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AN IMPERATIVE LANGUAGE BASED
ON DISTRIBUTIVE CATEGORIES II (*)

by Wafaa KHALIL (l) and R. F. C. WALTERS (*

Communicated by G. LONGO

Abstract. - This paper continues the analysis of the imperative languages, IMP (G), begun in
Walters [1, 2, 3], We describe a précise syntax and some programming techniques. The programming
techniques are based on the simple and important notion o f a functional processor.

As an illustration of programming in these languages we give a universal IMP (G) program
written in 7MP(G), where G is an extension ofG by certain stack types.

Résumé. - Cet article poursuit l'analyse des langages impératifs, IMP (G), entreprise dans
Walters [1, 2, 3]. Nous décrivons une syntaxe précise et quelques techniques de programmation.
Ces techniques reposent sur une notion simple et importante de processeur fonctionnel.

Comme exemple de programmation dans ces langages, nous donnons un programme IMP (G)
universel écrit en IMP (G), où Ù est une extension de G à certains types de piles.

1. INTRODUCTION

In Walters [1, 2, 3], the second author described a family of imperative
languages based on itération and the opérations of a distributive category.
These will be revised in this paper. Each language in the family dépends on
a suitable graph G of given functions; we will dénote the language correspond-
ing to the graph G by IMP (G). The language IMP (G) is abstract and
mathematically based with no prescribed control strategy. An isolated pro-
gram, P, is just a function, actP ; XP -> XP, built out of the given functions
using the opérations of a distributive category. The function actP is called
the action of P> and XP the state space of P.

In paragraph 2 we begin by describing some programming methods, the
main tooi is that of functional processor or pseudofunction.

(*) Received November 1991, accepted December 1991.
O School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia.
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5 0 4 W. KHALIL, R. F, C. WALTERS

There is no précise syntax for IMP (G) given in (1, 2, 3]. In order to avoid
an ad hoc choice of syntax, (the text of) a program was taken there to be a
loop in a free distributive category — that is, it can be taken to be a certain
équivalence class of strings. In this paper we must take the plunge and décide
on a spécifie syntax. This is done in paragraph 3, where we also defïne the
opération of a program. We show there that any program has the same
behaviour as one which is a composite of certain elementary arrows. We
associate a token with each elementary arrow such that the effect of each
elementary arrow is a simple string manipulation determined by the token of
the arrow.

The remainder of the paper is concerned with constructing a universal
IMP (G) program, ^ , written in IMP (G) where G is an extension of G by
certain stack types.

The state space of the universal program is of the form

Xqt = Schar X ^data + ^

where Schar is a type stack of characters, Sdata is a type stack of data éléments,
and Z is an unspecified set — of local states of the program. We call the states
of X<#, that are in the component 5char x Sdata the global states of %.

The universal program implements each isolated IMP(G) program, P, in
the following précise sensé. Suppose the initial state of ^ is a global state
.(*, x0), where t is the program text of P and x0 is a suitabîe initial state of
P. The séquence of global states of % under the itération of act^ is then

(t, x0), (/, xt), 0, X2), . . .

where x0, xu x2, . . . is the behaviour of P with initial state x0,

Since the language IMP (G) is mathematically based, it is straight forward
to prove the behaviour of the universal program. Another conséquence of
the mathematical basis of the language IMP(G) is that there are various
aspects of this paper that are of mathematical as well as computational
interest. For example, we use the fact that any set built up out of the sets
A, B, . . . using product and sums maybe represented as a subset of
(A + B+ . . . +/)*, then the associativity isomorphisms for sums and products
(but not the distributivity isomorphisms) are identities. This allows G to be
an extension of G by stack types.

The authors are grateful for helpful suggestions given by Michael Johnson
and Eric Wagner. We also wish to thank Paul Taylor for the use of "Paul
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Taylor's Commutative diagrams". The second author's research was sup-
ported by an Australian Research Council Program Grant, and an Australian
Research Council Small Grant.

2. PROGRAMMING METHODS

In this section we develop some gênerai methods for constructing programs
in the IMP family of languages. They are precisely the tools we need in the
construction of a universal IMP (G) program. First we introducé the concept
of a pseudofunction from X to K For the notation used in this section see
Walters ([I, 2]).

