
INFORMATIQUE THÉORIQUE ET APPLICATIONS

A. BERTONI

M. GOLDWURM
On ranking 1-way finitely ambiguous NL languages
and #P1-complete census functions
Informatique théorique et applications, tome 27, no 2 (1993),
p. 135-148
<http://www.numdam.org/item?id=ITA_1993__27_2_135_0>

© AFCET, 1993, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1993__27_2_135_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 27, n° 2, 1993, p. 135 à 148)

ON RANKING 1-WAY FINITELY AMBIGUOUS NL LANGUAGES
AND #Pi-COMPLETE CENSUS FUNCTIONS (*) (*)

by A. BERTONI (2) and M. GOLDWURM (2)

Communicated by J. BERSTEL

Abstract. - We show that the ranking problem for languages accepted by one-way fïnitely
ambiguous nondeterministic log-space bounded Turing machines (l-FANL) belongs to the class
DET and hence lies in NC2. This property is also extended to another class of languages including
the boolean closure of l-FANL. The proof is based on the use of Kronecker product and direct
sum over matrices which allow to represent the computations of such a model of Turing machine.
Moreover we study the counting problem for certain classes of languages whose ranking is known
to be %P-complete and prove that the corresponding census function is complete for the class ^P1.

Résumé. - Nous étudions le problème du calcul du rang pour les langages reconnus par des
machines de Turing à déplacement vers la droite, finement ambiguës, et à complexité en place
logarithmiquement bornée (l-FANL). Nous prouvons qu'il appartient à la classe DET, et est donc
dans NC2.

Nous étendons cette propriété à une autre classe de langages qui contient la fermeture de Boole
de la classe l-FANL, La démonstration est basée sur le produit de Kronecker et la somme directe
des matrices qui permettent de représenter les calculs de ce modèle de machines de Turing. En
outre, nous étudions le problème de compter les mots de longueur donnée pour quelques classes de
langages pour lesquels le calcul du rang est §P-complet, et nous prouvons que la fonction de cens
correspondante est complète pour la classe Jfi^.

1. INTRODUCTION

In this work we study the complexity of counting and ranking problems
for certain classes of languages. The ranking problem for formai languages

(*) Received November 1991, accepted June 1992.
O This research has been supported by C.E.C, contract n. 3166 (Working Group ASMICS)

and by MURST (Ministero dell'Università e délia Ricerca Scientifïca) Project 40% "Algoritmi,
modelli di calcolo e struttureTnformative".

(2) Dipartimento di Scienze dellTnformazione, Università degH Studi di Milano, Via Comelico
39, 20135 Milano, Italy.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/93/02 135 14/$3.40/© AFCET-Gauthier-Villars

136 A. BERTONI, M. GOLDWURM

is defmed as follows. Given a finite alphabet S and a total order :g over E,
let ^,ex <= £* x £* be its lexicographie extension: for every x, j;eS*3 x<^xy
iff either xz = y for some zeS*, or x = waz, >> = wZ>z', where <z, èeE, a^ô,
a ̂ & and w, z, z' e £*. The rank function of a language L <= £*, is the function
rankL:X*~»[^J such that, for every xeS*, rankL(x)-# {>>eL/|.y | < | x | or
(| x | = | >> |, 3; ̂ lex x)}, where # 4̂ dénotes the cardinality of a set A.

The complexity of Computing the rank function has been studied in [8]
where it has been considered as a special kind of optimal compression:
ranking is in fact related to the more gênerai problem of storing and retrieving
strings efflciently. It is easy to see that, for any language L in P, rankL

belongs to the class # P of functions yielding the number of accepting
computations in nondeterministic polynomial time Turing machines [15].
Since such a class contains highly intractable problems a gênerai goal is to
détermine which languages in P have rank function complete for #P and,
on the other side, which ones are rankable in polynomial time or even in
NCfc for some k.

As proved in [9], the ranking problem turns out to be #P-complete for
several classes of simple languages contained in P. More precisely for some
fînitely ambiguous context-free languages L, rankL is # P-complete and the
same holds for languages accepted by the following machines:
à) nondeterministic log-time bounded Turing machines (TM), b) log-space
bounded deterministic TM, c) 1-way nondeterministic log-space bounded
TM, d) uniform families of constant depth and polynomial size unbounded
fan-in circuits, é) CRCW P-RAM working in constant time with a polynomial
number of processors, ƒ) 2-way deterministic checking stack automata, g) 2-
way deterministic pushdown automata, h) 1-way 2-head deterministic fini te
state automata.

