] Topological transitivity and strong transitivity. Acta Math. Univ. Comenianae LXXI, 139. | MR | Zbl
,[21] Topological transitivity for discrete dynamical systems, in Applicable Mathematics in Golden Age, edited by J.C. Misra. Narosa Pub. (2002).
and ,[22] Introduction to the modern theory of dynamical systems. Cambridge University Press (1995). | MR | Zbl
and ,[23] General topology. Springer-Verlag (1975). | MR | Zbl
,[24] Chaos without nonperiodicity. Amer. Math. Monthly 101 (1994) 563-565. | Zbl
,[25] Li-Yorke sensitivity and other concepts of chaos. Ukrainian Mathematical Journal 56 (2004) 1242-1257. | Zbl
,[26] Some aspect of topological transitivity - a survey. Grazer Math. Ber. 334 (1997) 3-35. | Zbl
and ,[27] Topological and symbolic dynamics, Cours Spécialisés 11. Société Mathématique de France (2004). | MR | Zbl
,[28] Stability theory for difference equations. MAA Studies in Math., American Mathematical Society (1976). | MR
,[29] An introduction to symbolic dynamics and coding. Cambidge University Press (1995). | MR | Zbl
and ,[30] Hyperbolic dynamical systems with isolated points. Lect. Notes Math. 527 (1983) 47-64.
,[31] Intrinsic markov chains. Trans. Amer. Math. Soc. 112 (1964) 55-56. | Zbl
,[32] Strange attractors. Math. Intell. 2 (1980) 126-137. | Zbl
,[33] Bau sen Du, On the nature of chaos, arXiv:math.DS/0602585 v1 (February 2006). | MR
[34] On maps with dense orbits and the definitions of chaos. Rocky Mountain Jour. Math. 22 (1992) 353-375. | Zbl
,[35] On intervals, transitivity = chaos. Amer. Math. Monthly 101 (1994) 353-355. | Zbl
and ,[36] An introduction to ergodic theory. Springer, Berlin (1982). | MR | Zbl
,[37] Topological transitivity and ergodic measures. Math. Syst. Theory 5 (1971) 71-5. | Zbl
,[38] Global bifurcations and chaos. Springer, Berlin (1988). | MR | Zbl
,Cited by Sources: