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IMMUNITY AND SIMPLICITY FOR EXACT COUNTING
AND OTHER COUNTING CLASSES*

J. ROTHE1

Abstract. Ko [26] and Bruschi [11] independently showed that, in
some relativized world, PSPACE (in fact, ©P) contains a set that is
immune to the polynomial hierarchy (PH). In this paper, we study
and settle the question of relativized séparations with immunity for
PH and the counting classes PP, GP, and ©P in all possible pairwise
combinations. Our main resuit is that there is an oracle A relative
to which G=P contains a set that is immune to BPP e P . In particular,
this QPA set is immune to PHA and to ©PA. Strengthening results of
Torân [48] and Green [18], we also show that, in suitable relativizations,
NP contains a G^P-immune set, and ©P contains a PPPH-immune set.
This implies the existence of a G=Ps-simple set for some oracle £?,
which extends results of Balcâzar et al. [2, 4]. Our proof technique
requires a circuit lower bound for "exact counting" that is derived from
Razborov's [35] circuit lower bound for majority.

AMS Subject Classification. 68Q15, 68Q10, 03D15.

1. INTRODUCTION

A fundamental task in complexity theory is to prove séparations or collapses
of complexity classes. Unfortunately, results of this kind fall short for the most
important classes between polynomial time and polynomial space. In an attempt
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to find the reasons for this frustrating failure over many years, and to gain more
insight into why these questions are beyond current techniques, researchers have
studied the problem of separating complexity classes in relativized settings. Baker
et al, in their séminal paper [1], gave for example relativizations A and B such that
PA ^ NPA and PB = NPB , setting the stage for a host of subséquent relativization
results.

Séparations are also evaluated with regard to their quality. A simple séparation
such a sP A 7̂  NPA merely claims the existence of a set S in NPA that is not recog-
nized by any VA machine. This can be accomplished by a simple diagonalization
ensuring that every PA machine f ails to recognize S by just one string, which is
put into the symmetrie différence of S and the machine's language. It may well
be the case, however, that some PA machine nonetheless accepts an infinité sub-
set of £, thus "approximating from the inside" the set witnessing the séparation.
Thus, one might argue that the différence between PA and NP"4, as witnessed
by S, is negligible. In contrast, a strong séparation of PA and NPA is witnessed
by a PA-immune set in NPA. For any class C of sets, a set is C-immune if it is an
infinité set having no infinité subset in C.

A relativization in which NP and P are strongly separated was first given by
Bennett and Gill [8]. In fact, they established a stronger result. Technically
speaking, they showed that relative to a random oracle R, NPR contains a PH-bi-
immune set with probability 1. This was recently strengthened by Hemaspaandra
and Zimand [22] to the strongest result possible: Relative to a random oracle R,
NP^ contains a P^ balancée immune set with probability 1. See these références
for the notions not defined here.

Many more immunity results are known; see, e.g., the papers [2,4,10-13,21,23,
26,29,39,50]. Most important for the present paper are the results and (circuit-
based) techniques of Ko [26] and Bruschi [11]. In particular, both papers provide
relativizations in which the levels of the polynomial hierarchy (PH) separate with
immunity, Bruschi's results being somewhat stronger and more refined, as they
refer not only to the E but also to the A levels of PH. Also, both authors indepen-
dently obtain the result that there exists a PH-immune set in PSPACE, relative
to an oracle. Since Ko's proof is only briefly sketched, Bruschi includes a detailed
proof of this result. This proof, however, is flawed1.