On the other hand the ranking problem for regular languages is NC1-
reducible to integer division [2, 10], and hence it can be solved by log-space
uniform boolean circuits of OQogn log log/?) depth and polynomial size [7].
Moreover, in [8] it is proved that, for any language L accepted by 1-way
unambiguous log-space bounded TM, rankL belongs to the class DET of all
functions NC^reducible to Computing the determinant of an integer
matrix [7], Finally the problem is in NC2 for all languages accepted in
polynomial time by 1-way unambiguous (log-space) auxiliary pushdown
automata [9] and hence in particular for unambiguous context-free languages.

Other results concerning the complexity of ranking have been obtained for
the uniform version of the problem, i.e. when a suitable représentation of
the language is considered as part of the input [1]. In this case the problem

Informatique théorique et Applications/Theoretical Informaties and Applications

ON RANKING 1-WAY FINITELY AMBIGUOUS NL LANGUAGES 137

is "difficult" even for regular languages represented by nondeterministic finite
automata.

In this work we extend the previous results obtaining an NC2 algorithm
for the rank function of languages accepted by 1-way nondeterministic log-
space bounded TM with bounded ambiguity degree (1-FANL). We recall
that a nondeterministic Turing machine has bounded ambiguity degree iff it
has at most k accepting computations on every input for a suitable fceN.
More precisely we prove that the rank functions of 1-FANL languages belong
to the class DET and hence lie in NC2. To prove this resuit we develop a
sort of abstract calculus of formai expressions based on Kronecker product
and direct sum for manipulating integer matrices. The idea of applying
such matrix opérations to transform finitely ambiguous computations into
unambiguous ones has already been used in [11] to study inclusion and
équivalence problems for (languages recognized by) «-ambiguous finite auto-
mata and the problem of deciding whether a finite automaton has a fixed
ambiguity degree.

We also prove that the ranking problem belongs to DET for another class
of languages including the boolean closure of 1-FANL. Such a class is defined
as the set of ail languages L such that there exists a positive integer k, a
subset A <= {0,1, . . .,&} and a 1-FANL Turing machine M of ambiguity
degree k, such that L={x/#accM(x)eA], where #accM(x) dénotes the
number of accepting computations of M on input x. We prove that such a
class is closed under boolean opérations and hence it appears to be larger
than 1-FANL which we conjecture not to be closed under complement.

Other results we present in this work concern the complexity of Computing
the number of words of given length in a fixed language. In several significant
cases, such a problem is related to the enumeration of combinatorial objects
and to the algebraic properties of generating functions [4].

Given a language L <= 2)*, the counting function ofL is the function
A'- { l }* -* M s u c h that/L(ln)= # (Ln H L) for every neN.We note that fL

is NC1-equivalent to the census function of L defined by cL : { 1 }* -> N, such
that cL(l")=# {xeL/\x\^n} for every neN. It is easy to see that fL is
reducible to rankL for any language L, and hence rankL is at least as hard as
A- On the other hand there exist undecidable languages whose counting
function is computable in polynomial time while clearly the corresponding
rank function is not recursive.

However, the complexity of these two problems have some analogies. First
of ail, for any language L in P it is easy to verify that A belongs to # Px

which is the restriction of #P to the functions having unary inputs. We

vol. 27, n° 2, 1993

138 A. BERTONI, M. GOLDWURM

recall that #PX was introduced by Valiant who proposed the class of
functions complete for #Pt as a représentative class of difficult enumeration
problems [15]. Moreover, it is known that, for some context-free language L
of ambiguity degree 2, fL is complete for #P1 with respect to a polynomial
Turing reducibility with one oracle call ('^-reducibïlity) [4]. On the other
hand the counting function of any unambiguous context-free language is
NC^-reducible to integer division [3]. This yields a significant example of a
class of languages for which counting seems to be easier than ranking.

In this work we extend to the counting function (and hence also to the
census function) the completeness results obtained in [9] for the ranking
problem. More precisely we prove that fL is #PX -complete, with respect to
1 -reducibility, for languages L accepted by the machines

a\b\c\d\e\f)ig\h)

mentioned above. As in [4] and [9], the proof is based on the idea of codifying
the accepting computations of a counting Turing machines by words of
equal length in a sui table language. These results pro vide new examples of
enumeration problems complete for # Px and seem to suggest that, for most
natural classes of languages, a difficult ranking problem implies a difficult
counting problem.

