Strongly locally testable semigroups with commuting idempotents and related languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 33 (1999) no. 1, pp. 47-57.
@article{ITA_1999__33_1_47_0,
     author = {Selmi, Carla},
     title = {Strongly locally testable semigroups with commuting idempotents and related languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {47--57},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {1},
     year = {1999},
     zbl = {0940.68072},
     mrnumber = {1705855},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1999__33_1_47_0/}
}
TY  - JOUR
AU  - Selmi, Carla
TI  - Strongly locally testable semigroups with commuting idempotents and related languages
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1999
DA  - 1999///
SP  - 47
EP  - 57
VL  - 33
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1999__33_1_47_0/
UR  - https://zbmath.org/?q=an%3A0940.68072
UR  - https://www.ams.org/mathscinet-getitem?mr=1705855
LA  - en
ID  - ITA_1999__33_1_47_0
ER  - 
%0 Journal Article
%A Selmi, Carla
%T Strongly locally testable semigroups with commuting idempotents and related languages
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1999
%P 47-57
%V 33
%N 1
%I EDP-Sciences
%G en
%F ITA_1999__33_1_47_0
Selmi, Carla. Strongly locally testable semigroups with commuting idempotents and related languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 33 (1999) no. 1, pp. 47-57. http://www.numdam.org/item/ITA_1999__33_1_47_0/

[1] J. Almeida, Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994). | MR | Zbl

[2] J. Almeida, The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. | MR | Zbl

[3] J. Almeida, Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989). | MR

[4] J. Almeida, Implicit operations on finit e J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | MR | Zbl

[5] J. Almeida, On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. | MR | Zbl

[6] J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, J. B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere). | MR | Zbl

[7] J. Almeida and P. Weil, Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28. | MR | Zbl

[8] C. J. Ash, T. E. Hall and J.-E. Pin, On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. | MR | Zbl

[9] D. Beauquier and J.-E. Pin, Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. | MR | Zbl

[10] J. A. Brzozowski and I. Simon, Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. | MR | Zbl

[11] S. Eilenberg, Automata, languages and machines. Academic Press, New York, Vol. B (1976). | MR | Zbl

[12] S. Eilenberg and M. P. Schützenberger, On pseudovarieties. Adv. in Math. 19 (1976) 413-418. | MR | Zbl

[13] R. Mcnaughton, Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. | MR | Zbl

[14] J.-E. Pin, Variétés de Langages Formels, Masson, Paris (1984). | MR | Zbl

[15] J.-E. Pin and H. Straubing, Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272. | MR | Zbl

[16] J. Reiterman, The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | MR | Zbl

[17] M. P. Schützenberger, On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. | MR | Zbl

[18] C. Selmi, Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994).

[19] C. Selmi, Over Testable Languages. Theoret Comput. Sci. 162 (1996) 157-190. | MR | Zbl

[20] I. Simon, Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222. | MR | Zbl

[21] P. Weil, Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991). | MR | Zbl

[22] Y. Zalcstein, Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. | MR | Zbl

[23] Y. Zalcstein, Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. | MR | Zbl

[24] M. Zeitoun, Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993).