1In particular, looking into the proof of ([11], Thm. 8.3), the existence of the desired oracle
extension, W, in Case (e) of the construction is not guaranteed by the circuit lower bound used.
In Case (e) of stage /, W is required to have an odd number of lengt h h (l) st rings such that all
circuits associated with a list of still unsatisfied requirements reject their inputs simultaneously—
an input corresponds to the W chosen; so once W is fixed, every circuit has the same input,
X w ( O ^ ) * * - X w ( l h ^ ) - The used circuit lower bound for the parity function merely ensures
that for each circuit C on that list, C computes parity correctly for at most 20% of the "odd"
inputs of length h(l). Thus, the extension W must be chosen according to the remaining 80% of
such inputs to make that circuit reject. However, if there are sufiiciently many circuits on the list
whose correct input régions happen to cover all "odd" inputs of length h(l) (for instance, when
there are 5 circuits each being correct on a different 20% of such inputs), then there is no room
left to choose a set W Ç {0, l}fe(0 of odd cardinality that makes all circuits reject simultaneously.
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Using Ko's approach, it is not difficult to give a valid and complete proof of this
result, and indeed the present paper provides such a full proof—note Corollary 3.9.
However, the purpose of this paper goes beyond that issue: We study séparations
with immunity for counting classes inside PSPACE with respect to the polynomial
hierarchy and among each other. Counting classes that have proven particularly
interesting and powerful with regard to the polynomial hierarchy are PP (proba-
bilistic polynomial time), the exact counting class GP, and ©P (parity polynomial
time). Note that the PSPACE^ set that is shown by Ko [26] (cf. Bruschi [11]) to
be PH -immune in fact is contained in ©PA. Ko's technique [26] is central to all
results of the present paper.

The relationship between these counting classes and PH still is a major open
problem in complexity theory, although surprising advances have been made show-
ing the hardness of counting. In particular, Toda [45] and Toda and Ogihara [46]
have shown that each class C chosen among PP, G=P, and ©P is hard for the
polynomial hierarchy (and, in fact, is hard for CPH) with respect to polynomial-
time bounded-error random réductions. Toda [45] showed that PP is hard for PH
even with respect to deterministic polynomial-time Turing réductions. However,
it is widely suspected that PH is not contained in, and does not contain, any
of these counting classes. There are oracles known relative to which each such
containment fails, and similarly there are oracles relative to which each possible
containment for any pair of these counting classes fails (except the known contain-
ment Gf ÇPP [40,51], which holds relative to every oracle), see [1,5,6,18,47,48].

Regarding relativized strong séparations, however, the only results known are
the above-mentioned result that for some A, ©PA contains a PHA-immune set [26]
(cf. [11]), and that for some B, NPB has (and thus both PHS and PP B have) a
©Ps-immune set [10]. In this paper, we strengthen to relativized strong sépara-
tions all the other simple séparations that are possible for pairs of classes chosen
among PH, PP, ©P, and G=P. Just as Balcâzar and Russo [2,4] exhaustively
settled (in suitable relativizations) all possible immunity and simplicity questions
among the probabilistic classes BPP, R, ZPP, and PP and among these classes
and P and NP, we do so for the counting classes G=P, PP, and ©P among each
other and with respect to the polynomial hierarchy.

Ko's proof of the result that ©P contains a PHA-immune set exploits the
circuit lower bounds for the parity function provided by Yao [53] and Hâstad [20].
Noticing that Hâstad [20] proved an equally strong lower bound for the majority
function, one could as well show that PPA contains a PH^-immune set for some
oracle A We prove a stronger result: By deriving from Razborov's [35] circuit
lower bound for the majority function a sufficiently strong lower bound for the
boolean function that corresponds to "exact counting," we construct an oracle
relative to which even in G=P (which is contained in PP) there exists a set that
is immune even to the class BPP e P (which contains PH by Toda's result [45]).
This result implies a number of new immunity results, including relativized ©P-
immunity and PH-immunity of G=P.
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Conversely, we show that, in some relativized world, NP contains (and thus
both PH and PP contain) a GP-immune set, which strengthens Torân's simple
séparation of NP and G=P [47,48], As a corollary of this result, we obtain that,
in the same relativization, GP has a simple set, z.e., a coinfmite G9P set whose
complement is GP-immune. Just like immunity, the notion of simplicity originates
from recursive function theory and has later proved useful also in complexity the-
ory. The existence of a simple set in a class C provides strong évidence that C
séparâtes from the corresponding class coC Our result that, for some oracle B,
G=P has a simple set extends Balcâzar's result that, for some A, NPA has a sim-
ple set [2], We also strengthen to a strong séparation Green's simple séparation
that, relative to some oracle, ©P £ PP P H [18]. Similarly, the relativized simple
séparation of the levels of the PP P H hierarchy [9] also can be turned into a strong
séparation. As a special case, this includes the existence of a PP-immune set
in P N P (and thus in PH) relative to some oracle, which improves upon a simple
séparation of Beigel [6].