2. OPERATIONS OVER MATRICES

The opérations of direct sum and Kronecker product over matrices are
classical notions of linear algebra [12]. Hère we recall the définitions with
some basic properties and prove further elementary identities used in the
following sections. The standard opérations over arrays (matrices and vec-
tors), as sum, product and product by a scalar, are assumed to be known.

Let A — lUij] and B=[bij] be two matrices of size n and m respectively. The
direct sum and the (right) Kronecker product of A and B are defined by

alxB a12B. . . alnB

L A&B=\
0 B)

It is easily seen that A® B and A® B are square matrices of size n + m
and nm respectively. Analogously, given two row-vectors n = (a1,a2, . . .,an),

Informatique théorique et Applications/Theoretical Informaties and Applications

ON RANKING 1-WAY FINITELY AMBIGUOUS NL LANGUAGES 139

TI = (*I, è2, . . .,bm), we defîne n ® Ti = (als a2, . . .,att, bu b2, . . .,bm) and
7c ® r| = (ûj *ns a2 r|9 . . . s ûnr|). Similarly, denoting by ̂ 4r the transposed of an
array A, the direct sum and the Kronecker product of two column-vectors
nT and r\T are defmed as the transposed of n © r| and n®r\ respectively.
Note that the direct sum of two arrays n = (à) and r| = (è)> each having one
entry, yields different arrays according whether n and r\ are considered as
square matrices, row-vector or column-vector: the operands will be clear
from the context.

It is easy to verify that the direct sum and the Kronecker product are
associative and hence the Kronecker power of an array A is defmed as usual:
A(1) = Ai A

{k) — A ® A{k~1] for every integer k> 1. Analogously, for every finite
séquence of matrices (row-vectors, column-vectors resp.) Au A2, . . .,Ak, the
sum

h

© Ai = A1 © ^ 2 © . . .®Ak
i = l

is well defmed. Moreover it is easy to verify that ® is distributive over ©:

(A © B) ® C= (A ® Q © (B ® Q, C ® (X © B) = (C ® A) © (C ® ^4).

The following proposition relates the direct sum and the Kronecker product
to the traditional opérations over arrays. The proof follows from the défini-
tions using standard calculation and can be found in [12] (Section 43).

LEMMA: Let A and B be two nx n matrices and Iet n and r\ be two row-
vectors of size n. Analogously let C and D be two mxm matrices and let X
and \i be two row-vectors of size m. Then the following equalities hold:

a) AB®CD = (A®Q(B®B);

b) AB®CD = (A®C) (B®D)\

c)

d)

Moreover, for every scalar a, we have:

a(A®Q = (aA)®(a€),

Let p{z)~a1z + a1z
1+ . . . +akz

k be a polynomial with null coefficient of
degree 0 and let a(p) g {1, 2, . . ., k) be the set of indices of the nonnull
coefficients of p\ u(p)={ieN/ai^0}. Then, for any nx n matrix A, we can

vol. 27, n° 2, 1993

140 A. BERTONI, M. GOLDWURM

define the square matrices p {A) and p {A) given by the formai expressions

p(A)= © atA
{i\ p(A)= © A{i\

iea(p) iea(p)

Note that both these matrices have size m(/?) = £ n\

Further, for any row-vector n of size n, the row-vectors p(n) and p(n) are
defined in the same way, and similar obvious définitions can be given for
any column-vector.

PROPOSITION 1: Let A be a nxn matrix, let n be a row-vector of size n and
let r\ be a column vector of the same size. Thenfor every polynomial p(z) such
that p{0) = 0 we have p(nAv[)=:p(n)p(A)p(r\).

Proof: We prove the proposition by induction on the degree of p. If p has
degree one the result is immédiate. If p has degree k>\ let a be the coefficient
of degree one in p and assume a^O. Then p{z) = az + zq{z)i where q(z) is a
polynomial of degree k— 1 and #(0) = 0. Hence, by induction hypothesis and
points c), d) of the previous lemma, we obtain

®q (n)) (A ® q(A)) (r|

= (an®n ®q{n)){A ®A® q(A)) (T] ©

=p(n)p(A)p(r().

The case a = 0 is similar.

PROPOSITION 2: Let p(z) be a polynomial with integer coefficients such that
/?(0) = 0 and let A and B be two square matrices of size n. Then

p(AB)=p(A)p(B).