2.1. Pseudofunctions

DÉFINITION 2.1: A program cp : X+ U+ Y-+ X+ U+ Y is said to idle in Y
if ^°j—j, wherey is the injection/: Y ̂ >X+ U+ Y; that is <p(y)=y if j e Y.

A pseudofunction or functional processor, cp, from a set X to a set Y,
denoted cp : X++ Y, is a program cp : X+ U+Y^> X+ U+Y which idles in Y
and with the property that for each xeX there exists a natural number nx

such that cpn*(x)er.
The set U will be referred to as the set of local states of the pseudo-

function cp.

PROPOSITION 2.1: Let cp : X++ Y be a pseudofunction, then there is afunction
cp:X-> Y defînedby <p(x) = <pn*(x)y the fonction obtained by iterating cp.

Proof: cp is fully defined because for each xeX there exists a natural
number nx such that cp"x(x) e Y, and is single valued because cp idles in Y. D

PROPOSITION 2.2; For any function f:X^Y, let j be the injection
j;Y^X+ 7, then the program ƒ ' = V*+y • 0 '° f+j}:X+Y^X+Y is a pseu-
dofunction such thatfr=f

Proof : ff is fully deiïned because f'(x)= ƒ (x)G Y, and it is easily checked
that

ƒ': X+Y^X+Y

(xs0)^(/(x),l)
(y, I)i-(y, I)

therefore, ƒ ' idles on Y. D

vol. 27, n° 6, 1993



5 0 6 W. KHALIL, R. F. C. WALTERS

In the following two examples, let predecessor: N^>I+N, successor:
ƒ+ M -» M, multiply : N x N ^ N and différence : M x N -> N be given
functions, (where différence is the function which maps (m, «) to | m — n | ).

Example 2 .1 : A pseudofunction, factorial: N++N, which calculate »! for
each «e N is the program:

factorial: N

(n,2)h->(n,2).

For an indication of the way this program and the next are constructed,
using the opérations of a distributive category from given functions see
Walters [1] and [2]. Note that to indicate when xeX belongs to the rth
component of a sum, we write (x, z).

It can be checked that factorial (ri) = n\.

Example 2.2: A pseudofunction, gcd :NxN++N, which calculâtes the
greatest common divisor for each pair (m, ri) e N x N is the program:

% 1), if m = 0 or n =

(x, l)\—>(x, 1).

It can be checked that gcd (m, n)^gcd(m, ri).

Note 2 .1 : The factorial program has local states in N2, while the gcd
program has no local states.

2.2. Composition of pseudofunctions

PROPOSITION 2.3: If a : ̂ -H» y ont/ |3 : y++ Z are pseudofunctions, with local
states in U and V respectively, then

Informatique théorique et Applications/Theoretical Informaties and Applications



AN IMPERATIVE LANGUAGE 507

is a pseudofunction from X to Z, with local states in W= C/+ Y+ V, and with
the property that:

Proof: If zeZ, then (a; p)(z) = p(z) = z. Hence, a;p idles on Z. To find nx

for each xeX such that (a; P)"*(x) = (P°â)(x), notice that there is a least nx

such that a"1 (x) = â (x). Similarly, there is a least n2
 s u ch that

p"2 (S (JC)) = P (S (A:)) 6 Z, since â (x) e y. Taking nx = nt + n2 - 1, then

Therefore, a;p = P°a. D

Example 2.3: gcrf; factorial(m, ri) = (gcd(m, ri)) !

2.3. Cases and parallel processes

PROPOSITION 2.4: ƒƒ q>:X++Y and ty:X'++Y' are pseudofunctions with
local states U and U' respectively, then

(i) q>v\|/ = ö~1 °((p + \|/)°a where

w a pseudofunction from X+X' to Y+ Y' with local states in W= [/+ J7',
Ae property that:

cp v \ | /= cp + \fr.

(i i)

50) 5l5 52 are distributive law arrows, is a pseudofunction from Xx>X'
to Y* Y' with local states in

QC'+ U'+ Y')) + (Y* (X'+ U'))9

and with the property that:

(p A\|/ = q>x \j/.

