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ON DECIDING SOME EQUIVALENCES
FOR CONCURRENT PROCESSES (*)

by DUNG T. HUYNH (x) and Lu TIAN (X)

Communicated by J. GABARRO

Abstract. — In this paper y we study the complexity ofsome équivalences for finite processes and
for normed context-f ree processes. The results are asfollows. (1) For normed context-free processes,
the determinacy problem with respect to any équivalence between bisimulation and failure équiva-
lence is decidable. Determining whether a given (gênerai) normed context-free process is equivalent
to a given normed determinate context-free process with respect to any équivalence between
bisimulation and failure équivalences is decidable. In f act, these two types of problems are bot h in
Z\. However, they are undecidable with respect to simulation, trace and finite trace équivalences.
(2) For finite processes, the determinacy problem with respect to any équivalence between bisimula-
tion and failure équivalences is NL,-complete. Determining the équivalence of a (gênerai) finite
process and a determinate finite process with respect to any équivalence between bisimulation and
failure équivalences is NL-com/j/ete. For determinate finite processes, ail équivalences are NL-
complete. (3) For finite processes, simulation and ready-simulation équivalences are in P, whereas
ready-trace and failure-trace équivalences are YSPACÉ-complete.

Résumé. - Dans cet article, on étudie la complexité de certaines équivalences pour les- processus
finis et pour les processus algébriques normes. Les résultats sont les suivants : (1) Pour les processus
algébriques normes, le problème de la désambiguation (par quotient) est decidable pour toute
équivalence entre la bisimulation et l'équivalence par échec. De plus; on peut décider si un processus
algébrique norme est équivalent à un processus algébrique norme déterministe, où l'équivalence est
située entre la bisimulation et l'équivalence par échec. En fait, ces deux problèmes sont dans ££.
Cependant, ils sont indécidables pour la simulation et les équivalences de traces et de traces finies.
(2) Pour les processus finis, le problème de la désambiguation pour toute équivalence entre la
bisimulation et l'équivalence par échec est Nh-complet. Il en est de même du' problème de
l'équivalence entre un processus fini déterministe. Pour les processus finis déterministes, toutes ces
équivalences sont NL-cornptet. (3) Pour les processus finis, la simulation et la simulation "ready"
sont dans P tandis que les équivalences de traces ('ready" et "failure" sont PSPACE-complet.

1. INTRODUCTION

Process équivalences are introduced in various théories of communication
and concurrency in order to verify the behaviors of concurrent Systems.

(*) Received May 1992, acepted April 1993.
(*) Computer Science Program, University of Texas at Dallas, Richardson, TX 75083.
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52 DUNG T. HUYNH, LU TIAN

In [12] one finds the Iinear/branching time hierarchy of process semantics in
which the coarsest one is trace équivalence (~tr) and the fïnest one is
bisimulation équivalence (~bis) [31]. Between them are failure équivalence
(~ /) [4], failure-trace équivalence (refusai testing) (~/af) [32], readiness équi-
valence (~r) [30, 6], ready-trace équivalence (~rt) (cf. [3]), simulation équiva-
lence (~ sim) [31], ready-simulation (2/3-bisimulation) équivalence (~ rsim)
[5, 26] and so on.

A fundamental research issue is to study these process équivalences from
the complexity-theoretic view point. Thus, the basic question is how hard it
is to détermine whether one process is equivalent to another. Unfortunately,
all these process équivalences are undecidable for processes specified by
expressions in the gênerai framwork of any algebraic theory of concurrency.
However, for fïnite processes, it is obvious that all these équivalences are
decidable. Indeed, Kanellakis and Smolka showed in [27] that failure équiva-
lence is PSPACE-complete, and Huynh and Tian showed in [18] that readi-
ness équivalence is PSACE-complete, whereas Alvarez, Balcâzar, Cabarró
and Santha showed in [1] that bisimulation équivalence is P-complete.

For normed context-free processes, Baeten, Bergstra and Klop showed
in [2] that bisimulation équivalence is decidable. Recently, Huynh and Tian
showed in [21] that bisimulation équivalence for normed context-free pro-
cesses is in ££, the second level of the polynomial time hierarchy, thereby
improving the results in [7] and [13]. In [2], Baeten, Bergstra and Klop raised
as an open question the decidability of readiness and failure équivalences.
Unfortunately, Huynh and Tian showed in [18] that readiness and failure
équivalences are undecidable for normed context-free processes. Subsequently,
Groote and Hüttel showed in [14] that, except bisimulation équivalence, none
of the other process équivalences in the Iinear/branching time hierarchy [12]
is decidable for normed context-free processes.

To obtain a more complete answer to the open question in [2], we will
show in this paper that for two normed context-free process graphs, if one
of them is determinate, then all process équivalences between bisimulation
and failure équivalence coïncide and are therefore decidable in ££. This
should be contrasted with a well known result in the theory of formai
languages that it is undecidable whether an arbitrary context-free grammar
is equivalent to a simple grammar. (Note that context-free grammars in
Greibach normal form correspond to context-free processes and simple gram-
mars to deterministic context-free processes [cf. Section 5].

