WAFAA KHALIL

R.F.C. WALTERS

An imperative language based on distributive
categories I1

Informatique théorique et applications, tome 27, n°6 (1993),
p- 503-522

<http://www.numdam.org/item?id=ITA_1993__27_6_503_0>

© AFCET, 1993, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1993__27_6_503_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 27, n° 6, 1993, p. 503 a 522)

AN IMPERATIVE LANGUAGE BASED
ON DISTRIBUTIVE CATEGORIES i (*)

by Wafaa KHALIL (*) and R. F. C. WaLTERs ()

Communicated by G. LoNnGo

Abstract. — This paper continues the analysis of the imperative languages, IMP(G), begun in
Walters (1, 2, 3). We describe a precise syntax and some programming techniques. The programming
techniques are based on the simple and important notion of a functional processor.

As an illustration of programming in these languages we give a universal IMP(G) program
written in IMP(G), where G is an extension of G by certain stack types.

Résume. — Cet article poursuit l'analyse des langages impératifs, IMP(G), entreprise dans
Walters (1, 2, 3). Nous décrivons une syntaxe précise et quelques techniques de programmation.
Ces techniques reposent sur une notion simple et importante de processeur fonctionnel.

Comme exemple de pragrammatwn dans ces langages, nous donnons un programme IMP (G)
universel écrit en IMP (G), ot G est une extension de G a certains types de piles.

1. INTRODUCTION

In Walters (1, 2, 3], the second author described a family of imperative
languages based on iteration and the operations of a distributive category.
These will be revised in this paper. Each language in the family depends on
a suitable graph G of given functions; we will denote the language correspond-
ing to the graph G by IMP(G). The language IMP(G) is abstract and
mathematically based with no prescribed control strategy. An isolated pro-
gram, P, is just a function, actp,: X, — X}, built out of the given functions
using the operations of a distributive category. The function act, is called
the action of P, and X, the state space of P.

In paragraph 2 we begin by describing some programming methods, the
main tool is that of functional processor or pseudofunction.

(*) Received November 1991, accepted December 1991.
(1) School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia.

Informatique théorique et Applications/Theoretical Informatics and Applications
0988-3754/93/06/$4.00/© AFCET-Gauthier-Villars

504 W. KHALIL, R. F. C. WALTERS

There is no precise syntax for IMP (G) given in [1, 2, 3]. In order to avoid
an ad hoc choice of syntax, (the text of) a program was taken there to be a
loop in a free distributive category—that is, it can be taken to be a certain
equivalence class of strings. In this paper we must take the plunge and decide
on a specific syntax. This is done in paragraph 3, where we also define the
operation of a program. We show there that any program has the same
behaviour as one which is a composite of certain elementary arrows. We
associate a token with each elementary arrow such that the effect of each
elementary arrow is a simple string manipulation determined by the token of
the arrow.

The remainder of the paper is concerned with constructing a universal
IMP (G) program, %, written in IMP (G) where G is an extension of G by
certain stack types.

The state space of the universal program is of the form
Xﬁiz = Schar x Sdata +Z

where S, 1s a type stack of characters, S,,,, is a type stack of data elements,
and Z is an unspecified set — of local states of the program. We call the states
of X,, that are in the component S, X S,,.. the global states of %.

The universal program implements each isolated IMP(G) program, P, in
the following precise sense. Suppose the initial state of % is a global state
(¢, x,), where ¢ is the program text of P and x, is a suitable initial state of
P. The sequence of global states of % under the iteration of act,, is then

(t7 XO), (ta x1), (t, xz), e

where x,, X;, X,, . . . is the behaviour of P with initial state x,,.

Since the language IMP (G) is mathematically based, it is straight forward
to prove the behaviour of the universal program. Another consequence of
the mathematical basis of the language IMP(G) is that there are various
aspects of this paper that are of mathematical as well as computational
interest. For example, we use the fact that any set built up out of the sets
A, B,... using product and sums maybe represented as a subset of
(A+ B+ ...+ D*, then the associativity isomorphisms for sums and products
(but not the distributivity isomorphisms) are identities. This allows G to be
an extension of G by stack types.

