An algorithm to compute the möbius function of the rotation lattice of binary trees
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 27 (1993) no. 4, pp. 341-348.
@article{ITA_1993__27_4_341_0,
     author = {Pallo, J. M.},
     title = {An algorithm to compute the m\"obius function of the rotation lattice of binary trees},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {341--348},
     publisher = {EDP-Sciences},
     volume = {27},
     number = {4},
     year = {1993},
     zbl = {0779.68066},
     mrnumber = {1238055},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1993__27_4_341_0/}
}
TY  - JOUR
AU  - Pallo, J. M.
TI  - An algorithm to compute the möbius function of the rotation lattice of binary trees
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1993
DA  - 1993///
SP  - 341
EP  - 348
VL  - 27
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1993__27_4_341_0/
UR  - https://zbmath.org/?q=an%3A0779.68066
UR  - https://www.ams.org/mathscinet-getitem?mr=1238055
LA  - en
ID  - ITA_1993__27_4_341_0
ER  - 
%0 Journal Article
%A Pallo, J. M.
%T An algorithm to compute the möbius function of the rotation lattice of binary trees
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1993
%P 341-348
%V 27
%N 4
%I EDP-Sciences
%G en
%F ITA_1993__27_4_341_0
Pallo, J. M. An algorithm to compute the möbius function of the rotation lattice of binary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 27 (1993) no. 4, pp. 341-348. http://www.numdam.org/item/ITA_1993__27_4_341_0/

1. M. K. Bennet and G. Birkhoff, Two families of Newman lattices, to appear. | MR | Zbl

2. A. Bonnin et J. M. Pallo, A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. | MR | Zbl

3. C. Chameni-Nembua and B. Monjardet, Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. | MR | Zbl

4. W. Feller, An introduction to probability theory and its applications, John Wiley, New-York, 1957. | MR | Zbl

5. H. Friedman and D. Tamari, Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. | MR | Zbl

6. G. Grätzer, General lattice theory, Academic Press, New-York, 1978. | MR | Zbl

7. C. Greene, The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. | MR | Zbl

8. P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. | JFM

9. S. Huang and D. Tamari, Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. | MR | Zbl

10. G. Markowsky, The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. | MR | Zbl

11. J. M. Pallo, Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. | MR | Zbl

12. J. M. Pallo, On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. | MR

13. J. M. Pallo, Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. | MR | Zbl

14. J. M. Pallo, A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. | MR | Zbl

15. D. Roelants Van Baronaigien and F. Ruskey, A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. | MR | Zbl

16. G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 | MR | Zbl

17. D. D. Sleator, R. E. Tarjan and W. P. Thurston, Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. | MR | Zbl