Tables 1 and 2 contain main existing results and new results obtained in
this paper. We hope the our results provide a more complete complexity
classification of équivalences for concurrent processes.

Informatique théorique et Applications/Theoretical Informaties and Applications



DECIDING EQUIVALENCES

TABLE I

Complexity of process équivalences for normed context-free processes.

53

Normed CFPs
MandN

~bis

~rsim> ~rt

~r> ~fa» ~f

sim

~rr, ~ftr

M and N are
determinate

One of Af and TV
is determinate

M and N are
gênerai

ES
2? undecidable

undecidable

undecidable

undecidable
undecidable

TABLE II

Complexity of process équivalences for fïnite processes.

Finite Processes
MandJV

~bis

™ rsim

sim

~fatr ~f

~tr> ~ ftr

M and N are
determinate

NL-complete

NL-complete

NL-complete

NL-complete

NL-complete

One of M and N
is determinate

NL-complete

NL-complete
P

NL-complete

PSPACE-complete

M and Af are
gênerai

P-complete

P

P

PSPACE-complete

PSPACE-complete

We assume familiarity with basic notions in formai language theory and
complexity theory. The reader is referred to [16], [24] and [11] for further
details. This paper is a continuation of the study in [18], [19] and [21]. It is
organized as follows. In Section 2, we defîne formally the notion of a process
graph and various process équivalences, and for some interesting classes of
process graphs we show the relationship between those équivalences. In
Section 3, we show that simulation and ready-simulation is in P for finite
process graphs. In Section 4, we show that, for finite process graphs, the
determinacy problem with respect to any process équivalence between bisimul-
ation and failure équivalences is NL-complete. For two finite process graphs,
if one them is determinate, then any process équivalence between bisimulation
and failure équivalences is NL-complete. For determinate finite process
graphs, ail process équivalences (between bisimulation and trace équivalences)
are NL-complete. We also show that for (locally unary) finite process graphs,
ready-trace and failure trace équivalences are PSPACE-complete. In
Section 5, we show that, for normed context-free process graphs, the determi-
nacy problem with respect to any process équivalence between bisimulation
and failure équivalences is in L£> while it is undecidable with respect to
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54 DUNG T. HUYNH, LU TIAN

simulation and trace équivalences. For two normed context-free process
graphs, if one of them is determinate, then any process between bisimulation
and failure équivalences is in L^. In Section 6, we make some concluding
remarks.

2. BASIC DEFINITIONS AND FACTS

In this section, we introducé some basic définitions and prove some techni-
cal results that will be used in subséquent sections. The notion of a process
graph will be formally defined and various classes of process graphs will be
introduced. A process graph is essentially a nondeterministic (possibly infi-
nité) automaton.

DÉFINITION 2.1: A process graph M is a 4-tuple M= (P, Act, 8, p0) where
1. P is a set of processes.
2. Act is a fïnite set of (observable) actions.
3. ô g P x Act x Pis the transition relation.
4. poeP is the initial process.
We say that there is a transition labeded by action a from process p to

processes q, denoted by p -+a q, if (p, a, q)e 8. We write p -*a, (resp. p -• q) if
p^>a q for some process #(resp. action a). If

then we call this a (transition) path labeled by action string axa2 . . an from
process q0 to process qn. We write qo=>ai'a"qn if such a path exists. We
write p =>* (resp. p=>q) if p =>x q for some process q (resp. action string x).

DÉFINITION 2.2: Let M=(P, Act, 8, p0) be a process graph and p be a
process in P.

The initial set of p is defmed by init(p)={aeAct\p^>a).

The next set of p is defîned by next (p)={qçP\p-+ q}-
p is said to be terminal process, denoted by p [, if init (p) = 0.
The norm of p is defmed by norm(p) = min {length(x)\3 q s P : p =>x q J,}.
We now introducé various classes of process graphs.

DÉFINITION 2.3: Let M^(P, Act, 8, p0) be a process graph. M is said to be
fînitely branching if for each peP, init{p) and next(p) are both fmite,
deterministic if 8 is a (partial) fonction from P* Act into P,

Informatique théorique et AppHcations/Theoretical Informaties and Applications



DECIDING EQUIVALENCES 55

normed if for each p e P, norm (p)< + oo,
finite if P and Act are both fïnite,
locally unary if for each peP, init(p)^l, i.e., there is at most one action

a e Act such that p ->a,
unary if Act contains exactly one action.
We say that processes in P are finitely branching (deterministic, normed,

finite, locally unary, unary) if M is finitely branching (deterministic, normed,
fini te, locally unary, unary).

Note that the notion of a normed process was introduced in [2], whereas
locally unary processes were considered in [18]. In the foliowing, we reproduce
the définitions of various process équivalences, which can be found in the
literature {cf. e. g. [12]). The notion of bisimulation équivalence was introdu-
ced in [31] and used in the Calculus of Communicating Systems (CCS) [28]. The
notion of failure équivalence was introduced and studied in [4], which coincides
essentially with the notion of testing équivalence defmed in [29]. The notion
of readiness équivalence was introduced in [30] and further investigated in [6].
Furthermore, one fmds other process équivalences such as simulation équiva-
lence [31], ready simulation (2/3-bisimulation) équivalence [5, 26], ready
trace équivalence (cf. [3]), failure trace équivalence (refusai testing) [32] and
so on. Now, let M=(P, Act, 5, p0) and N=(Q, Act, 0, q0) be process graphs.