2. PRÉLIMINAIRES

Fix the two-letter alphabet S = {0,1}. The set of all strings over E is denoted
by £*, and the set of strings of length n is denoted by En. For any string x e S*,
let \x\ dénote its length. For any set I Ç S * , the complement of L is L = S* \ £,
and the characteristic function of L is denoted by XL, i-e-, XL(X) = 1 if x £ L,
and XL(E) = 0 if x 0 L. For the définition of relativized complexity classes and
of oracle Turing machines, we refer to any standard text book on computational
complexity such as [3,24,33]. For any oracle Turing machine M and any oracle A,
we dénote the language of MA by L(MA)> and we simply write L(M) if A — 0.
For classes C and V of sets, define C p to be {JDeT,CD, where CD dénotes the class
of languages accept ed by C oracle machines wit h oracle D. For any class C, let
coC dénote {L \ L G C}. We use NPOTM as a shorthand for "nondeterministic
polynomial-time oracle Turing machine". Let accMA(x) (respectively, ^MA(X))
dénote the number of accepting (respectively, rejecting) computation paths of
NPOTM M with oracle A on input x, and let totj^ii(x) be the total number of
computation paths of MA on input x.

Définition 2.1. Let A be any oracle set.

1. ([30,44], see also [52]) The (relativized) polynomial hierarchy can be
defined as follows:

• for each k > 0, a set L is in S^' if and only if there exists a polynomial
p and a prédicat e a computable in PA such that for all strings x,

xeL <=> (Q1W1HQ2W2) -•(Qkwk)[<T(x,wuW2,.-- ,wk) = 1],

where the Wj range over the length p(|#|) strings, and for each i, 1 <
i < k, Q{ = 3 if i is odd, and Q̂  = V if i is even.
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• D e n n e n ^ =coS£A .

• DefinePHA = U>o s f A -
2. [17,34] ®P^ = {L I (3NPOTM M) (Vx e E*) [x e L <=> accMA(x) is

odd]}.

3. [16] PPA = {L j (3NP0TMM)(Vx e £*) [x G L <=> accM4x)

4. [40,51] &PA = {L | (3NPÖTM Af) (Va e £*)[x e L ^ accMx(x)
]}

5. [16] BPPA is the class of languages L for which there exists an NPOTM
M such that for each input x, x G L implies that rejM^(x) < ^totMA(x),
and x $ L implies that accM^(^) < \totMA(x).

6. We write S^ for ££' and PH for PH0, and similarly for the other classes.

Note that PH U ®P U PP U ©P Ç PSPACE and BPP Ç PP. It is also known
that BPP Ç E£ H Hl ([28], see also [42]) and coNP Ç G P Ç P P [40,51].

An n-ary boolean function is a mapping fn from {0, l } n to {0,1}. Some of the
most important boolean functions are the parity function, PARn, and the majority
function, MAJn. Let us define those functions that will be considered in this paper:

• PARn(x) = 1 if and only if the number of bits of x that are 1 is odd.
• MAJn(x) = 1 if and only if at least [§] bits of x are 1.
• EQU^(X) = 1 if and only if exactly k bits of x are 1, where 0 < k < n.
• EQü£alf (x) = 1 if and only if exactly ff] bits of x are 1.

Families of boolean functions are realized by circuit families. By convention, when
we speak of "a" circuit C Computing "a" function ƒ, we implicitly mean a family
C = (Cn)n>o of circuits Computing a family ƒ = (fn)n>o of functions; ie., for
each ra, Cn is a circuit with n input gates and one output gate that outputs the
value fn{x) for each x € {0, l}n.

The size of a circuit is the number of its gates. The circuit complexity (or
size) of a boolean function ƒ is the size of a smallest circuit Computing ƒ. Unless
stated otherwise, we will consider only constant depth, unbounded fanin circuits
with AND, OR, and © (parity) gates. An AND (respectively, OR) gate outputs
1 (respectively, 0) if and only if all its inputs are 1 (respectively, 0), and a © gate
outputs 1 if and only if an odd number of its inputs are 1. Since {AND, OR, ©}
(and, indeed, {AND, ©}) forms a complete basis, we do not need négation gates.
Note that switching from one complete basis to another increases the size of a
circuit at most by a constant.

