J. ROTHE

Immunity and simplicity for exact counting
and other counting classes

Informatique théorique et applications, tome 33, n°2 (1999),
p- 159-176

<http://www.numdam.org/item?id=ITA_1999_ 33_2_159 0>

© AFCET, 1999, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_2_159_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informatics and Applications
Theoret. Informatics Appl. 33 (1999) 159-176

IMMUNITY AND SIMPLICITY FOR EXACT COUNTING
AND OTHER COUNTING CLASSES*

J. ROTHE!

Abstract. Ko [26] and Bruschi [11] independently showed that, in
some relativized world, PSPACE (in fact, ®P) contains a set that is
immune to the polynomial hierarchy (PH). In this paper, we study
and settle the question of relativized separations with immunity for
PH and the counting classes PP, GP, and &P in all possible pairwise
combinations. Qur main result is that there is an oracle A relative
to which GP contains a set that is immune to BPP®F. In particular,
this GP* set is immune to PH* and to @P#. Strengthening results of
Torén [48] and Green [18], we also show that, in suitable relativizations,
NP contains a GP-immune set, and ®P contains a PPPH-immune set.
This implies the existence of a GPP-simple set for some oracle B,
which extends results of Balcdzar et al. [2,4]. Our proof technique
requires a circuit lower bound for “exact counting” that is derived from
Razborov’s [35] circuit lower bound for majority.

AMS Subject Classification. 68Q15, 68Q10, 03D15.

1. INTRODUCTION

A fundamental task in complexity theory is to prove separations or collapses
of complexity classes. Unfortunately, results of this kind fall short for the most
important classes between polynomial time and polynomial space. In an attempt

Keywords and phrases: Computational complexity, immunity, counting classes, relativized
computation, circuit lower bounds.

* Supported in part by grants NSF-INT-9513368/DAAD-315-PRO-fo-ab, NSF-CCR-98225183,
and NSF-INT-9815095/DAAD-815-PPP-gii-ab, and by a NATO Postdoctoral Science Fel-
lowship from the Deutscher Akademischer Austauschdienst (“Gemeinsames Hochschulsonder-
programm III von Bund und Ldndern”). Work done in part while visiting the University of
Rochester.

1 Institut fiir Informatik, Friedrich-Schiller-Universitit Jena, 07740 Jena, Germany; e-mail:
rothe@informatik.uni-jena.de

© EDP Sciences 1999

160 J. ROTHE

to find the reasons for this frustrating failure over many years, and to gain more
insight into why these questions are beyond current techniques, researchers have
studied the problem of separating complexity classes in relativized settings. Baker
et al., in their seminal paper (1], gave for example relativizations A and B such that
P4 #£ NP and PZ = NP?Z, setting the stage for a host of subsequent relativization
results.

Separations are also evaluated with regard to their quality. A simple separation
such as P4 # NP4 merely claims the existence of a set S in NP* that is not recog-
nized by any P4 machine. This can be accomplished by a simple diagonalization
ensuring that every P4 machine fails to recognize S by just one string, which is
put into the symmetric difference of S and the machine’s language. It may well
be the case, however, that some P4 machine nonetheless accepts an infinite sub-
set of S, thus “approximating from the inside” the set witnessing the separation.
Thus, one might argue that the difference between P4 and NP4, as witnessed
by S, is negligible. In contrast, a strong separation of P4 and NP4 is witnessed
by a PA-immune set in NP“. For any class C of sets, a set is C-immune if it is an
infinite set having no infinite subset in C.

A relativization in which NP and P are strongly separated was first given by
Bennett and Gill [8]. In fact, they established a stronger result. Technically
speaking, they showed that relative to a random oracle R, NP¥ contains a PR-bi-
immune set with probability 1. This was recently strengthened by Hemaspaandra
and Zimand [22] to the strongest result possible: Relative to a random oracle R,
NPE contains a P balanced immune set with probability 1. See these references
for the notions not defined here.