DÉFINITION 2.4: Let R be a relation over (P\J Q) x (P\j Q). R is said
to be

a simulation if, for each (p, q)eR, p -+ap' implies that there is q' such that

a bisimulation if R and R'1 are both simulations,
a ready-simulation if R is a simulation and for each (p, q) e R,

DÉFINITION 2.5: Let p and q be processes in (P U ô).
p and q are said to be bisimulation equivalent, denoted by p~bisq, iff there

is a bisimulation R with (p, q)eR.

p is said to be simulated by q, denoted by p ^sim q, iff there is a simulation
R with (p, q)eR. p and q are said to be simulation equivalent, denoted by
p~simq, iff they are simulated by each other, Le, p^simq and q^simp.

p is said to be ready-simulated by q, denoted by p^rsimq, iff there is a
ready-simulation R with (/?, q)eR. p and q are said to be ready-simulation
(2/3-bisimulation) equivalent, denoted by p~rsimq, iff they are ready-simulated
by each other, L e. p ^rsimq and q^rsimp.

vol. 28, n° 1, 1994



56 DUNG T. HUYNH, LU TIAN

DÉFINITION 2.6: Let p be a process in P.
The trace set of p is defined by traces {p)={xeAct* \p=>x}.
The finite trace set ofp is defined by ftr(p) = {xeAct* \3qeP:p^>xq
The ready set oï p is defined by

readies (p) = { (x, Z) e Act* x 2Act \3qeP:p=>xq and init (q) = Z}.

The ready-trace set of p is defined by

ready-traces(p)={Aoa0A1 . . . am_1Am\m^, 3pl9p2, . . • . / '„eP:

The failure set of p is defined by

/ûï/wres(M) = {(JC, F)e,4c?* x 2^13#eP:p =>xq and init(q)DY=

The failure-trace set of p is defined by

failure~traces={x0A1x1 . . . ^ m x m |m^0 , 3/?x. p29 . . .,pm€P:

P^x°Pi=>xl • • . pm^>Xm and init (qi) D At = 0, l^i^m}.

DÉFINITION 2.7: Let/?ei3 and ^ e g be processes, p and g are said to be
trace equivalent, denoted by p~trq, iff traces (p) = traces (q),

finite trace equivalent, denoted by p~ftrq, iffftr(p)=ftr(q),

readiness equivalent, denoted by p~rq, iff readies(p) — readies(q),

ready-trace equivalent, denoted by p~rtq, iff ready-traces (p) = ready-
traces{q),

failure equivalent, denoted by p~fq, iff Jallures(p)= jailures(q),
failure-trace equivalent, denoted by p~fatq, iff failure-traces (p)= failure-

traces{q).
For an équivalence ~ , we say that M~N iff /?o~#o-
The gênerai inclusion relationship between équivalences for process graphs

is shown in Figure 1 (see also [12]).
Clearly, for normed processes, ~ ftr is finer than ~tr.

PROPOSITION 2.8: For normed processes, it holds that ~/tr<= ~fr.
We now consider the notion of determinate process graphs which was

introduced in [28].

Informatique théorique et Applications/Theoretical Informaties and Applications
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bis

rsim

tr

sim

Figure 1.

DÉFINITION 2.9: Let M=(P5 Act, ô,/>0) be a process graph. M is said to
be determinate, if for all peP and aeAct, whenever p -^ap1 and p -+ap2 then
Pl~bisPl'

Obviously, every deterministic process graph is determinate, but not vice
versa. A characterization of determinate process graphs is contained in the
following proposition whose proof is straightforward.

PROPOSITION 2.10: Let M=(P, Act, 5, p0) be a process graph. Then the
following are equivalent:

1. M is a determinate process graph.

2. For all peP and xeAct*, whenever p=>xp1 and p=>xp2 then p1~bisp2-

vol. 28, n° 1, 1994



58 DUNG T. HUYNH, LU TIAN

3. M~bisN for some de terminis tic process graph N.
The foliowing proposition was shown in [9] and [28].

PROPOSITION 2.11: Let M and N be determinate process graphs. Then
M~bisNiffM~trN.

Proposition 2.11 implies that all équivalences between bisimulation and
trace équivalences coincide for determinate process graphs. Moreover, from
Proposition 2.8, for normed determinate process graphs, fmite trace équi-
valence coincides with all other équivalences.

Engelfriet showed in [9] that determinacy is preserved under failure équi-
valence as stated in the following

LEMMA 2.12: Let M be a {général) process graph and N be a determinate
process graph with p0 and q0 as the initial processes, respectively. Then failure
(p0) ^failure (q0) implies that M~bisN.