Proof: Clearly we may assume that the coefficients of p are in {0, 1 }. We
prove the result by induction on the degree of p. If p(z) = z then the property
is immédiate. Assume that p(z) has degree k> 1 and let p(z) = z + zq{z) for a
polynomial q(z) of degree k—l, with coefficients in {0, 1}, such that ^(0) = 0;
then by inductive hypothesis and points a), b) of the previous lemma we

Informatique théorique et Applications/Theoretical Informaties and Applications

ON RANKING 1-WAY FINITELY AMBIGUOUS NL LANGUAGES 141

obtain

= (A®A® q(A))(B@B®q(B))^p(A)p(By

The case p (z) = zq (z) is similar.

3. RANKING 1-WAY FINITELY AMBIGUOUS NL LANGUAGES

For any keN let l-NL(fc) dénote the class of all languages accepted by
1-way nondeterministic log-space bounded Turing machines having ambiguity
degree k. We prove that ranking languages in such a class belongs to DET.
We recall that DET is the class of all functions NC^reducible to Computing
the determinant of a n x n integer matrix. This class is widely studied since it
contains many problems of matrix calculation, like Computing the n-th power
of a n x n matrix with integer entries of «-bits, or Computing the iterated
product of n matrices of the same king [7].

PROPOSITION 3: For every keN and every language Lel-NL(k), rankL

belongs to DET.
Proof: We apply the analysis presented in the previous section to suitable

expressions representing computations of (one way) fmitely ambiguous NL
machines. A similar reasoning is used in [11] (Sec. 4) to transform finitely
ambiguous automata into unambiguous Z-automata.

Let L i S* be a language in l-NL(fc) and let M be a 1-way NL Turing
machine of ambiguity k which recognizes L. Since M works in logarithmic
space, it has at most q (n) configurations on inputs of size n for a suitable
polynomial q. Without loss of generality we may assume that, during any
computation on input of size n, M exécutes at most q (n) consécutive steps
without moving the input head one cell right and it stops just after moving
the input head one cell right to the n-th input symbol Hence for every integer
n and every a e Z we define the square matrices M(o) = [mij], R(a) = [ri}] of
size q (n) such that:

mtj — 1 if M in configuration z, reading a on the input tape, can move to
configuration j in one step shifting the input head one cell right;

mij=0 otherwise;
rtj= 1 if M in configuration z, reading a on the input tape, can move to

configuration j in one step without shifting the input head one cell right;
r^ = 0 otherwise.

vol. 27, n° 2, 1993

142 A. BERTONI, M. GOLDWURM

Moreover, for any cre£, let the matrix A (a) be defmed by

and let n be the characteristic row-vector of the initial configuration of M
on inputs of size n. Analogously let r\ be the characteristic column-vector of
the accepting configurations. Since M is 1-way, by the previous définitions
nA(x1)A(x2)- . .A(xn)r\ is the number of accepting computations of M on
input x = x1x2. . . xn s £*. Now, let p (z) be the polynomial such that p (0) = 0

k

and p (z) = 1 for every i= 1, 2, . . ., k: p (z) = 1 — f| (1 — (z/i)). Now, applying

both Propositions 1 and 2, for every x — xxx2. . .x n eZ* we have

ï = l

Hence, by the définition of p, we obtain

{ X E L / |

= z i(
ci,..., ort e£

Therefore, in order to compute/L(l"), we first détermine the arrays a=p{%),
b=p(r\) and the matrices p(A(o)) for every a G S. Then we compute the
sum B of ail matrices p(A(o)) for aeX and the product qBnb. Such an
algorithm clearly shows that fL is NC1-reducible to Computing the power of
an integer matrix of polynomial size and hence it belongs to DET.

As regards rankL we note that the previous algorithm can be used to
compute # [yeLj\y\^n} in DET. Moreover, for every x = xix2. . .xHe£*
we have

{yeL/\y\ = n,
n - l

= 1 1 E p(itA(x1)...A(xi_1)A(o)A(cj1)...A(on_i_1)T])
i=\ a<Xt CT1,„.,CT„-i_i eE

Informatique théorique et Applications/Theo reticaî Informaties and Applications

ON RANKING 1-WAY FINITELY AMBIGUOUS NL LANGU AGES 143

where a, b and B are defined as before. The last formula requires a linear
number of iterated products of matrices of size O(q(ri)k) which can be
computed in parallel showing that the overall problem lies in DET.