Proof: (i). — Note that the effect of a is given by:
(x, 0)H+(X, 0), (x\ !)•-> (**, 3), (u, 2)i-(M, 1),

(u', 3)^(u\ 4), ( j , 4 ) . - C , 2), ( / , 5 ) I - C F ' , 5),

vol. 27, n° 6, 1993



508 W. KHALIL, R. F. C. WALTERS

where ueU, u eU', yeY, y'e Y'. Therefore, the functions a and cT1 amount
to rearranging the éléments in the surn in order to do (cp + v|/). If y e F, then
(cpvy\f){y)̂ =a~1 o((p + ̂ )oa(y) = a~1 °q>(y) = a~l (y)~y, since 9 idles on F
If yfeY\ then (9v i j /H /Ha" 1 o(4p + ty)*a{y') = a-1 o * ( / ) = -fl"1 {/) = / ,
since \|/ idles on F'. Hence, cp v \|/ idles on F+ Y'. Now let n1 and «2 be the
least natural nurnbers such that cp"1 (JC) = 9 (x) and \|/"2 (x') = $ (x'), where

, x ' e T . Take nx^n where n is the larger of nl and n2, then

therefore, cp v \|/ = cp + \|z.
(ü) If ( ^ / ) G F x r then

i ƒ, 2), {/, l ))^^-1 <(ƒ, 2), (/, 2)) = (y, / ) .

Therefore (9 A\|/) idles on Fx F'. Now let w be defmed as in the case for
surns, then:

therefore, 9 A \|/ = 9 x \|/. Q

Example 2.4.

gcdv factor ial : H2 4

(«,

gcrf Afactorial : N 2 x

- f̂ j _* f̂ j + f̂ j

, l)^<n!,l),
M -> N x fy

CoROLLARY 2 . 1 : i w / = 1,2, . . ., n if q>t : X*x -h* X and AĴ  : X++ Xx are pseudo-
functions; then there exists pseudofunctions 9 : Xt 4- X2 + « . . + A^ -H- X and

; Take

\|/ = A ; ( \ | / 1 A \ | / 2 A . . . A\|fB).

Then the result follows from the construction of 9 and \j/. O

Informatique théorique et Applications/Theoretical Informaties and Applications
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2.4. Itération of a pseudofunction

PROPOSITION 2.5: Given a pseudofunction \I\X-H>X+ Y and a function
ord:X-> M, such that if\i(x)eX, then ord(\i (x))<ord (x); then there exists a
pseudofunction v : X+* Y such that

v (x) = fimjc (x), /or some mx ^ ord (x) + 1

Proof: Let £/ be the set of local states of the program ja, and take

where the local states of v are in W= U+X. It is clear that v°j=j. To show
that there exists a natural number nx such that vnx(x)e Y, suppose ord(*) = fc,
and that x is in the first component of the sum. There is a number nx e N,
such that w t>0 and vni(x) = ïi(x) = x1 is in the fïrst A"or in Y because ja is a
pseudofunction. If it is in X then ord{xi)^k~ 1- Iterating v, there is a
number «2eN such that vn2(x1) = |a(jc1) = jl {x) = X2 is in the first X or is in
F. If it is in X, then ord (x2) ̂  A: — 2. Continuing the itération, we get a
séquence xi9 x2i x3, . . . of éléments of X of strictly decreasing order. Clearly,
there exists an f^ord(x) such that

but

Take m^^/4-1, hence the resuit. D

Example 2.5; A pseudofunction gcd: N2+*N, may be constructed from
the foliowing pseudofunction (arising from a function), using proposition 2.5,

g: M2++.N2 + .N

'((«, \m-n\), 0), if m>0 and w>0
(m, /? ) §

( + n, 1), if m = 0 or w =

if the function ord is taken to be:

ord: ^2-+F

f 2m, if m>n
(m, n)\-^<

i 2 + l if m^«.

vol. 27, n° 6, 1993



510 W. KHALIL, R. F. C. WALTERS

Note 2.2; (i) The state space for the above gcd program is not the same
as that given in example 2.2.

(ii) The given functions multiply and différence, used in the construction
of the programs factorial and gcd, could have been constructed as pseudo-
functions in terms of the given functions predecessor and successor, again
using the techniques we have developed in this section.

PROPOSITION 2.6: Given a pseudofunction a:X++X, the program

iter(oc): X+V^X+V,

constructed beiow, has the property that if n0, nu n2, . . . is the séquence of
natura! numbers for which (iter (a))"1' (x) e X, then

Proof: Let U be the set of local states of the program a, and let
V= X+ U+X, the state space of a; then

where

where io:X+U^X+U+X9 and i^X^X+X+U+X, i1(x) = (x9 1), are
injections.