From Lemma 2.12, we have immediately as a corollary

PROPOSITION 2.13: Let M be a (gênerai) process graph and N a determinate
process graph. Then

M~bisNiffM~rsimNiffM~rtNiffM~rNiffM~faJffM~fN.

Proposition 2.13 says that for two process graphs, if any of them is
determinate, then all équivalences between bisimulation équivalence and fai-
lure équivalence coincide. From Propositions 2.10 and 2.13 we have

COROLLARY 2.14: Let M be a process graph. Then M~bisN for some
deterministic process graph N iff M~r(~rsim, ~ r t, ~ r , ~fati ~f)N for some
deterministic process graph N.

For normed and locally unary processes, Huynh and Tian first showed
in [18] that readiness, failure and finite trace équivalences coincide. Sub-
sequently, Groote and Hüttel showed in [14] that they coincide with ready-
trace and failure-trace équivalences.

PROPOSITION 2.15: For normed and locally unary processes, it holds that

~rt= ~r= ~fat= ~ f= ~ ftr'

Proof: Let p and q be normed and locally unary processes. It suffices to
show that ftr(p)=ftr(q) implies that ready-trace {p)~ ready-trace (q). To this
end, let x = A0a0A1 . . . am_1 Ameready-traces(p). Since processes are locally
unary, we have that Ai={ai] for 0^i<m, If Am = 0, aoax . . . am„leftr(p).
Since ftr(p)~ftr(q), it follows that x e ready-traces (q). In the case that

Informatique théorique et Applications/Theoretical Informaties and Applications



DECIDING EQUIVALENCES 59

Am # 0 , Am — {a } for some a e Act since processes are locally unary. From the
fact that processes are normed, there exists y e Act* such that aoax . . . am_1

ayeftr(p). Since ftr(p)=ftr(q), it follows that aoa1 . . . am_1ayeftr(q)
Thus, we have that x e ready-traces (q). By symmetry, we also have that
x G ready-traces (q) implies x e ready-traces (p). Hence, ready-traces (p) — ready-
traces{q). This complètes the proof of Proposition 2.15. D

As unary processes are locally unary, we obtain immediately

COROLLARY 2.16: For normed unary processes, it holds that

~rt= ~r=™fat= ~ ƒ = ~ ƒ tr

LEMMA2.17: Letpup29 - . ., pm he unary processes. Then for some l^i^m,
m

traces (p^)— U traces (pj).
J = I

Proof: By induction on m. D

PROPOSITION 2.18: For unary processes, it holds that ~sim= ~fr.

Proof. Let p and ^ be unary processes. We show that p ^simq
iff traces (j?)^ traces (q). The "only if" part is obvious. For the "if"
part, let M=(P, {a}, 8, pQ) and N=(Q9 { Û } , 0 , q0). Consider relation
R={(p, q)ePx Q\ traces(p)^traces(q)}. We show that R is simulation.

To this end, let (p,q)eR and p^apr- Then [a] traces(p')^z traces(p).
Since traces (p) £ ïrace^ (^), {« } /races (/?') c rrace^ (q). Note that
rrac^(^)={s}U{^}(\Jq-+a

q'traces(q'))- From Lemma 2.17, there is
q -+a q such that traces {q)={z}\j{a} traces (q). Thus, we have that
{ a } traces (p') g { a } traces {q'), î.e. traces (p')<^ traces (qf), which implies that
(p', q')eR. This complètes the proof of Proposition 2.18. •

3. COMPLEXITY OF SIMULATION EQUIVALENCES FOR FINITE PROCESSES

Bisimulation équivalence for finite processes was shown to be decidable in
polynomial time in [27] and an efficient algorithm for deciding bisimulation
équivalence for finite processes can be in [33]. It was shown to be P-complete
in [1]. In this section, we show that deciding simulation and ready-simulation
équivalences for finite processes are decidable in polynomial time. Let
M=(P, Act, b, p0) and N=(Q, Act, 9, q0) be process graphs and U be a
transitive subset of

vol. 28, n° 1, 1994



60 DUNG T. HUYNH, LU TIAN

DÉFINITION 3.1: A simulation R is said to be a TJ-simulation if
Process p is said to be U-simulated by process q, denoted by p^imq, iff
there is a {/-simulation R with {p, q)eR. p and q are said to be V-simulation
equivalent, denoted by p~^imq, iff they are {/-simulated by each other, i.e.

Let / = {(p, q)e(P{JQ)x(PUQ)\ mit (p) = im* (q)}. By définition, simula-
tion équivalence is just the (P U 0-simulation équivalence and ready-simula-
tion équivalence is just the /-simulation équivalence. Moreover, if U and U'
are transitive subsets of (P U ô) x (P U 6) and {/g {/', then /?~^w# implies
P~ïîma' To show that simulation and ready-simulation équivalences are in
P, it suffïces to show that {/-simulation équivalence is decidable in polynomial
time for any transitive subset U^(P\J Q)x(P{J Q). Indeed, for finite pro-
cesses, {/-simulation may be regarded as the intersection of a séquence of
polynomially many approximate simulation refinements.

DÉFINITION 3.2: 1. p ^ %q for ail (p, q) e U.