The property proved in Proposition 3 can be painless extended to more
gênerai classes of languages. To this end, for any keN and every set
A E {0, 1, 2, . . ., k}, let 5£(A, k) be the class of languages L such that, for
a sui table 1-NL(&) Turing machine M, L is the set {x/#accM(x)eA}. We
improperly say that L is recognized by M. Note that the class
S£({1, 2, . . ., k}, k) coincides with the class 1-way NL(fc). Moreover, let
se be the class of languages defined by

st= u se(A9k\
{A, k) G A

where À is the set of ail pairs (A, k) such that keN and A <= { 0, 1,2, . . . , k } .

PROPOSITION 4: The class se is closed under boolean opérations.

Proof: It suffices to prove the closure under complement and intersection.
Clearly se is closed under complement since for every (A, k)eA and every
Le&(A,k), the set U belongs to -S?({0, 1, . . ., k}\A, k). As regards
intersection let Ll5 L2 be two languages in Sf (A, kx) and if (B, k2) respec-
tively. First note that, for every ueN, there exists a 1 -NL^ + w) machine
M1(u) such that, for every input x, u^ #accMl(w)(x)^/c1 + M, and xeL± iff
accMl (u)(x) e A -f «, where ,4 + w={/z + u/heA }. Analogously, for any £e f̂ J,
let M2(t) be defmed similarly with respect to L2. Now, for a fixed ueN,
consider the one-way NL Turing machine M which simulâtes Mx (u) and
M2 (1) in parallel and accepts if both machines accept. Clearly, for every
input x, u S # accM (x) ̂ (k1-\-u) (k2 + 1). Denoting by R the set
{(a + u)(b-\- \)IOfLa^ku 0^bSk2}, it is easy to see that, for u large enough,
i? is unambiguously defined in the sense that for every neR there exists only
one pair (a, b) such that 0^a^/c l 5 0^6^fc2 and n = (a + u) (b-\-1). This
implies that also the set C={(a + u)(b+l)/a€A, beB) is unambiguous and
hence Lx Pi L2 belongs to S£ (C, (kx + u) (k2 + 1)).

The previous proposition implies that se contains the boolean closure of
the class 1-FANL and hence also the boolean closure of the set of 1-way
unambiguous NL languages.

PROPOSITION 5: For any language Lésé, rankL belongs to DET.

vol. 27, n° 2, 1993

144 A. BERTONI, M. GOLDWURM

Proof: It is easy to verify that the proof of Proposition 3 holds for every
language in ££ (A, k) with (A, k)eA. The only différence is that the polyno-
mial p(z) is now defmed so that p(à)=l for every aeA, and /?(è) = 0 for
every OrgZ>^£ and b$A, that is

n ^ n '-=
B-A & 0 v.çA-{a} <%

where £ = { 0 , 1, . . ., k}\A.

Note that p may not be defîned since p(0) could be different from 0. In
this case the proposition is proved just considering the polynomial
q^p(z)—p(0) and modifying the reasoning in a suitable way.

4. DIFFICULT COUNTING PROBLEMS

In this section we present some completeness results concerning the count-
ing function of languages belonging to certain subclasses of P. We consider
the following notion of reducibility: given two functions/, g in #PX we say
that ƒ is # j^-reducible to g if there exists an oracle Turing machine working
in polynomial time which computes/and calls an oracle for g only once.
For sake of brevity we say that a class of languages C has #P1-complete
counting function if there exists LeC such that fL is complete for #Px with
respect to #x -reducibility.

The first class we consider is ^£l°gtime which is the set of languages recognized
by nondeterministic Turing machines in O (log/?) time. Such a class is the
first level of the logarithmic time hierarchy { Sj°8timeJ studied by Sipser in [13]:
for every positive integer k, SfeOgtime is the set of languages accepted by an
alternating Turing machine working in logarithmic time and having at most
k—\ alternations beginning with an existential state. As usual n£ogtimc dénotes
the class of compléments of languages in ££ogtime. We recall that, in order to
obtain sublinear time computations, the Turing machine has a random access
input tape ruled by a special address tape [5],

PROPOSITION 6: The class £j°stime has #P1-complete counting function.