Notice that a takes (JC, 0) to (x, 1) and leaves everything else fixed. While
b moves (x, 3) to (x, 0) and leaves everything else fixed. Iterating the program
iter(a), control will reach the last component because of a and the pseudo-
function a; once it is there it is passed back to the first component in X+ V,
via b. It is then clear that (iter (a))"'(*) = a (JC). Q

3. THE SYNTAX AND OPERATION OF THE LANGUAGE

3 .1 . Distributive graphs and expressions

DÉFINITION 3.1: Let O be a set of objects, usually denoted A, B, C. . .
Then (distributive) expressions of objects are strings, or words, formed from

Informatique théorique et Applications/Theoretical Informaties and Applications
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the objects in 0 together with the symbols O 7+ x ( ) by the following rules:
(i) The symbols O and I are expressions of objects.
(ii) The objects in 0 are expressions of objects.
(iii) If U and F are expressions of objects, then the strings (£/x F) and

(17+ V) are expressions of objects.
Objects of G will usually be denoted by the letters A, B, C . . ., while

expressions of objects will be denoted by the letters X, Y, Z, U, F, W, . . .

DÉFINITION 3,2: A distributive graph is a set 0 of objects and a set se of
arrows, with the arrows having assigned domains and codomains which are
expressions of objects.

Remark 3.1; The objects of a distributive graph G can be thought of as
the given data types, while the arrows can be thought of as the given
functions. For example M is the natural numbers while predecessor : M ->' N + /
and successor: N+7-* N, are given functions.

DÉFINITION 3.3: Let G be a distributive graph. (Distributive) expressions
of arrows are strings of the form a : U -> F, where U and F are expressions
of objects and a is a string formçd from expressions of objects, the arrows
of G, and the symbols

1 p q i j S"1 ! i A V + x * 9 ( )

by the following rules:
(i) The arrows in G are expressions of arrows.
(ii) Let X, 7, Z be expressions of objeqts, then the following expressions:

PX.Y'

\x:

;AX:

are expressions of arrows.
(iii) If a : U -* F and p : X -> Y are expressions of arrows, then the strings

(ocxp): (U*X)~+(Vx Y)

vol. 27, n° 6, 1993



5 1 2 W. KHALIL, R. F. C. WALTERS

and
(ot+p): (£ /+Z)^ (K+7)

are expressions of arrows.
(iv) If ai:Xi^Xi+1 for *"—1,2, . . ., « are expressions of arrows with

a ^ lx., (f= 1,2, . . . n), then the string

is an expression of arrows.

Arrows of G will usually be denoted by the letters f,g,h..., while
expressions of arrows will be denoted by the letters a, P, y . . .

3.2. The text of a program

The sets of expressions of objects and expressions of arrows form the
objecte and arrows of a category, denoted Expr (G), where composition of
expressions of arrows a : X -> Y and p : F-> Z is defïned as follows:

(i) If a and p are nat identities, then their composition is $°<x:X-> Z.
(ii) If a is an identity, then the composition of a and p is p :7 ->Z.

Sirnilarfy, if P is an identity, then the composition is a : X -> Y.

Example 3.1; Hère are some arrows in Expr (G):
(i)
(ii)
(iii) Let y£V,z = (twist(2;^+twïsl(Zf y^^S^^y^twist^+y^^ then:

(iv) (lxx\x)*Ax:X^(Xxl).
(v) Associativity arrow for sums is demonstrated by the following example.

Let

assoc = V{X+iY+z)) - (l (X+(y+2) ) + ( lx +7V, z)) ° (Ox + «V, z) +A, z)

then

assoc : ((X + 7) + Z) -> (JT + ( F + Z)).

A similar construction applies to associativity arrows for products.

DÉFINITION 3.4: Let Z be an alphabet and G a distributive graph. The
text o f an (imperative) program of IMP (G) is a functor T : Z* -* Expr (G).

Informatique théorique et Applications/Theoretical Informaties and Applications
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Therefore, the text of an imperative program F written in IMP (G) is a
family of names of actions (Ta:X~>X, ael*), where X is an expression of
objects and Ta is a path in the expressions of arrows; X is called the name
of the state space of the program. When E has just one letter in it, F is
called the text of an isolated program,

3 .3. The opération of a program

DÉFINITION 3.5: The length of an expression, U, of objects of a distributive
graph G, is the number of objects that appear in the expression counting 0,
I and répétitions.