2. pèï+i<2 iff for ail (p, q)eU, p^ap' implies that there is q^>aq' and

PROPOSITION 3 .3: For finitely branching processes, it holds that
+ 00

,U _ n <U

Proof: We need to show that (l) ^im^^f for ail z'^0 and that
+ 00

(2) n S? is a {/-simulation.

Part (1) can be shown by induction on i. The basis is obvious. For
induction let p ^imq and p -+ap . Then, there is q^aq' with p' ^imq''. By
induction hypothesis, / / ^ J7 #\ Thus, /? ̂  +̂1 #.

+ 00

To show Part (2), let R= H S f and O, ^)Gi^. Let next = next(p)
i = 0

U next(q). From the fact that processes are finitely branching, we have that
next is finite. Therefore, there exists m^O such that, for ail s, tenext, (s, t)eR

Now, let m is as stated in the claim. Since (p,q)eR, we have that
pSm + i<2- Then, p -+ap implies that there is q-±aq' with p'^^q'. Because
(//, q') G next, (p\ q')eR. Therefore, i? is a {/-simulation. D

For finite processes, let n"=Card{U). As finite processes are also finitely
branching, it holds that <£m= ^ £ .

Informatique théorique et Applications/Theoretical Informaties and Applications



DECIDING EQUIVALENCES 61

THEOREM 3.4: JJ-simulation équivalenceprobiem forfiniteprocesses is decid-
able in polynomial time.

Proof: A straightforward polynomial time algorithm can be obtained by
verifying, for all q9 pe{P\JQ\ whether p<.f q for i = 0,1,2, . . ., n2. Thus,
p~"mq if pè^q and q^i. D

Thus, we obtain the following theorem.

THEOREM 3.5: Simulation and ready-simulation (2/3-bisimultiori) équivalences
for finite processes are décidât le in polynomial time.

Not that our resuit implies that z-nested simulation équivalence [15] for
finite processes is decidable in polynomial time.

In [1] it was shown that bisimulation équivalence probiem for (unary) finite
processes is P-complete. In contrast to this, we show the NL-completeness
of simulation équivalence for unary finite processes.

THEOREM 3.6: Simulation équivalence for unary finite processes is NL-
complete,

Proof: In [19] Huynh and Tian showed that trace équivalence for unary
finite processes is NL-complete. Thus, the theorem follows from Propo-
sition 2.18. D

Note that, if unary finite process graph is tree-like, simulation équivalence
becomes L-complete [19].

4. COMPLEXITY OF TRACE EQUIVALENCES FOR FINITE PROCESSES

Trace, finite trace, readiness and failure équivalences for finite processes
were shown to be PSPACE-complete in [27], [18] and [20]. In this section we
show that ail équivalence problems for deterministic finite processes and for
determinate finite processes are NL-complete and that ready-trace and failure-
trace are PSPACE-complete. Furthermore, we show that, given a (gênerai)
finite process graph and a deterministic finite process graph, deciding bisimul-
ation, ready-simulation, ready-trace, readiness, failure-trace and failure équiv-
alences are ail NL-complete.

It is well known that language équivalence for deterministic finite automata
is NL-complete. However, this does not imply the NL-hardness of trace
équivalence probiem for deterministic finite processes because transition
functions of processes are partial functions and trace sets of processes have
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62 DUNG T. HUYNH, LU TIAN

the prefix property, L e., for any process p, if x e traces (/?), then y e traces (p)
for each prefix y of x. We give our own proof here.

THEOREM 4.1: 1. AH équivalences (defined in thispaper) for (normed) deter-
ministic (or determinate) finite processes are ^h-complete.

2. Bisimulation, ready-simulation, ready-trace, readiness, failure-trace and
failure équivalences for a (gênerai) finite process graph and a determinate finite
process graph are NJu-complete.

Proof: To show the NL-hardness, we need only to show that trace équiva-
lence for deterministic finite processes is NL-hard. Consider the graph accessi-
bility problem (GAP), a problem well known to be NL-complete. It is the
problem of deciding for a directed graph G and two vertices s and g whether
there is a directed path from s to g. When the graphs in the input are acyclic
with vertices having outdegree :g 2, then we have a special case of GAP
denoted by 2-AGAP, which is still NL-complete. We reduce 2-AGAP to the
trace équivalence problem for normed finite processes. To this end, let
G = (V, E) be an acyclic directed graph whose vertices have outdegree at
most 2, and s and g be two vertices in G. Without loss of generality we
assume that outdegree (g) = 0. We construct a normed finite process graph
Af=(KU{.?}, {0, 1}, 5, s) as follows.

The transition function 5 is defined by, for each v e V,

1. If outdegree (v) = 2, then 6(v, 0):=v0 and 8(z>, l) : = ̂ x where v0 and v1

are two different vertices adjacent to v.

2. If outdegree(v)=l, then §(v, Q): = v' where v' is the vertex adjacent
to v.

3. 8fe, 1): = ?.
4. There are no other transitions in §.

A finite process graph TV can be obtained from M by replacing ô (g, 1) : = q
by 5 (g, 0) : = q. From the constructions of M and TV, we have that there is a
directed path from s to g in G iff traces (M)^ traces (N).