Proof: We show that for every function f e # P1 there exists a language
£G£iogtime s u c h t h a t ƒ i s ^-reducible t o / L . Since there exist / /Vcomple te
functions [15, 4], this fact implies that for some language LeSj°8t ime fL is

i -complete. Let M be the counting Turing machine Computing ƒ and,

Informatique théorique et Applications/Theoretical Informaties and Applications

ON RANKING 1-WAY FINITELY AMBIGUOUS NL LANGUAGES 145

without loss of generality, assume that for any neN ail accepting computa-
tions of M on input 1" have the length p(n) for a suitable polynomial p. In
the following we dénote by bin(«) the binary représentation of the integer n.
Given cx e M such that 2e iriog n] >p (n) for every neN, let t (n) = 2e iflog Bi; given
the morphism cod: {0, 1 }* -> {0, 1 }* such that cod(0) = 01 and cod(l)= 10,
let c2eN be such that the integer q (ri), whöse binary représentation is
cod (bin («)) 0c2(bin {n) ', is greater than (p («) +1) (t (n) + 1) for every n e N. Let
C—(ao,au . . .,ap{n)) be an accepting computation of M on input 1", where
each a(is an instantaneous description of M of the forai uqv : q is the current
state, uv represents the first t{n) cells of the tape and the tape head reads the
first symbol of v, Such a computation can be represented by the padded string
Ic of length q(n) such that Ic = a0^a1^. . .^ap{n)^y, where y = (ap(B)^)rz, z
being a prefix of ^p(K)^ and r a suitable integer. Then we defme the language

L={lc/C is an accepting computation of M}.

It is clear that f(ln)=fL(lq{n)) for every integer n. Moreover we prove that L
belongs to niogtime. To this end we show that L can be recognized in logarith-
mic time by an alternating Turing machine M' (with special address tape)
which only has universal states. Denoting by F the working alphabet and
by Q the set of states of M, the machine M' on input w=w1w2. . .wî{B)J

wt e (F U Q U {̂ }) for each /, exécutes the following steps:

1) using a binary search it computes bin(|w|) in O(log|w|) deterministic
time;

2) recalling that if w e L then bin (| w |) = cod (bin (»)) 0e* 'bin (n) ! for a suitable
neN, M' considers the longest prefix y of bin(|w|) belonging to {01,10}*
and computes n = cod "1 (y);

3) using universal states M' vérifies whether ^ r p 1 ^ " " " 1 ^ is a prefix
of w (hère q0 is the initial state of M and (î represents the blank symbol);

4) using universal states, M' checks whether for every

j=l,29...9q(n)-t(n)-3

the pair WjWj+1wj+2 and wj+Hn)+lwj + tin) + 2wj+nn) + 3 agrées with the transi-
tion relation of M. Note that, since t(n) is a power of 2, each sumj+t(ri)
requires logarithmic deterministic time;

5) using universal states, M' checks whether there exists a final state among
the last t(ri)+ 1 symbols of the input.

It is clear that M' works in logarithmic time and it accepts w if and only
if ail possible computations on input w are accepting. This means that L

vol. 27, n° 2, 1993

146 A. BERTONI, M. GOLD WURM

belongs to ni081*016. Since fL is # ^reducible to fLc, the proposition is proved
recailing that U belongs to Si°gtime.

Using standard arguments the previous proofs can be extended to other
classes of languages.

PROPOSITION 7: The classes of languages acceptée by the following devices
have #P ^complete counting functiom

a) uniform families' of constant depth, polynomial size, unbounded fan in
circuits;

b) CRCW P-RAM working in constant time and using a polynomial number
of processors;

c) log-space bounded deterministic Turing machines;

d) l-way nondeterministic, log-space bounded Turing machines,

Proof We observe that assertions a) and b) are easy conséquences of the
previous proposition. In fact it is known that the languages in s1^11116 can be
recognized by uniform families of constant depth, polynomial size, unbounded
fan in circuits [13] which, on the other hand, can be simulated by CRCW P-
RAM working in constant time and using a polynomial number of
processors [14]. It is also easy to verify that any language in D1^1™6 is
recognizable in deterministic logarithmic space. As regards the last machine
we observe that the complement of the language L, defined in the proof of
Proposition 4, can be recognized by a l-way NL Turing machine. A machine
of this kind can exécute the algorithm described in Proposition 6 in the
following way: first it exécutes steps 1) and 2) by guessing the length of the
input string; then it exécutes the other three steps using existential states
rather than universal ones. A computation accepts if and only if at least one
condition checked by the algorithm is not verified. The computation clearly
requires logarithmic space.

We conclude considering the counting function of languages accepted by
simple kinds of automata. We recall that a 2-way deterministic checking
stack automaton (2-DCSA) is defined as a 2-way deterministic pushdown
automaton (2-DPDA) except that once a symbol is written on the stack it
cannot be erased. However, entering a special reading mode, the machine
may read all symbols stored into the stack with the restriction that, once
such a reading mode is entered, the machine cannot go back to the writing
mode [6].

Informatique théorique et Applications/Theoretical Informaties and Applications