The authors are grateful for helpful suggestions given by Michael Johnson
and Eric Wagner. We also wish to thank Paul Taylor for the use of “Paul

Informatique théorique et Applications/Theoretical Informatics and Applications

AN IMPERATIVE LANGUAGE 505

Taylor’'s Commutative diagrams”. The second author’s research was sup-
ported by an Australian Research Council Program Grant, and an Australian
Research Council Small Grant.

2. PROGRAMMING METHODS

In this section we develop some general methods for constructing programs
in the IMP family of languages. They are precisely the tools we need in the
construction of a universal IMP (G) program. First we introduce the concept
of a pseudofunction from X to Y. For the notation used in this section see
Walters ([1, 2]).

2.1. Pseudofunctions

DEerFmNITION 2.1: A program ¢: X+ U+ Y- X+ U+ Y is said to idle in ¥
if @°j=j, where j is the injection j: Y - X+ U+ Y; that is ¢ (y)=y if ye Y.

A pseudofunction or functional processor, ¢, from a set X to a set Y,
denoted @: X+ Y, is a program ¢: X+ U+ Y - X+ U+ Y which idles in Y
and with the property that for each xe X there exists a natural number n,
such that ¢™=(x)e Y.

The set U will be referred to as the set of local states of the pseudo-
function ¢.

PRrOPOSITION 2.1: Let @ : X+ Y be a pseudofunction, then there is a function
@ : X — Y defined by ¢ (x)= @™ (x), the function obtained by iterating .

Proof: ¢ is fully defined because for each xeX there exists a natural
number n, such that ¢"~(x) € Y, and is single valued because ¢ idlesin Y. O

ProrosiTiON 2.2: For any function f:X— Y, let j be the injection
J: Y>> X+Y, then the program f'=Vy,y°(jof+)): X+Y > X+ Y is a pseu-
dofunction such that f'=f.

Proof': f' is fully defined because f'(x)=f(x)e Y, and it is easily checked
that

f': X+Y->X+Y
(x,)= (f (%), 1)
> D—O, D

therefore, /" idles on Y. [

vol. 27, n° 6, 1993

506 W. KHALIL, R. F. C. WALTERS

In the following two examples, let predecessor: N — I+ N, successor:
I+N - N, multiply: NXN—>N and difference: NXN-—->N be given
functions, (where difference is the function which maps (m, n) to |m—n|).

Example 2.1: A pseudofunction, factorial: N+ N, which calculate n! for
each ne N is the program:
factorial: N+N2+N->N+N?+N
(x, 0)—((1, x), 1)
— i =1
(@ m), Dy @ Do D: M2
(p, 2). if m=0

(n, 2)—(n, 2).

For an indication of the way this program and the next are constructed,
using the operations of a distributive category from given functions see
Walters [1] and [2]. Note that to indicate when xeX belongs to the ith
component of a sum, we write (x, 7).

It can be checked that factorial(n)y=n!.

Example 2.2: A pseudofunction, ged:N X N+ N, which calculates the
greatest common divisor for each pair (m, n)e N X N is the program:

ged: N?2+N - N2+N

((m, n) O)H{((n’|m""|)» 0), if m>0and n>0
o (m+n, 1), if m=0orn=0
(x’ I)H(x, 1)

It can be checked that ged (m, n)=gcd (m, n).

Note 2.1: The factorial program has local states in N2, while the gcd
program has no local states.