To show the NL upper bound, let M=(P, Act, 5, p0) be a finite process
graph and N=(Q, Act, 0, q0) be a determinate finite process graph. From
Propositions 2.11 and 2.13, it suffices to show that deciding M~rN is in
NL. In fact, from the initial processes of M and N, we can simultaneously
guess paths labeled by same string in Act* such that M and N reach different
initial sets. Clearly, this can be done in NL. As NL is closed under complement
[25, 37], we obtain the NL upper bound. This complètes the proof of
Theorem 4.1. D
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We note that for a (gênerai) finite process graph and a deterministic (or
determinate) finite process graph, trace and fmite trace équivalences are
PSPACE-complete. This follows from the fact that the problem of deciding
whether a nondeterministic finite automaton with input alphabet Z accepts
language 2*#where#is a terminal symbol not in S. We now consider the
determinacy problem for fmite process graphs. The determinacy problem
with respect to a process équivalence ~ is to détermine for a given process
graph M whether M ~ N for some deterministic process graph N.

THEOREM 4.2: The determinacy problem with respect to ~ bis

(~rsim> ~r» ~r> ~ fa» ~ ƒ> ~ ftr) for finite process graphs is NL-complete.

Proof: To show the NL-hardness, let M={P, Act, 5, p0) and
N=(Q, Act, 0, q0) be deterministic finite process graphs as constructed from
the graph G in Theorem 4.1 with P C\Q~0. We construct a finite process
graph M' by identifying p0 as a single initial process. Obviously, we have
that M~bisN iff M~fîrN iff M'~bisN' for some deterministic fmite process
graph N' iff M'~simN' for some deterministic fmite process graph N'.

We next show the NL upper bound for finite trace équivalence. Let
M=(P, Act, 8, p0) be a finite process graph. Note that there is no determinis-
tic fmite process graph N such that M~fîrN iff there are x, yeftr(M) such
that x is a proper prefix of y. Clearly, this condition can be checked in NL.
From the fact that NL is closed under complement, it follows that deciding
whether M~ ftrN for some deterministic finite process graph N is in NL.

To prove the NL upper bound for the other équivalences, from
Corollary 2.14, it suffices to prove that determinacy problem with respect
to~ r for finite process graphs is in NL. To this end, let M be a fmite process
graph. From the initial process of M, we simultaneously guess two different
paths labeled by the same string in Act* such that M reaches two different
initial sets. Again, from the fact that NL is closed complement, it follows
that deciding whether M~rN for some deterministic finite process graph iV
is in NL.

Finally, for the correctness of the algorithm, one simply proves that, if for
all xeAcï* there exists at most one Z^Act such that (x, 2) e readies {M),
then

R={(p,q)ePxP\3xeAct*:po=>xpandpo^>xq}

is a bisimulation. We leave this to the reader. Thus, Theorem 4.2 follows. •

From Proposition 2.10, we obtain as a corollary
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THEOREM 4.3: The problem of determining whether afinite process graph is
determinate is NL-compiete.

The proof of Theorem 4.2 implies that, for finite process graphs, the
determinacy problem with respect to any process équivalence between bisimul-
ation and failure équivalences is NL-complete. However, for any finite process
graph, there exists always an equivalent deterministic finite process graph in
the trace semantics. Instead of trace and fmite trace équivalences, maximal
trace équivalence is more used in concurrency théories. Two processes are
said to be maximal trace equivalent iff they are trace equivalent and fmite
trace equivalent. One can easily show that all NL-completeness results remain
true for maximal trace équivalence for finite processes (fmite process graphs).

Now we turn our attention to (gênerai) finite processes. Huynh and Tian
showed in [18] that finite trace équivalence problem is PSPACE-complete for
normed locally unary finite processes. As for normed locally unary processes
ready-trace and failure-trace équivalences coincide with finite trace équiva-
lence (Proposition 2.15), we have immediately.

THEOREM 4.4: Ready-trace and failure-trace équivalences for normed and
locally unary finite processes are PSPACE-complete.

Now we show that ready-trace and failure-trace équivalence problems for
(gênerai) finite processes are PSPACE-complete.

THEOREM 4.5: Ready-trace équivalence for finite processes is PSPACE-
complete.

Proof: We show the PSP ACE upper bound only. We do so by reducing
ready-trace équivalence problem for fmite process to trace équivalence for
finite processes. To this end, let M=(P, Act, 8, p0) be a finite process graph.
From M we construct a finite process graph M' = (P', Act', 8', p0) as follows.

P': = PU{[p]\peP}.

Act' : = Act\j{ init(p) \peP}.

The transition function 8' is defined by, for all p e P and a e Act,

(1) S'(/>, mit(

(2) d'([q],a):

Similarly, one can construct from finite process graph N a finite process
graph TV'. It is easy easy to see that r eady-tr aces {M) = r eady-tr aces {N) iff
traces (M') = traces (Nr). This complètes the proof of Theorem 4.5. D

THEOREM 4.6: Failure-trace équivalence for finite processes is PSPACE-
complete.
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Proof: We show the PSPACE upper bound only. We do so by reducing
failure-trace équivalence for finite processes to trace équivalence for finite
processes. Now let M= (P, Act, 8, p0) be a finite process graph. From M we
construct a finite process graph M'= (P, Act', 5, p0) as follows.