Many more immunity results are known; see, e.g., the papers [2,4,10-13,21,23,
26,29, 39,50]. Most important for the present paper are the results and (circuit-
based) techniques of Ko [26] and Bruschi [11]. In particular, both papers provide
relativizations in which the levels of the polynomial hierarchy (PH) separate with
immunity, Bruschi’s results being somewhat stronger and more refined, as they
refer not only to the ¥ but also to the A levels of PH. Also, both authors indepen-
dently obtain the result that there exists a PH-immune set in PSPACE, relative
to an oracle. Since Ko’s proof is only briefly sketched, Bruschi includes a detailed
proof of this result. This proof, however, is flawed?®.

In particular, looking into the proof of ([11], Thm. 8.3), the existence of the desired oracle
extension, W, in Case (e) of the construction is not guaranteed by the circuit lower bound used.
In Case (e) of stage I, W is required to have an odd number of length h(l) strings such that all
circuits associated with a list of still unsatisfied requirements reject their inputs simultaneously—
an input corresponds to the W chosen; so once W is fixed, every circuit has the same input,
xw (01 .. xy (12D). The used circuit lower bound for the parity function merely ensures
that for each circuit C on that list, C computes parity correctly for at most 20% of the “odd”
inputs of length A(l). Thus, the extension W must be chosen according to the remaining 80% of
such inputs to make that circuit reject. However, if there are sufficiently many circuits on the list
whose correct input regions happen to cover all “odd” inputs of length k() (for instance, when
there are 5 circuits each being correct on a different 20% of such inputs), then there is no room
left to choose a set W C {0, 1}*(!) of odd cardinality that makes all circuits reject simultaneously.

IMMUNITY AND SIMPLICITY FOR EXACT COUNTING 161

Using Ko’s approach, it is not difficult to give a valid and complete proof of this
result, and indeed the present paper provides such a full proof—note Corollary 3.9.
However, the purpose of this paper goes beyond that issue: We study separations
with immunity for counting classes inside PSPACE with respect to the polynomial
hierarchy and among each other. Counting classes that have proven particularly
interesting and powerful with regard to the polynomial hierarchy are PP (proba-
bilistic polynomial time), the exact counting class GP, and ®P (parity polynomial
time). Note that the PSPACE# set that is shown by Ko [26] (cf. Bruschi [11]) to
be PHA-immune in fact is contained in @P#. Ko’s technique [26] is central to all
results of the present paper.

The relationship between these counting classes and PH still is a major open
problem in complexity theory, although surprising advances have been made show-
ing the hardness of counting. In particular, Toda [45] and Toda and Ogihara [46)
have shown that each class C chosen among PP, GP, and ®P is hard for the
polynomial hierarchy (and, in fact, is hard for C*") with respect to polynomial-
time bounded-error random reductions. Toda [45] showed that PP is hard for PH
even with respect to deterministic polynomial-time Turing reductions. However,
it is widely suspected that PH is not contained in, and does not contain, any
of these counting classes. There are oracles known relative to which each such
containment fails, and similarly there are oracles relative to which each possible
containment for any pair of these counting classes fails (except the known contain-
ment GP C PP [40,51], which holds relative to every oracle), see [1,5,6,18,47,48].

Regarding relativized strong separations, however, the only results known are
the above-mentioned result that for some A, ®@P4 contains a PH”-immune set [26]
(cf. [11]), and that for some B, NP has (and thus both PH? and PP have) a
@®PZ-immune set [10]. In this paper, we strengthen to relativized strong separa-
tions all the other simple separations that are possible for pairs of classes chosen
among PH, PP, @P, and GP. Just as Balcizar and Russo [2,4] exhaustively
settled (in suitable relativizations) all possible immunity and simplicity questions
among the probabilistic classes BPP, R, ZPP, and PP and among these classes
and P and NP, we do so for the counting classes GP, PP, and &P among each
other and with respect to the polynomial hierarchy.

Ko’s proof of the result that ®P* contains a PH”-immune set exploits the
circuit lower bounds for the parity function provided by Yao [53] and Hastad [20].
Noticing that Hastad [20] proved an equally strong lower bound for the majority
function, one could as well show that PP2 contains a PH”-immune set for some
oracle A. We prove a stronger result: By deriving from Razborov’s [35] circuit
lower bound for the majority function a sufficiently strong lower bound for the
boolean function that corresponds to “exact counting,” we construct an oracle
relative to which even in GP (which is contained in PP) there exists a set that
is immune even to the class BPP®F (which contains PH by Toda’s result [45]).
This result implies a number of new immunity results, including relativized @&P-
immunity and PH-immunity of GP.