2.2. Composition of pseudofunctions

ProposITION 2.3: If a: X+ Y and B: Y+ Z are pseudofunctions, with local
states in U and V respectively, then

GPR=xipt+B)o@+l,) X+ W+Z>X+W+Z

Informatique théorique et Applications/Theoretical Informatics and Applications

AN IMPERATIVE LANGUAGE 507

is a pseudofunction from X to Z, with local states in W=U+ Y+ V, and with
the property that:

o B=P-a.
Proof: If ze Z, then (o; B)(2)= B(z)_= z. Hence, o; $ idles on Z. To find n,
for each xe X such that (a; B)"=(x)=(B°a)(x), notice that there is a least n,

such that oM (x)= o(x). Similarly, there is a least n, such that
B2 (o (x)) =B (e (x)) € Z, since a.(x)e Y. Taking n,=n, +n,—1, then

(o B ()= (s B)"2~* (o B)" (x))
=(o B2 (B(a(x))
=B@).
Therefore, a;p=B°a. 0O
Example 2.3: gcd, factorial (m, n)=(gcd (m, n))!

2.3. Cases and parallel processes

ProrosiTioN 2.4: If @: X+ Y and V: X'+ Y' are pseudofunctions with
local states U and U’ respectively, then

i) eviv=a le(p+V)°a where
a=(ly yttwisty py yt1y) o (Ixttwisty, g+ 1, ysy)
is a pseudofunction from X+ X' to Y+ Y' with local states in W=U+U’, and
with the property that:
ovi=o+V.
(i) @ AY=b"(@ X)b where
b=8,° B0+ Lgncr +os 17 +81)
where 8, 8,, 8, are distributive law arrows, is a pseudofunction from X x X'
to Y X Y’ with local states in
W=XxU+Y)N+HUXxX'+U +Y)+YxX"+U),
and with the property that:
oAy=0xV.
Proof: (1). — Note that the effect of a is given by:
(x, 0)—>(x, 0), ', D—(x', 3), (U,), 1),
@, 30,4, O0,9~02), (O,)~0)9),

vol. 27, n® 6, 1993

508 W. KHALIL, R. F. C. WALTERS

where ue U, u' e U’, ye Y, y'e Y'. Therefore, the functions a and ™! amount
to rearranging the elements in the sum in order to do (p+ V). If ye Y, then
(ev)(M=a "t (p+Va(y)=a '~@(y)=a ' (y)=y, since ¢ idles on Y.
If yeY’, then (ev¥)())=a ' (e+{)ca(y)=a =Y ()=a ' ()=,
since Y idles on Y’. Hence, @ v idles on Y+ Y’. Now let #, and n, be the
least natural numbers such that ¢"t(x)=¢ (x) and {"2(x")=V (x"), where
xe X, x' € X'. Take n,=n where n is the larger of n, and n,, then

o), if xeX

n =(a Yo(p® n) o =
@Vv¥)'(x)=(a" (" +{")a)(x) {ip(x), £ xeX’

therefore, @ v =0+ V.
(i) If (y, y')e Y x Y’ then

@AW, Y)=b"1(@x V) (1, 2), (¢,)=b""((», 2, OV, =)

Therefore (¢ AVY) idles on Y x Y'. Now let n be defined as in the case for
sums, then:

(@A) (x, x)=(b"" (0" xY") = b) (x, x")= (9 (x), ¥ (x))
therefore, p Ay =@ x{. O
Example 2 .4.

gedv factorial: N2+ N->N+N
(1, m), 0y (gcd(l, m), 0)
n, D@, 1),
gcd A factorial: N2 xN - NxN
({d, m), n)y—(gcd (I, m), n!).

CorOLLARY 2.1: For i=1,2,...,nif @;: X;+ X and V,: X+ X, are pseudo-
Sfunctions; then there exists pseudofunctions @:X,+X,+...+X,+ X and
Y: X+ X, XX, X _.. XX, such that

o)=0:(x), if xeX,
V)= (x), ¥, (x), - .., ¥, (x))-
Proof: Take

O=(Q; VP, V... V@,V
V=A00 Al A LA

Then the result follows from the construction of ¢ and y. O

Informatique théorique et Applications/Theoretical Informatics and Applications

AN IMPERATIVE LANGUAGE 509

2.4. Iteration of a pseudofunction

ProrosiTioN 2.5: Given a pseudofunction pn:X+> X+Y and a function
ord: X — N, such that if u(x)€ X, then ord (u(x))<ord (x); then there exists a
pseudofunction v: X+ Y such that