For example, if the expression E/=(((i4 + 0)+Ç) *((C + A) x/))5 then the
length of U is 6.

Notation 3.1; (i) Dénote the length of Uby\U\.

(ii) If D is a set, then Dn is used to dénote the set of ail words of length n
in the éléments of D, and Z>* is used to dénote the set of ail words in the
éléments of D.

(iii) Let en dénote the word ee . . . e of length n in e.

Let G be a distributive graph. Suppose <ï> is an assignment of a set O (A)
to every object A of G, and let D be the disjoint union of the O (Ay$3 together
with the éléments e and *.

DÉFINITION 3.6: Given an assignment O on the objects of G, we extend O
to assign sets to expressions of objects of G, in such a way that if U is an
expression of objects then O((7) is a set whose éléments are words of length

(i) $(ƒ) = {*} andO(6>) = 0 .
(ii) If U and V are expressions of objects with <D(£/) and $>(V) the assigned

sets to U and V then:

3.1; (i) If ue<b{U), then w^i^u2 . . . M)C/| where Ui
and {/; is / or an object of G.

(ii) Let D= Y, ^(^4) + O(7) + {e}. If U is an expression of objects, then
AeQ

vol. 27, n° 6, 1993



514 W. KHALIL, R. F. C. WALTERS

(iii) The functions:

0:

9:

we|Kti->(tt, 0)

are isomorphisms of sets. Therefore <b assigns products in Sets to formai
products and sums in Sets to formai sums.

DÉFINITION 3.7: Let <X> be an assignment of sets to expressions of objects
of a distributive graph G be as above. Suppose also that for every arrow
ƒ : £/-> V of G, there is an assigned set function <D (ƒ):<!>(£/)-> ®(V), We
extend O to expressions of arrows of G as follows:

(i) Let X, K> Z be expressions of objects with O(A% ®{Y), O(Z) their
assigned sets, then take the following assignments of functions to expressions
of arrows of G.

* (Sx,V, 2) - * ( ( ^ x ( y + zm - * « ( ^ x 10+(A-

* ( ' x) : *̂ (O) -* * (-Ï) is the unique arrow in Sets from 0 to<S»(X)

Informatique théorique et Applications/Theoretical Informaties and Applications
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xi—>xx

e'x '

•*(VX ) :

(ii ) If a : £ / - » K and P:JST->y are expressions of arrows, with
<S>(oL):<!>(JJ)-+<b(V) and <D (p) : <ï> (A}—> $ ( 7 ) their corresponding assigned set
functions then the functions

<D((a x p)) : y)

(iii) If a£ : Xt -+ Xi+1 for i = 1,2, . . ., « are expressions of arrows, then

Remark 3.2: (i) Let fnsym = <stf U { 1, />, ^ Ï, J, S"1, i , !, A, V}. Notice
that in the définition of <E>(cx), Q>(cXtY), *(cXf YtZ) where cefnsym-stf, we
only need to know the lengths of X, 7, Z. In future, when the lengths are
known, we only write O(c). The éléments c in/«sym will be referred to as
function symbols.

(ii) It is clear that the following are naturaî isomorphisms

,V, z) = §

® (Px. Y) =

x, Y) =

<D (V),

ÏJT, Y) = **a> <x)f a> (y)

x , y) =J® (X), a> (y)

(iii) The assignment O takes assodativity arrows of surns and of products
to actual identities in Sets.

vol. 27, n* 6, 1993
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3 .4 . Elementary expressions

DÉFINITION 3.8: An elementary expression is an expression of arrows
defîned as follows:

(i) Ail arrows of G are elementary expressions.

(ii) Ail expressions of arrows of the form cx, cx y, cx y z , where
cefnsym — stf, are elementary expressions.

(iii) If Ç : U ~> V is an elementary expression and * e { + , x }5 then

(a) (Ç* l K ) : ( t / * K ) - (F*K) and

(b) (lK * 0 : (AT* U) -> (K* V) are elementary expressions.

Remark 3 .3 ; Elementary expressions are (particular) expressions of arrows
with at most one of the symbols in the set fnsym — {1}, and do not include
the composition symbol °.