162 J. ROTHE

Conversely, we show that, in some relativized world, NP contains (and thus
both PH and PP contain) a GP-immune set, which strengthens Toran’s simple
separation of NP and G [47,48]. As a corollary of this result, we obtain that,
in the same relativization, GP has a simple set, i.e., a coinfinite GP set whose
complement is GP-immune. Just like immunity, the notion of simplicity originates
from recursive function theory and has later proved useful also in complexity the-
ory. The existence of a simple set in a class C provides strong evidence that C
separates from the corresponding class coC. Our result that, for some oracle B,
GPP hasa simple set extends Balcazar’s result that, for some A, NP has a sim-
ple set [2]. We also strengthen to a strong separation Green’s simple separation
that, relative to some oracle, ®P ¢ ppFH [18]. Similarly, the relativized simple
separation of the levels of the PPPH hierarchy [9] also can be turned into a strong
separation. As a special case, this includes the existence of a PP-immune set
in PNP (and thus in PH) relative to some oracle, which improves upon a simple
separation of Beigel [6].

2. PRELIMINARIES

Fix the two-letter alphabet & & {0,1}. The set of all strings over X is denoted
by ¥*, and the set of strings of length n is denoted by ¥". For any string = € ¥*,
let |z| denote its length. For any set L C £*, the complement of L is L Ly \L,
and the characteristic function of L is denoted by xr, t.e., xr(z) = 1ifz € L,
and xr(z) = 0 if z € L. For the definition of relativized complexity classes and
of oracle Turing machines, we refer to any standard text book on computational
complexity such as [3,24,33]. For any oracle Turing machine M and any oracle A4,
we denote the language of M4 by L(M#), and we simply write L(M) if A = 0.
For classes C and D of sets, define C” to be Upep CP, where CP denotes the class
of languages accepted by C oracle machines with oracle D. For any class C, let
coC denote {L | L € C}. We use NPOTM as a shorthand for “nondeterministic
polynomial-time oracle Turing machine”. Let accpra(z) (respectively, rejpsa(z))
denote the number of accepting (respectively, rejecting) computation paths of
NPOTM M with oracle A on input z, and let totysa(x) be the total number of
computation paths of M4 on input z.

Definition 2.1. Let A be any oracle set.

1. ([30, 44], see also [62]) The (relativized) polynomial hierarchy can be
defined as follows: .
e foreach k> 0,aset Lisin Ei’A if and only if there exists a polynomial
p and a predicate ¢ computable in P4 such that for all strings z,

ze€l (Qlwl) (QZwZ) T (kak) [U(m,w17w2: “e ,'lUk;) = 1])

where the w; range over the length p(|z|) strings, and for each i, 1 <
1<k, Q =3ifiis odd, and Q, =V if 7 is even.

IMMUNITY AND SIMPLICITY FOR EXACT COUNTING 163

o Define 12" « coxP A,
o Define PHA £ ()5, 50

2. 17,34 @P* L {L| GNPOTM M) (Vz € 5*)[z € L < accya() is
odd}}.

3. [16) PPA L (L | ANPOTM M)(Vz € *)[z € L <= accpa()
2> rejpra ()]}

4. [40,51] G&P* L {L| @GNPOTM M) (Vz € £*)[z € L <= accy(z)
= rejpa ()]}

5. [16] BPP# is the class of languages L for which there exists an NPOTM
M such that for each input z, z € L implies that rejpa(z) < Ltotpra(z),
and z ¢ L implies that accpra(z) < jtotara(z).

6. We write X} for Zz’m and PH for PH®, and similarly for the other classes.

Note that PHU &P U PP U GP C PSPACE and BPP C PP. It is also known
that BPP C X% N1I5 ([28], see also [42]) and coNP C GP C PP [40,51].