v(x)=p"(x), for some m, <ord(x)+1

Proof: Let U be the set of local states of the program p, and take
V=(Vx+iv,x+ ly)°(lx+twistuyx+ ly)°n

where the local states of v are in W= U+ X. It is clear that v-j=j. To show
that there exists a natural number #, such that v"=(x) € Y, suppose ord (x) =k,
and that x is in the first component of the sum. There is a number n, e N,
such that #, >0 and v"t (x)=p(x)=x, is in the first X or in Y because p is a
pseudofunction. If it is in X then ord(x,)<k—1. Iterating v, there is a
number #, €N such that v*2(x,)=p(x,)=p" (x)=x2 is in the first X or is in
Y. If it is in X, then ord(x,)<k—2. Continuing the iteration, we get a
sequence X,, X,, X3, - . . of elements of X of strictly decreasing order. Clearly,
there exists an i< ord (x) such that

V"1+"2+' . '+"i(x)=ﬁi(x)=xieX
but
VI EE2 ey () — ﬁ‘*‘l (x)e¥.
Take m,=i+1, hence the result. [

Example 2.5: A pseudofunction ged: N?+>N, may be constructed from
the following pseudofunction (arising from a function), using proposition 2.5,

g: NZ+HNZ+N

(m, n)— ((n, |m—n|), 0), . if m>0 and n>0
(m+n3 1)’ lf m=0 or n_—.O
if the function ord is taken to be:
ord: N2 N
2m’ if m>n
(m, n)— .
2n+1, 1f mén_

vol. 27, n° 6, 1993

510 W. KHALIL, R. F. C. WALTERS

Note 2.2: (i) The state space for the above ged program is not the same
as that given in example 2.2.

(i1) The given functions multiply and difference, used in the construction
of the programs factorial and ged, could have been constructed as pseudo-
functions in terms of the given functions predecessor and successor, again
using the techniques we have developed in this section.

PROPOSITION 2.6: Given a pseudofunction o.: X + X, the program

iter(a): X+ Vo> X+V,

constructed below, has the property that if ny, ny, n,, ... is the sequence of
natural numbers for which (iter (1))" (x) € X, then

(iter (V)" (x)=a' (x).

Proof: Let U be the set of local states of the program o, and let
V=X+ U+ X, the state space of «; then
iter()=be(ly+a)ca: X+V-a>X+V
where
a=(x+Vy,psx) i+ xipax),

b=(Vx+ig)e(1x+twisty, v), X)s

where i: X+U—->X+U+X, and i: X->X+X+U+X, i,(x)=(x, 1), are
injections.

Notice that a takes (x, 0) to (x, 1) and leaves everything else fixed. While
b moves (x, 3) to (x, 0) and leaves everything else fixed. Iterating the program
iter (o), control will reach the last component because of a and the pseudo-
function o; once it is there it is passed back to the first component in X+ V,
via b. It is then clear that (iter ()" (x)=a (x). O

3. THE SYNTAX AND OPERATION OF THE LANGUAGE
3.1. Distributive graphs and expressions

DerINITION 3.1: Let O be a set of objects, usually denoted 4, B, C. ..
Then (distributive) expressions of objects are strings, or words, formed from

Informatique théorique et Applications/Theoretical Informatics and Applications

AN IMPERATIVE LANGUAGE 511

the objects in O together with the symbols O I+ x () by the following rules:
(i) The symbols O and I are expressions of objects.
(ii) The objects in @ are expressions of objects.
(iii) If U and V are expressions of objects, then the strings (U x V) and
(U+ V) are expressions of objects.
Objects of G will usually be denoted by the letters 4, B, C ..., while
expressions of objects will be denoted by the letters X, ¥, Z, U, V, W, . ..

DEeFINITION 3.2: A distributive graph is a set @ of objects and a set o/ of
arrows, with the arrows having assigned domains and codomains which are
expressions of objects.

