On distributive fixed-point expressions
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 427-446.
@article{ITA_1999__33_4-5_427_0,
     author = {Seidl, Helmut and Niwi\'Nski, Damian},
     title = {On distributive fixed-point expressions},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {427--446},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {4-5},
     year = {1999},
     zbl = {0945.68127},
     mrnumber = {1748665},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1999__33_4-5_427_0/}
}
TY  - JOUR
AU  - Seidl, Helmut
AU  - NiwiŃski, Damian
TI  - On distributive fixed-point expressions
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1999
DA  - 1999///
SP  - 427
EP  - 446
VL  - 33
IS  - 4-5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1999__33_4-5_427_0/
UR  - https://zbmath.org/?q=an%3A0945.68127
UR  - https://www.ams.org/mathscinet-getitem?mr=1748665
LA  - en
ID  - ITA_1999__33_4-5_427_0
ER  - 
Seidl, Helmut; NiwiŃski, Damian. On distributive fixed-point expressions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 427-446. http://www.numdam.org/item/ITA_1999__33_4-5_427_0/

[1] H. R. Andersen and B. Vergauwen, Efficient Checking of Behavioral Relations and Modal Assertions Using Fixed-Point Inversion. In 7th International Conference on Computer-Aided Verification (CAV). Springer, Lecture Notes in Comput Sci. 939 (1995) 142-154.

[2] A. Arnold, The μ-Calculus Alternation-Depth Hierarchy is Strict on Binary Trees. Theoret. Informatics. Appl., Special issue on FICS'98, to appear. | Numdam | MR 1748659 | Zbl 0945.68118

[3] A. Arnold and D. Niwiński Fixed Point Characterization of Weak Monadic Logic Definable Sets of Trees, M. Nivat and A. Podelski, Eds. Elsevier, Amsterdam, Tree Automata and Languages (1992) 159-188. | MR 1196736 | Zbl 0794.03054

[4] G. Bhat and R. Cleaveland, Efficient Local Model Checking for Fragments of the Modal μ-Calculus. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS) Springer, Lecture Notes in Comput. Sci. 1055 (1996) 107-126.

[5] J. C. Bradfield, The Modal Mu-Calculus Alternation Hierarchy is Strict. In 7th International Conference on Concurrency Theory (CONCUR). Springer, Lecture Notes in Comput. Sci. 1119 (1986) 233-246. | MR 1480432

[6] H. Doornbos, R. Backhouse and J. Van Der Woude, A Calculational Approach to Mathematical Induction. Theoret. Comput. Sci. 179 (1997) 103-135. | MR 1454586 | Zbl 0901.68124

[7] E. A. Emerson, C. S. Jutla and A. P. Sistla, On Model-Checking for Fragments μ-Calculus. In 5th International Conference on Computer-Aided Verification (CAV). Springer, Lecture Notes in Comput. Sci. 697 (1993) 385-396. | MR 1254452

[8] E. A. Emerson and E. M. Clarke, Characterizing Correctness Properties of Parallel Programs Using Fixpoints. In 7th International Colloquium on Automata, Languages and Programming (ICALP). Springer, Lecture Notes in Comput. Sci. 85 (1980) 169-181. | MR 589002 | Zbl 0456.68016

[9] L. Flon and N. Suzuki, Consistent and Complete Proof Rules for the Total Correctness of Parallel Programs. In 19th IEEE Symp. on Foundations of Computer Science (FOCS) (1978). | MR 539840

[10] M. Jurdziński, Deciding the Winnner in Parity Games is in UP ∩ co-UP. Inform. Process. Lett. 68 (1998) 119-124.

[11] G. Lenzi, A Hierarchy Theorem for the μ-Calculus. In 23rd International Colloquium on Automata, Languages and Programming (ICALP). Springer, Lecture Notes in Comput. Sci. 1099 (1996) 87-109. | MR 1464442 | Zbl 1045.03516

[12] D. E. Muller, A. Saoudi and P. E. Schupp, Alternating Automata, the Weak Monadic Theory of the Tree and its Complexity. In ICALP'86 (1986). | MR 864690 | Zbl 0617.03020

[13] D. Niwiński, On Fixed Point Clones. In 13th International Colloquium on Automata, Languages and Programming (ICALP). Springer, Lecture Notes in Comput. Sci. 226 (1986) 464-473. | MR 864709 | Zbl 0596.68036

[14] D. Niwiński, Hierarchy of Objects Definable in the Fixed Point Calculus, in Polish. Ph. D. Thesis, University of Warsaw (1987).

[15] D. Niwiński, Fixed Points vs. Infinite Generation. In 3rd Annual IEEE Symposium on Logic in Computer Science (LICS), IEEE (1988) 402-409.

[16] D. Niwiński, Fixed Point Characterization of Infinite Behavior of Finite State Systems. Theoret Comput. Sci. 189 (1997) 1-69. | MR 1483617 | Zbl 0893.68102

[17] D. M. R. Park, On the Semantics of Fair Parallelism. In Abstract Software Specification. Springer, Lecture Notes in Comput. Sci. 86 (1980) 504-526. | Zbl 0456.68028

[18] D. M. R. Park, Concurrency and Automata on Infinite Sequences. In Theoret. Comput. Sci. Springer, Lecture Notes in Comput. Sci. 104 (1981) 167-183. | Zbl 0457.68049

[19] H. Rasiowa and R. Sikorski, Mathematics of Metamathematics. Państowe Wydawnictwo Naukowe (1970). | MR 344067 | Zbl 0122.24311

[20] W. Thomas, Automata on Infinite Objects, J. van Leeuwen, Ed., Handbook of Theoretical Computer Science. Elsevier, Amsterdam (1990). | MR 1127189 | Zbl 0900.68316