An n-ary boolean function is a mapping f, from {0,1}" to {0,1}. Some of the
most important boolean functions are the parity function, PAR,,, and the majority
function, MAJ,. Let us define those functions that will be considered in this paper:

e PAR,(z) =1 if and only if the number of bits of that are 1 is odd.
. MAJn(z) =1 if and only if at least [%] bits of z are 1.

. EQU (z) =1 if and only if exactly k bits of = are 1, where 0 < k < n.
. half(w) = 1 if and only if exactly [5] bits of z are 1.

Families of boolean functions are realized by circuit families. By convention, when
We speak of “a” circuit C' computing “a” function f, we implicitly mean a family

= (Cr)n>0 of circuits computing a family f = (f,)n>0 of functions; i.e., for
each n, C, is a circuit with n input gates and one output gate that outputs the
value f(z) for each z € {0,1}".

The size of a circuit is the number of its gates. The circuit complexity (or
size) of a boolean function f is the size of a smallest circuit computing f. Unless
stated otherwise, we will consider only constant depth, unbounded fanin circuits
with AND, OR, and @ (parity) gates. An AND (respectively, OR) gate outputs
1 (respectively, 0) if and only if all its inputs are 1 (respectively, 0), and a @ gate
outputs 1 if and only if an odd number of its inputs are 1. Since {AND, OR, &}
(and, indeed, {AND, @}) forms a complete basis, we do not need negation gates.
Note that switching from one complete basis to another increases the size of a
circuit at most by a constant.

The depth of a circuit is the length of a longest path from its input gates to
its output gate. Since adjacent levels of gates of the same type can be collapsed
to one level of gates of this type, we view a circuit to consist of alternating levels
of respectively AND, OR, and @ gates, where the sequence of these operations is
arbitrary—the depth of the circuit thus also measures the number of alternations.

164 J. ROTHE
3. IMMUNITY AND SIMPLICITY RESULTS FOR EXACT COUNTING

In this section, we prove the main result of this paper:

Theorem 3.1. There ezists some oracle A such that GPA contains a BPPGBPA-
immune set.

Before turning to the actual proof, some technical details need be discussed.
First, we need a sufficiently strong lower bound on the size of the “exact counting”
function, EQuE®, when computed by circuits as described in the previous section.
Razborov proved the following exponential lower bound on the size of the majority
function when computed by such circuits; see Smolensky [43] for a generalization
of this result and a simplification of its proof.

Theorem 3.2. [35] For every k, any depth k circuit with AND, OR, and &
gates that computes MAJ, has size at least 22"/ ™)

Using this lower bound for majority, we could (by essentially the same proof
as that of Thm. 3.1) directly establish BPP®F"_immunity of PPA. However, to
obtain the stronger result of Theorem 3.1, we now derive from the above lower
bound for majority a slightly weaker lower bound for the EQUI,“Lalf function, still
being sufficiently strong to establish Theorem 3.1.

Lemma 3.3. For every k, there exists a constant ax > 0 and an ny, € N such that
for all n > ng, every depth k circuit with AND, OR, and @ gates that computes
EQUELalf has size at least n—1 . 2o’/ @5+

Proof. Fix a sufficiently large n. Note that the majority function can be expressed
as

MAJ, (z) = \/ EQuy (z). (1)
=2

Fach function EQU' 0 < ¢ < n, is a subfunction of EQnglf, since for each

z € {0,1}™, EQUi(z) EQUzalf(QSO’I" %). Thus, the circuit complexity of EQUY,

is at most that of EQUhal for each 7. Now let smek(EQUz"H) denote the size of
a smallest depth & circuit with AND, OR, and & gates that computes EQUhallf

Thus, by equation (1) above, we can realize MAJ[21 with less than n- swek(EQUh‘“lf)
gates in depth k + 1. Hence, by Theorem 3.2,

1 _ 1/(2k+4)
sizex (EQuiaf) > 1 -sizep+1(MAJ[zy) = n 1. g

for some suitable constant a > 0 that depends only on k. O
For technical reasons, since we want to apply the above circuit lower bound to

obtain relativized BPP®F -immunity, we will now give an equivalent definition of
the class BPP®? in terms of a hierarchy denoted PH®. As explained later, PH®

IMMUNITY AND SIMPLICITY FOR EXACT COUNTING 165

will only serve as a tool in the upcoming proof of Theorem 3.1. PH® generalizes
the polynomial hierarchy by allowing—in addition to existential and universal
quantifiers—the parity quantifier @, where (Pw) means “for an odd number of
strings w.”