Remark 3.1: The objects of a distributive graph G can be thought of as
the given data types, while the arrows can be thought of as the given
functions. For example N is the natural numbers while predecessor: N - N+ I
and successor: N+ 1 - N, are given functions.

DEerFnNITION 3.3: Let G be a distributive graph. (Distributive) expressions
of arrows are strings of the form a: U - ¥, where U and V are expressions
of objects and a is a string formed from expressions of objects, the arrows
of G, and the symbols

lpgqijdtt1iAV + x o, ()

by the following rules:
(1) The arrows in G are expressions of arrows.
(ii) Let X, Y, Z be expressions of objects, then the following expressions:
Iy: XX
Px.yy (XxY)->X
gx,yy XXY)->Y
ix,yy X->(X+Y)
ix,vv Yo X+Y)
S5k (XX (Y+2) - (Xx V)+(Xx2)
i X1
iy O0-X
Ay: X->(XxX)
Ve X+X)-oX
are expressions of arrows.
(i) If «: U— ¥V and B: X — Y are expressions of arrows, then the strings

(@xB): (UxX)—>(VxY)

vol. 27, n® 6, 1993

512 W. KHALIL, R. F. C. WALTERS

and

@+B): (U+X)>(V+7Y)

are expressions of arrows.
@v) If o,:X; > X;,, for i=1,2,..., n are expressions of arrows with
o;#ly, (i=1,2, . .. n), then the string

&, o0, _1°...°0 1 X=X,

is an expression of arrows.

Arrows of G will usually be denoted by the letters f, g, A ..., while
expressions of arrows will be denoted by the letters o, B, v . . .

3.2. The text of a program

The sets of expressions of objects and expressions of arrows form the
objects and arrows of a category, denoted Expr(G), where composition of
expressions of arrows a: X — Y and B: Y — Z is defined as follows:

(1) If o and B are not identities, then their composition is feoa: X — Z.

(i) If o is an identity, then the composition of o and B is B: Y > Z.
Similarty, if B is an identity, then the composition is o: X — Y.

Example 3.1: Here are some arrows in Expr (G):
(i) twistiy yy=(qx, v X Px, v) *Axxy) (X X ¥) = (Y X X).
(it) twistiy yy=Vyix° Uy, xTiy, x): X+ Y) > (Y+X).
(iii) Let vyl z=(twist, x+twisty)87 % yotwist iy, z, then:
Yxv.z: (X+Y)X2Z)> (XX Z)+(Y*2)).
() (LX) Ay: X > (X< D).

(v) Associativity arrow for sums is demonstrated by the following example.
Let

assoc=Vx y+z)y° (xeqszy T Ux iy, 2 ((Ix+iy, 2) tix, 2)
then
assoc: ((X+Y)+2Z)—- (X+(Y+2).
A similar construction applies to associativity arrows for products.

DerFINITION 3.4: Let ¥ be an alphabet and G a distributive graph. The
text of an (imperative) program of IMP (G) is a functor I'": Z* — Expr (G).

Informatique théorique et Applications/Theoretical Informatics and Applications

AN IMPERATIVE LANGUAGE 513

Therefore, the text of an imperative program I' written in IMP(G) is a
family of names of actions (I',: X — X, aeX), where X is an expression of
objects and T, is a path in the expressions of arrows; X is called the name
of the state space of the program. When X has just one letter in it, I" is
called the text of an isolated program.

3.3. The operation of a program

DerFiniTioN 3.5: The length of an expression, U, of objects of a distributive
graph G, is the number of objects that appear in the expression counting O,
I and repetitions.

For example, if the expression U= (((4+ 0)+ C) x ((C+ A) x I)), then the
length of U is 6.

Notation 3.1: (i) Denote the length of U by | U|.

(ii) If D is a set, then D" is used to denote the set of all words of length n
in the elements of D, and D* is used to denote the set of all words in the
elements of D.

(iii) Let ¢" denote the word ee . . . e of length n in e.

Let G be a distributive graph. Suppose ® is an assignment of a set ®(4)
to every object 4 of G, and let D be the disjoint union of the ® (4)’s, together
with the elements e and *.

