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CUTWIDTH OF THE DE BRUIJN GRAPH (*)

by André Raseaup (1), Ondrej Sykora (%) and Imrich Vrro (?)

Communicated by R. Cori

Abstract. — We prove optimal upper bound on the cutwidth of the general de Bruijn graph. Our
upper bound is essentially based on a new relation between the cutwidth and the area of the VLSI
layout of a graph. The relation is interesting itself as it generalizes the known relation between the
area and the bisection width of graphs of bounded degrees and holds for arbitrary graphs.

Résumé. — Nous donnons une majoration optimale de la largeur de coupe du graphe de De Bruijn.
Notre majoration est essentiellement basée sur une nouvelle relation entre la largeur de coupe d’un
graphe et la surface nécessaire a son implantation V.L.S.1. Cette relation est intéressante en elle-
méme car elle généralise a des graphes de degré quelconque une relation déja connue entre la
surface nécessaire et la bissection-aréte des graphes ayant un degré borné.

1. INTRODUCTION

The cutwidth is a fundamental parameter of graphs which plays an
important role in the VLSI design [7]. Informally, the cutwidth problem
is to find a linear layout of vertices of a graph so that the maximum number
of cuts of a line separating consecutive vertices with edges is minimized.
The problem is N P-complete in general but solvable in polynomial time for
trees [11]. Very little is known on the exact or even approximate values of
cutwidths of specific graphs, see e.g. [2, 6, 8]. Barth et al. [1] proved that
cutwidths of the n-dimensional shuffle-exchange and the binary de Bruijn
graphs are of order © (2"/n).
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The aim of this note is to extend their result for general de Bruijn graphs.
More precisely, we show that the cutwidth of the k-ary n-dimensional de
Bruijn graph is © (k"1 /n). Our upper bound is essentially based on a new
relation between the cutwidth and the area of the VLSI layout of a graph.
The relation is interesting itself as it generalizes the known relation between
the area and the bisection width of graphs of bounded degrees and holds
for arbitrary graphs.

The cutwidth is a special case of the congestion. From reasons which will
be clear later, we define the cutwidth through the congestion.

Let G1 = (Vi, E1) and G2 = (Va2, E») be graphs such that | V1 | < | V2.
An embedding of G; in G is a couple of mappings (¢, 3) satisfying

¢ : Vi — V, is an injection, ¥ : E; — {set of all paths in Gz},

such that if uv € FEj then ¢ (uv) is a path between ¢ (u) and ¢ (v). Define
the congestion of an edge e € Ep under ¢, ¥ as

cge (G1, G2, ¢, ¥) = |[{f € E1 : e € Y (f) }]

and the congestion of G; in Gy as

cg (G1, Ga) = (Ifizf) max {cge (G1, G2, ¢, ¥) }

Let P, be an n-vertex path. Define the cutwidth of G = (V, E), |V | = n as

cw (G) = cg (G, Pp).

We will use also an equivalent definition of the cutwidth. Let ¢ : V —
{1,2,..., n} be a 1-1 labeling of vertices of G. Define

cw (G, ) = max {|{uw € E : ¢(u) <i<d(w)}|}
Then
cw (G) :mgn{cw(G, é) }.

A related concept is the bisection width of the graph G, denoted by bw (G),
and defined as
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CUTWIDTH OF THE DE BRUIIN GRAPH 511

b (G) = min { |{w € E : ¢(u) < [gJ <6()}}.

The k-ary n-dimensional de Bruijn digraph B (k, n) consists of k™ vertices.
Each vertex corresponds to a string un—1 Un—2 ... U1 ug over the alphabet
{0,1,2,...,k—1}. There is a directed edge from a vertex u to a vertex v
iff v can be obtained from u by a left shift followed by inserting a letter on
the freed place. As the orientation of edges does not influence the cutwidth,
from now on we consider the de Bruijn graph obtained from the de Bruijn
digraph by omitting orientations. Note that the resulting graph has loops
and multiply edges.

Let deg(v) denote the degree of a vertex v in G and A(G) =
max { deg (v) }.

v

We use the standard model for laying out VLSI circuits [9, 10]. The circuit
is viewed as a graph G in which vertices correspond to processing elements
and edges to wires. The graph is then embedded in a two-dimensional

grid with unit spacing between horizontal and vertical tracks subject to the
following assumptions:

(1) Vertices of degree less than or equal to 4 are mapped in the nodes of the
mesh. Vertices of degrees deg (v) > 4 are embedded in a square of side d
tracks in the mesh. Let us assume the square sides coincide with some tracks
in the mesh. Vertices can not overlap each other.