Act'\ = ActVj{[a]\aeAct}.
The transition function S' is obtained by adding to 5 the following transi-

tions: for a\\peP and aeAct, S'(/>, [a]):=/? if a$init(p).
Similarly, one can construct from a finite process graph N a finite process

graph N'. It is easy to see that failure-traces (M) = Jailures-traces (N) iff
traces {M') = traces (Nl). This complètes the proof of Theorem 4.6. D

Note that readiness and failure équivalences for (normed and locally unary)
finite processes were shown to be PSPACE-complete in [18]. In [18] it was
also shown that readiness (failure) équivalence for unary finite processes is
co-NP-complete. Thus, from Proposition 2.16, we obtain as a corollary

THEOREM 4.7: Ready-trace and failure-trace équivalences for unary finite
processes are co-NP-complete.

5. COMPLEXITY OF NORMED CONTEXT-FREE PROCESSES

In this section, we show that, for a normed context-free process and a
determinate normed context-free process, ail équivalences between bisimula-
tion and failure équivalences are in Y*\. We also show that for normed
context-free processes, the determinacy problem with respect to any équiva-
lence between bisimulation and failure équivalences in ££, while these prob-
lems with respect to simulation and trace équivalences are undecidable.

DÉFINITION 5.1: Let G = (Var, Act, II, S) be a context-free grammar (CFG),
where Var is the set of nonterminals, Act is the set of terminals, II is the set
of productions and S is the start symbol in Var.

1. G is said to be in Greibach normal form (GNF) if each production in II
is of the fomr^ -^aa, where a is a terminal in Act and a is a nonterminal
string in Var*.

2. A GNF CFG G is said to be normed if each nonterminal A e Var can
generate a terminal string.

3. A GNF CFG G is said to be simple if for each A e Var and each aeAct
there is at most one production of the form A -> a a in n .

4. We use L{G) to dénote the context-free language (CFL) generated by
G and prefix (L (G)) to dénote the set { x \ 3 y : xy e L (G)}.
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5. A CFL is said to be deterministic if it can be accepted by a deterministic
push-down automaton [23, 24].

The following lemma is well-known in the theory of formai languages
[23, 24].

LEMMA 5.2: 1. Each CFL L without e {the empty string) is generaled by
a normed GNF CFG which can be effectively constructed from any CFG
gene rating L.

2. If R is a regular set, then R# is a simple CFL.

3. Any simple CFL is a deterministic CFL.

4. If L is a deterministic CFL and R is a regular set, then LjR is a
deterministic CFL.

5. If L is a deterministic CFL, then so is L.

Every GNF CFG may be regarded as a guarded system of recursion
équation over the basic process algebra (BPA). Therefore, every GNF CFG
can be associated with a process graph as follows.

DÉFINITION 5.3: Let G=*(Var9 Act, Tl, S) be a GNF CFG. The (context-
free) process graph MG specified by G is MG = (Var*, Act, 5, S) where S is
defined as follows: For each (context-free) process in Far* of the form A P,
if A -> aai is a production in II where aeAct, then A p ->aoc|3 is a transition
in ô.

Note that MG is a normed process iff for all A € Var, norm (A) < + oo iff G
is normed CFG. In this case, s (the empty string) is the unique terminal
process. Note also that, if G is normed, ftr(MG) = L(G) and
traces (MG)= prefix (L(G)) and that, if G is simple, MG is a deterministic
processes.

THEOREM 5.4: For normed context-free processes,

1. bisimulation équivalence is decidable [2, 7, 17, 13],

2. bisimulation équivalence is in T% [21],

3. readiness andfailure équivalences are undecidable [18],

4. all other équivalences in [12] are undecidable [14],

We now show the main results of this section.

THEOREM 5.5: Bisimulation, ready simulation, ready trace, readiness, failure-
trace and f allure équivalences for a normed context-free process graph and a
normed determinate context-free process graph are in L§.
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Proof: In [21] it was shown that bisimulation équivalence for normed
context-free processes is in £ | . Thus, the theorem follows from
Proposition 2.13. D

The proof of Theorem 5.5 implies that any équivalence between bisimula-
tion and failure équivalences for a normed context-free process graph and a
determinate normed context-free process graph is in L§. Ho wever, we have

THEOREM 5.6: Simulation and (fïnite) trace équivalences for a normed
context-free process graph and a de terminis tic normed context-free process
graph are undecidable.

Proof: The undecidability of simulation équivalence was shown in [14].
The undecidability of (finite) trace équivalence follows from the fact the
problem of deciding whether a given context-free grammar with terminal
alphabet £ générâtes language £*# is undecidable where#is a new terminal
symbol not in £ (see the proof of Theorem 5.7). D

We now consider the determinacy problems with respect to process équiva-
lences for normed context-free process graphs.