DermiTioN 3.6: Given an assignment ® on the objects of G, we extend ®
to assign sets to expressions of objects of G, in such a way that if U is an
expression of objects then ®(U) is a set whose elements are words of length
|U| in D*.

(i) ®(D)={*}and ®(0)=g.

(ii) If U and V are expressions of objects with ®(U) and ® (V) the assigned
sets to U and V then:

QU V) ={uv:ue® (), ve®(V)},
QU+ V) ={ue:uc®)} U {e V' v:ve@()}.

Note 3.1: (i) If ue®(U), then u=u,u, ... u,, where u,e®(U) U {e}
and U, is I or an object of G.

(ii) Let D=) ®(A)+@()+{e}. If U is an expression of objects, then

Al

®(U)cD'VcD*,

vol. 27, n® 6, 1993

514 W. KHALIL, R. F. C. WALTERS

(iii) The functions:
0: DX V) —DU)xD(V)
uv> (u, v),
¢: QU+ ->2)+O(V)
ue'V - (u, 0)
Vv (u, 1)

are isomorphisms of sets. Therefore ® assigns products in Sets to formal
products and sums in Sets to formal sums.

DerINITION 3.7: Let ® be an assignment of sets to expressions of objects
of a distributive graph G be as above. Suppose also that for every arrow
f:U—-V of G, there is an assigned set function ®(f):®(U) - ® (V). We
extend @ to expressions of arrows of G as follows:

@) Let X, Y, Z be expressions of objects with ®(X), ®(Y), ®(Z) their
assigned sets, then take the following assignments of functions to expressions
of arrows of G.

O (1) O(X) > DY)

Xk X

Q(px,y): P(X*Y))->D(X)
Xy X

@ (gx,y): P((XxY))->0(Y)
Xy y

Q(iy,y): PX)->P(X+7Y))

x> xel ¥

@@y, y): ®(N->O(X+Y)
yetXly
OBy, 2): XX (Y+2))-»@((X*xY)+(Xx2Z))
xyel® s xyel X 14121
xe! ¥z ! X1HH Y ey
@(y): ©X)->0()
X b %

®(i,): ®(0)— ®(X) is the unique arrow in Sets from J to @ (X)

Informatique théorique et Applications/Theoretical Informatics and Applications

AN IMPERATIVE LANGUAGE 515

D(Ay): @(X)->O(XxX))
X XX
D(Vy): @((X+X)->0(X)
xe! X x
e Xlxox
@) If a:U->V and PB:X—-Y are expressions of arrows, with
D (0): D(U) > D(V)and & (B): D (X) > ®(Y) their corresponding assigned set
functions then the functions
O ((axpB): PUXX)->@(V*xY)
ux— @ (o) () @ (B) (x)
O((at+p): @(U+X)->2(V+T))
ue! X > @ (o) (w)e'¥!

eVlxise V1@ (B)(x).
(i) If o;: X; > X;,, fori=1,2, ..., n are expressions of arrows, then
O (e, 0oy 2 0) =D (@) D). D) (X)) > D (K, y).

Remark 3.2: (i) Let fnsym=«/U{1,p, q,1,j,8 ', i,!, A, V}. Notice
that in the definition of ®(cy), ®(cy, y), P(cy, vy, z) Where cefnsym— .o/, we
only need to know the lengths of X, Y, Z. In future, when the lengths are
known, we only write ®(c). The elements ¢ in fnsym will be referred to as
function symbols.

(ii) It is clear that the following are natural isomorphisms
PaxP=(W)xP(B), P@tP=P(W)+D(B)
O(1x)=1g x) DBy 2)=0e (1X),0), (@)
@ (px,) =Po), o (s @ (ix,) Zio x), 0 (1)
Q(4x, V) =90, 00y PUx,) =jom.om
P(0=loxy PG =(P(ix)
O (Ay)=Ap x) O (V) =Ve

(iii) The assignment @ takes associativity arrows of sums and of products
to actual identities in Sets.

vol. 27, n® 6, 1993

516 W. KHALIL, R. F. C. WALTERS

3.4. Elementary expressions

DEerFINniTION 3.8: An elementary expression is an expression of arrows
defined as follows:

(1) All arrows of G are elementary expressions.

