@article{ITA_1993__27_4_341_0, author = {Pallo, J. M.}, title = {An algorithm to compute the m\"obius function of the rotation lattice of binary trees}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {341--348}, publisher = {EDP-Sciences}, volume = {27}, number = {4}, year = {1993}, mrnumber = {1238055}, zbl = {0779.68066}, language = {en}, url = {http://www.numdam.org/item/ITA_1993__27_4_341_0/} }
TY - JOUR AU - Pallo, J. M. TI - An algorithm to compute the möbius function of the rotation lattice of binary trees JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1993 SP - 341 EP - 348 VL - 27 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/ITA_1993__27_4_341_0/ LA - en ID - ITA_1993__27_4_341_0 ER -
%0 Journal Article %A Pallo, J. M. %T An algorithm to compute the möbius function of the rotation lattice of binary trees %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1993 %P 341-348 %V 27 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/ITA_1993__27_4_341_0/ %G en %F ITA_1993__27_4_341_0
Pallo, J. M. An algorithm to compute the möbius function of the rotation lattice of binary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 27 (1993) no. 4, pp. 341-348. http://www.numdam.org/item/ITA_1993__27_4_341_0/
1. Two families of Newman lattices, to appear. | MR | Zbl
and ,2. A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. | MR | Zbl
et ,3. Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. | MR | Zbl
and ,4. An introduction to probability theory and its applications, John Wiley, New-York, 1957. | MR | Zbl
,5. Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. | MR | Zbl
and ,6. General lattice theory, Academic Press, New-York, 1978. | MR | Zbl
,7. The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. | MR | Zbl
,8. The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. | JFM
,9. Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. | MR | Zbl
and ,10. The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. | MR | Zbl
,11. Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. | MR | Zbl
,12. On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. | MR
,13. Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. | MR | Zbl
,14. A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. | MR | Zbl
,15. A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. | MR | Zbl
and ,16. On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 | MR | Zbl
,17. Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. | MR | Zbl
, and ,