THEOREM 5,7: For normed context-free process graphs, the determinacy
problem with respect to (finite) trace équivalence is undecidable.

Proof: It is well known that the problems of deciding for a CFL L whether
L is a regular set and whether L is a CFL are undecidable. The proof [23] of
the undecidability of these two problems consists of constructing a CFL L
from an instance (A, B) of the Post's Correspondence Problem, a well known
undecidable problem, such that (A, B) has no solution iff L is a CFL iff L = E*
where E is a suitable alphabet. Furthermore, for this CFL L, letting#be a
new terminal symbol not in S, we have the following equivalent statements
from Lemma 5.2:

1. prefix (L#)= prefix (X*#).

2. prefix (L#)= prefix (L (G)) for some normed simple CFG G.

3. L# is a simple CFL (i.e. L# =L(G) for some normed simple CFG G).

4. L# is a deterministic CFL.

5. L is a deterministic CFL.

6. L is a deterministic CFL.

7. L is a CFL.

8. L = E*.

9. L # = £ * # .

This complètes the proof of Theorem 5.7. D
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THEOREM 5.8: For normed context-free process graphs, the determinacy
problem with respect to simulation équivalence is undecidable.

Proef: In the theory of formai languages, it is known that the language
inclusion problem for simple CFGs is undecidable [10]. We reduce this prob-
lem into the determinacy problem with respect to simulation équivalence for
normed context-free process graphs. To this end, let G = (V, Act, IIG, R) and
H=(U, Act, T1H, T) be two normed simple CFGs. Let # , a and b be three
new distinct terminal symbols not in Act. We construct normed contex-free
grammars Ga = (Va> Act\J {# , a}, IIa, Ra\ Gb = (Vb, Act\J {#, b}, Ub, Rb),
Ha + h = (Ua + h, ActU{#,a,b}, Ila + b, Ta+b) and F=(Var, Act', II, S) as fol-
lows.

For Ga, Va:=VU {Ra, A} where A and Ra are new nonterminals. Ua

contains all productions in IIG as well as productions Ra ->#RA and A -> a.
Gb can be obtained from Ga by replacing every a by b and every A by B.
For Ha+b, Ua+b:= U[J {Ta + b, C] where C and Ta + b are new nonterminals.
Tla + b contains all productions in UH was well as productions Ta + b->#TC
and C -> a \ b. F is obtained from Ga, Gb and Ha+b by identifying Ra, Rb and
Ta+b as a single initial symbol. Note that Ga, Gb and Ha + b are simple CFGs.

It is not hard to verify that L(G)^L(H) iff MF~simN for some normed
deterministic context-free process graph N. In fact, if L(G)^L(H), then
MGa<simMHa+h and MGb^simMHa+b. Hence, MF~simMHa+b. On the other
hand, if MF~sim N, for some normed deterministic context-free process graph
TV, then MHa+b <sfm7V and N^simMHa+b. Thus, we have that
MGa^simN~bisMHa+b and hence L{G)^L{H). This complètes the proof of
Theorem 5.8. D

However, with respect to any équivalence between bisimulation and failure
équivalences, the determinancy problem for normed context-free process
graphs is decidable. As a matter of fact, we have

THEOREM 5.9: 1. The problem of determining whether a normed context-
free process graph is determinate is in 1%.

2. For normed context-free process graphs, the determinacy problems with
respect to ~bis(~rsim, ~ r t , ~r9 ~fat, ~f) is in ££.

Proof: By Propositions 2.10 and 2.13, it suffices to show Part (1). Now
let G = (Var, Act, IT, S) be a normed GNF CFG. We have that MG is
determinate iff for all productions A -> a a | a P in II, a ~ bis p.

The proof of Theorem 5.9 implies that, for normed context-free process
graph, the determinacy problem with respect to any process équivalence
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between bisimulation and failure équivalences is in £§. To end this section
we state some results for normed unary context-free processes.

THEOREM 5.10: For normed unary context-free processes,

1. bisimulation équivalence is in E§ [21, 22],

2. readiness, failure and finite trace équivalences are W\-complete [18],

3. ready-trace and failure-trace équivalences are Yl^-complete,

4. trace équivalence is in P [19],

5. simulation équivalence is in P.

Proof: (3) follows from Proposition 2.16 and (5) follows from Propo-
sition 2.18. D

6. CONCLUDING REMARKS

In this paper, we characterize the complexity of some process équivalences.
Specifically, we show that any process équivalence between bisimulation and
failure équivalences is NL-complete for a (gênerai) finite process graph and
a deterministic finite process graph and is in L£ for a (gênerai) normed
context-free process graph and a deterministic normed context-free process
graph, and that the determinacy probiem with respect to any process équiva-
lence between bisimulation and failure équivalences is NL-complete for finite
process graphs and is in ££ for normed context-free process graphs.

However, some problems are still open. Simulation équivalence for finite
process lies somewhere between NL and P. It would be interesting to show
that this problem is in NC or P-complete. For normed context-free process
graph, determinacy probîem with respect to bisimulation équivalence lies
between NL and ££. It would be interesting to close this gap.
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