(ii) All expressions of arrows of the form cy, cxy, cx y 2 Where
cefnsym— ./, are elementary expressions.

(iii) If {: U — V is an elementary expression and * € {+, x }, then
(@ C*x1):(U*xK)— (V*K)and
®) (1g*8):(K*U) > (K* V) are elementary expressions.

Remark 3 .3: Elementary expressions are (particular) expressions of arrows
with at most one of the symbols in the set fnsym—{1}, and do not include
the composition symbol e.

ProrosiTioN 3.1: If a: X —> Y is an arrow in Expr(G), then there exists
elementary expressions &, &,, . . .,&, such that £,°E,_,°...°&,: X —> Y and

P(W)=P(E,°8r-1°---°&1): X)) ->O(D).

Proof: The proof is by induction using the definition of expressions of
arrows. If o is an arrow of G or is of the form ¢y, cy y, cx y z Where
cefnsym, then it is clearly an elementary expression. Suppose the result is
true for all elementary expressions smaller than o, where o is an expression
of arrows with more than one function symbol. Then, by the definition of
expressions of arrows, a=(B*y), if *e{x,+} or a=q,°0a, ;°...°qa,,

where B, v, o4, ..., a, are expressions of arrows that are smaller than a,
hence they can each be written as a composition of elementary expressions.

If a=a,°0,_y°...°0a,, then the result follows immediately. Suppose
a=(pB *y), then by the inductive hypothesis there exists elementary expres-
sions

Bt Uy = U, Wt U= Us, ..., Mot Ug— Uy
and
vyt V-V, voi Vo= Vi, oo, v,: Vi=>Viits

such that
DB = (o py o - . . °),
DY)=D(v,°v,_,°...°V)).

Informatique théorique et Applications/Theoretical Informatics and Applications

AN IMPERATIVE LANGUAGE 517

Therefore

@ (o) =D ((p, * 1V,+1)° R (P IV,H)"(IH * IV,“)
°(1U1 xV)e. .. °(1U1 *Vz)"(lU'l *V,))
is in the required form since the expressions (;*1,) and (1, *v;) are

elementary expressions by definition. [

CoroLLARY 3.1: For any program, P, there is a program which is a
composition of elementary expressions whose behaviour is the same as P.

3.5. Tokens

DerFmviTiON 3.9: Let & be the set of all elementary expressions constructed
from G. We define a function

tok: & — fnsymx NS

on the elementary expressions as follows:
®
tok (f)=(f, | X|,0,0,|U|,0,0)if f: X — U is an arrow of G
tok(lx)=(1,|Xl, 0,0,|X]|,0,0) .
tok (cx)=(c, | X|,0,0,|U|,0,0)if ce{A, V,,i}and c: X > U.
tok (cx, y)=(c,| X|,| Y|,0,] U|,0,0)if ce { p, ¢, 1,j } and U the codomain of c.
tok (854, =1, |X|, | Y], |Z], | U], 0, 0) if U=((X x V)+ (X x Z)).

(ii) tok((1x*1,)=(1,]X|, 0,0, | X]|, 0, | Y]).
(iii) If {#1y is an elementary expression such that

tok (€)= (c, ny, ny, ny, m, I, r),
then:
(@) tok ((C* 1) =(c, ny, ny, n3, m, I, r+|K|), and
(b) tok (g *8)=(c, ny, ny, ny, m, I+| K|, r).

Remark 3.4: If &: W — Z is an elementary expression, then tok (§) will be
referred to as the token of E.

ProprosiTioN 3.2: Let §: W — Z be an elementary expression such that
tok (§)=(c, ny, n,, ny, m, I, r), and n=n, +n,+n,, then

vol. 27, n° 6, 1993