(i1) Edges are routed along grid lines with the restriction that no two edges
overlap except possibly when crossing perpendicular to each other or when
bending. Also, an edge can not be routed over a node it does not connect.
The area of two dimensional layout of G is defined as the product of the
number of vertical tracks and the number of horizontal tracks that contain a
node or a wire segment of the graph. The area of G is denoted by A (G).

2. UPPER BOUND

Our upper bound is based on a new relation between the area of the VLSI
layout of a graph and the cutwidth of the graph. Thompson [9] proved that
if A(G) < 4 then

A(G) = Q(w? (Q)).
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512 A. RASPAUD et al.

The same result for arbitrary graphs without a proof is mentioned in [4].
Another extension of the Thompson’s result for bounded degree graphs is in
[3]. We extend the Thompson’s result to the following:

LemmA 2.1: For an arbitrary graph G

A(G) = Q(cw? (Q))

Proof: First we give a short proof for the case A (G) < 4. Consider the
layout with the minimal area A (G). Let w and h be the number of the used
vertical and horizontal tracks, respectively. Wlog assume w > h. Then

A(G) = wh > . e}

We can view the layout as an embedding of the graph G into an h X m mesh
M with unit congestion. Further, it is easy to embed the mesh M into the
wh-vertex path P with a cutwidth A + 1. Now we use an observation that
cg (G1, G3) < cg(G1, G2) cg (Ge, G3) with G; =G, G2 = M, G3 = P.
We get cw (G) < ¢g(G, P) < h+ 1. Combining this with (1) we prove
the claim.

Now consider an arbitrary graph G on n vertices laid out in the mesh.
From now on we will not distinguish between vertices and edges of G and
their images in the mesh. Introduce the coordinate system with the origin in
the intersection of the left most vertical and the bottom most horizontal used
tracks and axes parallel to tracks. For each vertex v of deg(v) > 4, omit
the upper, lower and right side of the corresponding square of side deg (v).
It is easy to connect the edges attached to the removed sides with the left
side so that the congestion remains 1. In this way we obtain a new layout,
in which each vertex of degree deg (v) > 4 is mapped to a vertical straight
line segment of lenght deg (v) — 1.

If deg(v) > 4 then define the y-coordinate of v as the y-coordinate
of the lower end of the segment corresponding to v. Sort vertices of G
lexicographically according to their coordinates (z, y). Label the vertices
of G by 1, 2, ..., n according to the lexicographic order. Let ¢ denote
this labeling. Then

cw(G)Smiax{]{uveE:¢(u)§i<¢(v)}]}. 2
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Figure 1. — Separating first ip vertices.

Let the maximum be attained at some z = 1g, i.e.

miax{l{uv €EE:¢(u)<i<o(v)}|}
=[{uww € E: ¢(u)<ig <o)}l (3)

It is easy to see that there exists a vertical line L, possibly with one jog of
unit length, which divides the layout into two parts s.t. one of them contains
exactly vertices with labels 1, 2, ..., 79. See Figure 1 (line L is dotted).

Let ¢ (L) denote the number of edges of G crossed by L. By the definition
of the cutwidth we have

c(L)=|{uv € E: ¢(u) <ig <¢(v)}| 4)

Finally, we bound ¢ (L) from above in terms of h. The “zig-zag” line L
crosses at most A + 1 edges of the mesh. Clearly, ¢(L) equals the sum
of congestions of the crossed mesh edges which can not be greater than
h +1, because the congestion of the crossed mesh edge is not greater than 1.

Consider a set of vertices {v1, vy, ..., v } satisfying: they lie to the left

from L, deg (v;) > 4 and the distance of the vertex v; from L is smaller
k

than deg (v;) — 1, for j = 1, 2, ..., k. It holds that Z deg (vj) < h.
i=1

Otherwise some vertices would overlap in the original layout - contradiction
to the assumption (i) of the model. Hence

c(L)y<2h+1. (5)
Combining (1)-(5) we get the claimed result. (I
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THEOREM 2.1: The cutwidth of the k-ary n-dimensional de Bruijn graph

satisfies
kn+1
cw(B(k,n)):@( )

n

Proof: Kleitman et al. [5] constructed a layout of the shuffle-exchange
graph with area O (22"/n?). Brebner [4] used the Kleitman’s et al.
construction to lay out B (k, n) in area O (k*"*2/n?). Note that Brebner
uses slightly different model of VLSI layout, namely a vertex of degree d
is mapped into a square of side d/4 in the mesh. Scaling his layout by the
factor 4 in both dimension we get a layout compatible with our model. These
upper bounds together with Lemma 2.1 imply the upper bound on cutwidth.
Brebner showed a lower bound for the bisection width of B (k, n) of order
Q (k™*!/n) which is also a lower bound for the cutwidth. [
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