PROPOSITION 3 .1 : If <x:X^> Y is an arrow in Expr(G), then there exists
elementary expressions £ l9 £2, . . . , £ „ such that £B°Çn_i° . . . °£1:A r-> Y and

Proof: The proof is by induction using the définition of expressions of
arrows. If a is an arrow of G or is of the form cx, cx y, cx Y z, where
cefnsym, then it is clearly an elementary expression. Suppose the resuit is
true for ail elementary expressions smaller than a, where a is an expression
of arrows with more than one function symbol. Then, by the définition of
expressions of arrows, OC = ( P * Y ) , if * e { x s + } or oc = aB

ootn_1 ° . . . °a l s

where p> y, a1? . . ., a„ are expressions of arrows that are smaller than a,
hence they can each be written as a composition of elçmentary expressions.

If a = a „ ° a B _ 1 ° . . . o a 1 ) then the resuit follows immediately. Suppose
a = ( p * y ) , then by the inductive hypothesis there exists elementary expres-
sions

and
Vi: V1-+V2,

such that

Informatique théorique et Applications/Theoretical Informaties and Applications
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Therefore

is in the required form since the expressions (nf*lK() and (lVl*Vj) a r e

elementary expressions by définition. D

COROLLARY 3.1: For any program, Fy there is a program which is a
composition of elementary expressions whose behaviour is the same as P.

3.5. Tokens

DÉFINITION 3.9: Let S be the set of all elementary expressions constructed
from G. We define a function

tok : <ƒ-•ƒ«symx f̂ |6

on the elementary expressions as follows:

(i)

tok(ƒ) = (ƒ, \X\9 0, 0, | U\, 0, 0) iîf:X^Uis an arrow of G
tok(ij=(i,|^r|,o,o,|jf|,o,o)
tok(cx) = (c, \X\, 0, 0, | U\, 0, 0) if ce{A, V,l,\ } and c: X^ U.

tok(c^y) = (c,(A"!,) y|,0,|t/ |,0,0)ifc6{/i,^ij}andl7thecodomainofc.

iVi2) = (ô-1, \X\, | 7), |Z| , | U\9 0, 0) if U=((Xx Y) + (Xx Z)).

(ii) tok((lx* ly)) = (l, \X\, 0, 0, \X\, 0, | Y\).
(iii) If Ç 7e lx is an elementary expression such that

= (c, «!, «2, «3, m, /, r),
then:

(a) tok((Ç* lK)) = (c, nl9 n29 n3i m, l, r+\K\\ and
(b)

Remark 3.4; If £: P^->Z is an elementary expression, then tok(y will be
referred to as the token of £.

PROPOSITION 3.2: L^^ ^ : P T ^ Z èe a« elementary expression such that
= (c, nu n2, n3, m, /, r), and n = n1+n2 + n3, then
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(i) If we<!>(W) then w is in the form uxv where u is a word of length /,
xed>(X){Jen, where \X\ = n, v is a word of length r, and O(c):O (X) -> O (7)
for some expression Y such that I Y\ = m.

uemv, if x =

Remark 3.5; As we have noted earlier, <S>(c) dépends only on lengths in the
domain of c; therefore, O (Ç) is string manipulation based on the knowledge of
tok (O.

Proof: (i) This follows from the définition of tok© and elementary
expressions.

(ii) We prove this by induction on the définition of elementary expressions.
If % e char, then r=l=0 in t o k © and the result is immédiate. Suppose r or
/>0 in t o k © and the resuit is true for ail expressions smaller than Ç. By
définition of elementary expressions, £ = (Ç*1X) or ^ = ( l x * 0 for some
expression K, and elementary expression Ç : W' -> Z' smaller than %.

If ^ = (ÇxlJC):^'xA'-> W'*K, let w'e®(W), ke<b(K), then

O © (v/ k) = O © (M;O;/C), by part (i)
= O © (uvx) $ (1K) (k), by définition of 0)
= O (Q (uvx) k, by définition of O

w O (c) (X) vk9 if x^en

uem vk, if x = ew by inductive hypothesis.

If Ç = (Ç+1X): Ŵ ' + is:-> JF' + Jf, then

O © (v/ e>x I) = O (Ç) (uxw1 K '), by part (i)
= O (0 (tt-xz?) e'K ', by définition of O

wO(c)(x)^ |XI, if
uemve^K\ if x~en by inductive hypothesis.

0> ft) (e' e" e1* ik) = e1 em e" k, by définition of O. D
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