Definition 3.4. Let A be any oracle set.

1. For each k > 0, a set L is in PH?’A if and only if there exists a polynomial
p and a predicate o computable in PA such that for all strings z,

rel <« (Qlwl) (Q2w2) T (kawk) [U(m)whw% cee awk) = 1]7

where the w; range over the length p(|z|) strings, and the quantifiers Q; are
chosen from {3,V, P}.

2. Define PH®4 £ |), PH®.
3. We write PHY for PH?’Q and PH® for PH®?,

We stress that PH® is not a new complexity class or hierarchy, since it is just
another name for the class BPP®Y | as can be proven by an easy induction from

P
the results of Toda [45] and Regan and Royer [36] which state that @PBFF"

NPEFP $p, and coNPBPP®" cach are contained in BPP®F 2. Rather, the purpose
of PH® is merely to simplify the proof of Theorem 3.1. In particular, when using
PH® in place of BPP®F, we do not have to deal with the promise nature of BPP
and, more importantly, we can straightforwardly transform circuit lower bounds
for constant depth circuits over the basis {AND,OR, @} into computations of
PHSZ9 oracle Turing machines.

Furst et al. [15] discovered the connection between computations of oracle
Turing machines and circuits that allows one to transform lower bounds on the cir-
cuit complexity of boolean functions such as parity into separations of relativized
PSPACE from the relativized polynomial hierarchy. (We adopt the convention
that for relativizing PSPACE, the space bound of the oracle machine be also a
bound on the length of queries it may ask, for without that convention the problem
of separating PSPACE# from PH“ becomes trivial, see [15].) Sufficiently strong
(i.e., exponential) lower bounds for parity were then provided by Yao [53] and
Hastad [20], and were used to separate PSPACE” from PH#. Yao and Hastad
also proved lower bounds for variations of the Sipser functions [41] in order to
separate all levels of PH* from each other; see also Ko [25).

A technical prerequisite for this transformation to work is that the computation
of any ¥ 4 machine can be simulated by a Efﬁ machine that has the property
that on all computation paths at most one query is asked and this query is asked
at the end of the path; see Furst et al. ([15], Cor. 2.2). An oracle machine having

2In particular, due to these results, PH® in fact consists of only four levels not known to be the
same: PHY = P, PH® = NPUcoNPU®P, PHY = NPNP UcoNPNP UNP®P UcoNPEF UgPNT,
and PH;e = PH® = BPP®F. Note also that in [45], Toda preferred the operator-based notation
BP- 651?, which due to the closure of ®P under Turing reductions is equivalent, i.e., BP - P =
BPPOF.

166 J. ROTHE

this property is said to be weak. Similarly, the computation of any PH?’A machine
can be simulated by a weak PHfi’f machine. The computation of a weak oracle
machine M# on some input z can then be associated with a circuit whose gates
correspond to the nodes of the computation tree of M#(z), and whose inputs
are the values x4(z) for all strings z € ©* that can be queried by M4 (z). This
correspondence can straightforwardly be extended to the case of weak PH®A
oracle machines and is formally stated in Proposition 3.5 below. The proof of
Proposition 3.5 is standard—see, e.g., Furst et al. ([15], Lem. 2.3) and Ko ([15],
Lem. 2.1) for analogous results—and thus omitted.

Let CIR(i,t) denote the collection of all depth ¢ + 1 circuits with AND, OR,
and @ gates, bottom fanin at most ¢, and fanin at most 2¢ at all remaining levels.

Proposition 3.5. Let A be any oracle and let M be any weak PHZ-ea “ oracle ma-
chine running in time p for some polynomial p. Then, for each x € ¥* of length n,
there exists a circuit Cyr g in CIR(3,p(n)) whose inputs are the values of xa(z)
for all strings z € £* with |z| < p(n) such that Cpr,. outputs 1 if and only if M4
accepts .