The depth of a circuit is the length of a longest path from its input gates to
its output gate. Since adjacent levels of gates of the same type can be collapsed
to one level of gates of this type, we view a circuit to consist of alternating levels
of respectively AND, OR, and © gates, where the séquence of these opérations is
arbitrary—the depth of the circuit thus also measures the number of alter nations.
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3. IMMUNITY AND SIMPLICITY RESULTS FOR EXACT COUNTING

In this section, we prove the main resuit of this paper:

Theorem 3.1. There exists some oracle A such that G=P contains a BPP®
immune set

Before turning to the actual proof, some technical details need be discussed.
First, we need a sufficiently strong lower bound on the size of the "exact counting"
function, EQU^alf, when computed by circuits as described in the previous section.
Razborov proved the following exponential lower bound on the size of the majority
function when computed by such circuits; see Smolensky [43] for a gener alizat ion
of this result and a simplification of its proof.

Theorem 3.2. [35] For every k, any depth k circuit with AND, OR, and ©
gates that computes MAJn has size at least 2n(n ).

Using this lower bound for majority, we could (by essentially the same proof
as that of Thm. 3.1) directly establish BPP®pA-immunity of PPA. However, to
obtain the stronger result of Theorem 3.1, we now dérive from the above lower
bound for majority a slightly weaker lower bound for the EQUn

a function, still
being sufficiently strong to establish Theorem 3.1.

Lemma 3.3. For every k, there exists a constant c*k > 0 and an rik £ N such that
for all n > rik, every depth k circuit with AND, OR, and © gates that computes
EQl£alf has size at least n"1 • 2°*nl/(a*+4).

Proof. Fix a sufHciently large n. Note that the majority function can be expressed
as

n

(l)

Each function EQU^, 0 < i < n, is a subfunction of E Q U ^ , since for each
x e {0, l } n , E Q I 4 0 ) = EQUanlf (xOn71-*). Thus, the circuit complexity of EQUJ,

is at most that of EQU2^lf for each i. Now let sizefc(EQU^alf) dénote the size of
a smallest depth k circuit with AND, OR, and ffi gates that computes EQU^alf.
Thus, by équation (1) above, we can realize MAJJ-ZL] with less than n-sizefc(EQu£alf)
gates in depth k + 1. Hence, by Theorem 3.2,

n"1 * sizefe+1(MAJrfl) = n'1

for some suitable constant a^ > 0 that dépends only on k. D

For technical reasons, since we want to apply the above circuit lower bound to
obtain relat ivized BPP®P-immunity, we will now give an equivalent définition of
the class B P P e P in terms of a hierarchy denoted PH0 . As explained later, PH e
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will only serve as a tooi in the upcoming proof of Theorem 3.1. PH0 generalizes
the polynomial hierarchy by allowing—in addition to existential and universal
quantifiers—the parity quantifier 0 , where (©tu) means "for an odd number of
strings w."

Définition 3.4. Let A be any oracle set.
1. For each k > 0, a set L is in PH®'A if and only if there exists a polynomial

p and a predicate a computable in PA such that for all strings x,

xeL <=> (Qitüi) ( Q 2 I Ü 2 ) •••(Qfeïüfc)[cr(a;)iüi)ïx;2)... ,wk) = 1],

where the Wj range over the length p(\x\) strings, and the quantifiers Q^ are
chosen from {3, V, ©} .

2. Define PHe>A = (Ji>0 PHf 'A.
3. We write PH® for PH®'0 and PH e for PH0 '0.

We stress that PH® is not a new complexity class or hierarchy, since it is just
another name for the class BPP®P, as can be proven by an easy induction from
the results of Toda [45] and Regan and Royer [36] which state that ©PB P P ,
NP B P p e P , and coNPBPpeP each are contained in BPP®P 2. Rather, the purpose
of PH® is merely to simplify the proof of Theorem 3.1. In particular, when using
PH® in place of BPP 0 P , we do not have to deal with the promise nature of BPP
and, more importantly, we can straightforwardly transform circuit lower bounds
for constant depth circuits over the basis {AND,OR, ©} into computations of
PH® oracle Turing machines.

Furst et al. [15] discovered the connection between computations of oracle
Turing machines and circuits that allows one to transform lower bounds on the cir-
cuit complexity of boolean functions such as parity into séparations of relativized
PSPACE from the relativized polynomial hierarchy. (We adopt the convention
that for relativizing PSPAGE, the space bound of the oracle machine be also a
bound on the length of queries it may ask, for without that convention the problem
of separating PSPACEA from PHA becomes trivial, see [15].) Sufficiently strong
(ie-, exponential) lower bounds for parity were then provided by Yao [53] and
Hâstad [20], and were used to separate PSPACE'4 from PH'4. Yao and Hâstad
also proved lower bounds for variations of the Sipser functions [41] in order to
separate all levels of PHA from each other; see also Ko [25].

A technical prerequisite for this transformation to work is that the computation
of any E?' machine can be simulated by a S^_x machine that has the property
that on all computation paths at most one query is asked and this query is asked
at the end of the path; see Furst et al. ([15], Cor. 2.2). An oracle machine having

2 In particular, due to these results, PH® in f act consists of only four levels not known to be the
same: PH® = P, PH® = NPUcoNPU©P, PH® = NPN PUcoNPN P UNP®P UcoNP®pU®PNP ,
and PH® = PH® = BPP®P. Note also that in [45], Toda preferred the op erator- based notation
BP • ©P, which due to the closure of ©P under Turing réductions is equivalent, ie . , BP • ©P =
BPP®P.
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this property is said to be weak. Similarly, the computation of any PH®' machine
can be simulated by a weak PH^!1 machine. The computation of a weak oracle
machine MA on some input x can then be associated with a circuit whose gates
correspond to the nodes of the computation tree of MA(x), and whose inputs
are the values XA(Z) fc>r all strings z G £* that can be queried by MA(x). This
correspondence can straight for war dly be extended to the case of weak PH®'
oracle machines and is formally stated in Proposition 3.5 below. The proof of
Proposition 3.5 is standard—see, e.g., Furst et al ([15], Lem. 2.3) and Ko ([15],
Lem. 2.1) for analogous results—and thus omitted.

Let CTlZ(ii t) dénote the collection of all depth i + 1 circuits with AND, OR,
and © gates, bottom fanin at most £, and fanin at most 2* at all remaining levels.

Proposition 3.5. Let A be any oracle and let M be any weak PH®' oracle ma-
chine running in time p for some polynomial p. Then, for each x ç S * of length n}

there exists a circuit CM,x in CTlZ(i,p(n)) whose inputs are the values of XA(Z)
for all strings z € E* with \z\ < p(n) such that CM,X outputs 1 if and only if MA

accepts x.
In particular, it follows from the bounded depth and fanin of the circuits in

CTH(i,p(n)) that the size of circuit CM,X is bounded by 2SM^ for some polyno-
mial s M depending only on M.

Now we are ready to prove our main resuit.

Proof of Theorem 3.1. For any set 5, define

Ls = {0^ | N > 1 and the number of length N strings in S equals 2N~1}-

Note that for each 5, Ls is in G=PS.
We will construct the set A such that LA G (M*A and LA is PHe'A-immune,

i.e., LA is infinité and no infinité subset of LA is contained in PH®' .
Since every PH®' machine can be transfermed into a weak PH®_j_1 machine, it

suffices to ensure the following two properties in the construction of A:

(a) LA is infinité, and
(b) for each weak PH®'"4 oracle machine M for which L(MA) is an infinité subset

of LA, it holds that MA does not recognize LA-

Fix an enumeration M{\ M^\ . . . of all weak P H e ' ^ oracle machines; we assume
the machines to be clocked so that for each f, the runtime of machine M^ is
bounded by Pi(n) = n% + i for inputs of length n. In particular, if i = (d,j),
the ith machine M^ in this enumeration is the j th weak PHd ^ oracle machine,
Af!1 d y, in the underlying enumeration of weak PH®'̂  oracle machines. Satis-
fying Property (b) above then means to satisfy in the construction the following
requirement Ri for each i > 1 for which MA accepts an infinité subset of LA'

Rn A ^
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We say that requirement Ri is satisfied if L(MfL) n LA / 0 can be enforced at
some point in the construction of A.

As a technical detail that is often used in immunity constructions, we require
our enumeration of machines to satisfy that for infinitely many indices i it holds
that M* accepts the empty set for every oracle X, which can be assumed without
loss of generality. We will need this property in order to establish Property (a).

Now we give the construction of A, which proceeds in stages. In stage i, the
membership in A of all strings up to length ti (for some suitable ti) will be decided,
and the previous initial segment of the oracle is extended to Ai. Strings of length
< ti that are not explicitly added to Ai are never added to the oracle. We define A
to be [Ji>0Ai. Initially, AQ is set to the empty set, and to = 0. Also, throughout
the construction, we keep a list C of unsatisfied requirements. Stage i > 0 is as
follows.