In particular, it follows from the bounded depth and fanin of the circuits in
CIR(i,p(n)) that the size of circuit Carz is bounded by 25(™ for some polyno-
mial spr depending only on M.

Now we are ready to prove our main result.

Proof of Theorem 3.1. For any set S, define

Lg & {0" | N > 1 and the number of length N strings in S equals 2V—1}.

Note that for each S, Lg is in GPT.
We will construct the set A such that Ly € GP* and L, is PH®4-immune,
i.e., L 4 is infinite and no infinite subset of L 4 is contained in PH®4.
Since every PH;G’A machine can be transformed into a weak PH;eji machine, it
suffices to ensure the following two properties in the construction of A:
(a) L, is infinite, and
(b) for each weak PH® oracle machine M for which L(M#) is an infinite subset
of Ly, it holds that M4 does not recognize L 4.

Fix an enumeration M. 1('), M2('), ... of all weak PH®() oracle machines; we assume
the machines to be clocked so that for each 4, the runtime of machine Mi(') is
bounded by p;(n) = n* + ¢ for inputs of length n. In particular, if ¢ = (d,j),
the ith machine Mi(') in this enumeration is the jth weak PHSB’(') oracle machine,
M ((gm, in the underlying enumeration of weak PH;G’(') oracle machines. Satis-

fying Property (b) above then means to satisfy in the construction the following
requirement R; for each i > 1 for which M7 accepts an infinite subset of L :

R,: L(M*NIL4#0.

IMMUNITY AND SIMPLICITY FOR EXACT COUNTING 167

We say that requirement R; is satisfied if L(M{*) N La # 0 can be enforced at
some point in the construction of A.

As a technical detail that is often used in immunity constructions, we require
our enumeration of machines to satisfy that for infinitely many indices ¢ it holds
that M;X accepts the empty set for every oracle X, which can be assumed without
loss of generality. We will need this property in order to establish Property (a).

Now we give the construction of A, which proceeds in stages. In stage 7, the
membership in A of all strings up to length ¢; (for some suitable ¢;) will be decided,
and the previous initial segment of the oracle is extended to A;. Strings of length
< t; that are not explicitly added to A; are never added to the oracle. We define A
to be |J;>q 4i- Initially, Ap is set to the empty set, and ¢o = 0. Also, throughout
the construction, we keep a list £ of unsatisfied requirements. Stage i > 0 is as
follows.

Stage ¢: Add ¢ to £. Consider all machines M ¢), -, M,) corresponding to
indices ¢, that at this point are in £. Let k = ma,x{dr | L. = {dr,jr) and
1 < r < m} be the maximum level of the PH®() hierarchy to which these
machines belong (not taking into account the collapse of PH® = BPP®F
mentioned in Footnote 2). Let axi2 > 0 be the constant and ngy2 € N
be the number that exist for depth k + 2 circuits according to Lemma 3.3.
Choose N = N; > max{t;_1,logngi2} to be the smallest integer such that

m
Oppp - 2N/CRTE) S N g4 Z se.(IV),

r=1

where the polynomials s;, = s My, correspond to the machines with indices
in £ according to Proposition 3.5.
Distinguish two cases.

Case 1: There exists an r, 1 < r < m, and an extension £ C &V of A;_;
such that 0V ¢ Lg and yet M, Z -1YE 5 ccepts ON. Let 7 be the smallest
such r. Cancel 47 from L, set A; to A;_1 UE, and set ¢; to p;(N). Note
that requirement R,. has been satisfied at this stage.

Case 2: For all 7, 1 < r < m, and for all extensions E C TV of 4; i,
0N ¢ Lg implies that M, 2 +-1YE rejects OV. In this case, no requirement
can be satisfied at this stage. However, to achieve Property (a), we will
force 0V into L4. Choose some extension E C XV of A;_; such that

(i): the number of length NV strings in E equals 2V~1 and

(ii): foreachr, 1 <r <m, MZ{:“IUE rejects 0.
We will argue later (in Claim 3.6 below) that such an extension E exists.
Set A; to A;_1 UE, and set ¢; to pi(N).

End of Stage <.