Stage i: Add i to C. Consider all machines M^y,... , M ^ corresponding to
indices £r that at this point are in £. Let k = max{dr | £r = (drjjr) and
1 < r < m} be the maximum level of the PH®'^ hierarchy to which these
machines belong (not taking into account the collapse of PH® = BPP®P

mentioned in Footnote 2). Let a.k+2 > 0 be the constant and 7ifc+2 £ N
be the number that exist for depth k -f 2 circuits according to Lemma 3.3.
Choose N = Ni > max{tï_i,logn^+2} to be the smallest integer such that

ak+2 • 2"/<2fc+8) > N + i +

where the polynomials s^r = SM£T correspond to the machines with indices
in C according to Proposition 3.5.

Distinguish two cases.
Case 1: There exists an r, 1 < r < 771, and an extension E Ç T,N of Ai-i

such that 0^ ^ LE and yet M£ '~lU accepts 0N. Let f be the smallest
such r. Cancel £f from £, set Ai to Ai_1 U E, and set U to Pi(N). Note
that requirement Ri~ has been satisfied at this stage.

Case 2: For all r, 1 < r < m, and for all extensions E Ç Y,N of Ai-i1

QN & LE implies that M^~ l U rejects 0N. In this case, no requirement
can be satisfied at this stage. However, to achieve Property (a), we will
force 0^ into LA- Choose some extension E Ç T,N of Ai-\ such that

(i): the number of length N strings in É equals 2N~1
) and

(ii): for each r, 1 < r < m, M^ l~1 rejects 0^.
We will argue later (in Claim 3.6 below) that such an extension E exists.
Set Ai to Ai-i U f?, and set U to Pi(N).

End of Stage z.
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Note that by the définition of ti and by our choice of N^ the oracle extension
in stage i does not injure the computations considered in earlier stages. Thus,

(Vt > 1) [0Ni e LAi <=> 0N* e LA], and (2)

(Vz, j > 1) [Mf* accepts QN* <=>> M f accepts 0^] . (3)

The correctness of the construction will follow from the following claims.

Claim 3.6. For each i > 1, there exists an oracle extension É satisfying (i) and
(ii) in Case 2 of stage i.

Proof of Claim 3.6. Consider stage i. For each r G {1 , . . . ,m}, let CMir,o
N be

the circuit that, according to Proposition 3.5, corresponds to the computation of
Mir running on input 0^. Fix all inputs to these circuits except those of length
N consistently with A{-\. That is, for each r G {1 , . . . , m}, substitute in C^t QN
the value XAi-i{z) for aU inputs corresponding to strings z with \z\ < ti_i, and
substitute the value 0 for all inputs corresponding to strings z with ii-\ < \z\ < ti
and \z\ ^ N. Call the resulting circuits Q^O^J • • • >Cemto

N- ^y Proposition 3.5,
for each r, CirjQN is in CX1Z(kJp£r(N))1 its 2N inputs correspond to the length N
strings, and for each E Ç E^, it holds that

C£ri0N on input XE(0N) • -XE(1N) outputs 1 <==^ M^'1^ accepts 0N. (4)

Create a new circuit C2N — OK!^=lCMe JON whose 2N inputs correspond to the
length N strings and whose output gate is an OR gâte over the subcircuits
C^i.o^î •.. , Çgmj0Jv. Thus, C2N is a depth k + 2 circuit with AND, OR, and ©
gâtes whose size is bounded by

(Note that m < i.) By our choice of N, we have 2N > n^+2 and

Thus, by Lemma 3.3, circuit C2N cannot compute the function EQU2^lf correctly
for ail inputs. Since by the condition stated in Case 2 and by équation (4) above,
C2N behaves correctly for ail inputs corresponding to any set E of length N
strings with 0^ ^ L^, it follows that C2N must be incorrect on an input cor-
responding to some set É of length N strings with 0^ G L^\ le., C2N on input
XË(QN) ' ' ' XË(1N)

 ou*puts 0. Since C2N is the OR of its subcircuits, each subcir-
cuit outputs 0 on this input. Thus, équation (4) implies that for each r, 1 < r < m,

Mf;-lUÉ rejects 0". Dclaiin 3.6

Claim 3.7. LA is an infinité set.


