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EFFICIENT REDUCTIONS OF PICTURE WORDS (*)

by Franz J. ERANDENBURG (X) and Jürgen DASSOW (2)

Communicated by J. BERSTEL

Abstract. - We introducé a new system of réduction rules on picture words. A picture word is a
string over the alphabet {w, d, l, r} and describes a walk on the grid or, equivalently, an Euler
tour on a grid graph. In comparison with réduction Systems of Gutbrod [4] and Séébold and
Slowinski [10] our réductions are intuitive and very efficient and construct picture descriptions of
length at most two times the size of the drawn picture in quadratic time. However, the reduced
descriptions are not necessarily of minimal length. Moreover, it is shown, that the families
of régulât and context-free picture languages are not closed under our réductions and under
minimization.

Résumé. — Nous introduisons un nouveau système de règles de réduction de mots de figures. Un
mot de figure est une chaîne de caractères pris dans { u, d, l, r } qui décrit un chemin sur une grille
ou, de façon équivalente un cycle eulérien dans le graphe de la grille. Par rapport aux systèmes de
réduction de Gutbrod [A] et Séébold, Slowinski [10], nos réductions sont intuitives et très efficaces
et construisent des représentations d'image de taille au plus le double de la taille de l'image en
temps quadratique. Toutefois, les descriptions réduites ne sont pas nécessairement de longueurs
minimale. De plus, on prouve que les familles de languages d'images réguliers et context-frees ne
sont pas fermées pour nos séductions ni pour la minimisation.

1. INTRODUCTION

The set of symbols { w, d, l, r} can be seen as basic commands for a plotter
pen, a cursor, a laser or an électron ray with the obvious meaning to draw a
line of unit length from the current position in the direction up, down, left,
and right, respectively. A picture word we{w, d, /, r}* is then a program for
such a device. It defînes a walk on the grid; its trace is the connected
boundary of the picture p(w), or equivalently, an Ëuler tour on a grid graph.
For example, urdl describes the unit square with the lower left corner as start
and end points. The same picture is described by e. g. urdlurdl, urdulrdl and
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50 F. J. BRANDENBURG, J. DASSOW

urduldrulrdL Hère the plotter pen draws some pièces of the picture two or
more times, sometimes clockwise and sometimes anti-clockwise.

Our aim is to eliminate such duplications, and to establish more compact
descriptions. This is achieved in two ways. First, we introducé a System of
réduction rules R. R is simple and intuitive and basically changes the order
of the traversai of cycles. R reduces a picture word w to a set of equivalent,
i?-irreducible picture words. Each of these has the same length, which is at
most two times the size of the drawn picture. This bound is optimal. The
réduction is effective and very fast operating in time O ( | w |2).

However, i£-irreducible picture words are not necessarily of minimal length.
Using classical methods from graph theory, minimal picture words for a
picture p can be constructed in time <9(|/>|3) as shortest Chinese Postman
tours [2].

Finally, we show that our réductions do not preserve the regularity and
the context-freeness of picture languages. In fact, there is a regular set L
such that the set of i?-irreducible picture words of L is not context-free. The
same non-closure result holds for the set of minimal picture words.

Our investigations can be seens as improvements of some previous results
on picture languages. Maurer et ai [8] have proved that the length of a
shortest description w of a drawn picture p is bounded by two times the size
ofp, and that this bound is optimal. However, their proof is by contradiction
and is nonconstructive. Our réduction System is effective and constructs a
picture word satisfying this bound for any given picture description.

Concerning rewriting Systems on picture words, our réduction system is a
generalization of the finite system of retreat deletions of Hinz [6]. Gutbrod [4]
and Séébold and Slowinski [10] have recently introduced rewriting introduced
rewriting Systems which generate all resp. all minimal descriptions of a given
picture. Our réduction rules can be deduced from their Systems. However,
they give no time bounds for the construction of a minimal picture word.
Hence, our approach is the first introducing complexity into the construction
of reduced and minimal picture descriptions.

2. PICTURE WORDS

Let us recall some elementary notions on picture words and the way they
are used to describe pictures. For more technical details we refer to [8].

Let { w, d, /, r} dénote the picture description alphabet corresponding to
the directions up, down, left, and right, respectively. A word we{u, dy /, r}*
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is called a picture word. It is now used to defîne a walk on the grid or in the
discrete Cartesian plane.

For a grid point (x, y) the up-successor is pos(w, (x, y)) = (x, y+1).
Similarly, defîne the down, left and right-successors. For a picture
wze{u, d, l, r } * and a grid point (x, y) defîne the position of the cursor after
processing the word wz starting from (x, y) by

pos (wz, (x, y)) = pos (z, pos (w, (x5 7))), where pos (À,, (x, >>)) - (x, y)

for the empty word X. Observe that a picture word is executed left to right.
We standardize picture words w to start drawing from the origin (0, 0) and
defme pos(w) = pos(w, (0, 0)). This leads to the standard représentative of
an équivalence class of pictures, as defined in [8].

Next, we shall see pictures from a graph theoretic point of view. This
introduces new tools for the analysis of pictures words. With each picture
word w = alt . ,an9 ate{u9 d, l, r}, z= l , . . .,n, we associate an undirected
graph g (w) with vertices defined by the positions reached by w and weighted
edges between adjacent vertices.

g(w) = (V, E) with K

E={{pos(a1. . .tff-i), pos (ax. . .a

and for each edge e e E, the weight ƒ (e) is the number of passes over e while
processing w. For a visualization we identify the graph g(w) with its natural
drawing on the grid.

For integers m and n, defîne a translation on grid points by
tm n(x, y) = (x + m, y + n). The translation tmn canonically extends to grid
lines and to grid graphs. The set of mappings tm% n with integers m and n
defines an équivalence relation on grid graphs g and on tuples (g, s, e), such
that g and g' resp. (g, s, e) and (g', s', e') are translation equivalent, if there
are integers m and n, such that the natural grid drawing of g is mapped into
the natural grid drawing of g', Le., g' = tm%n{g) and s' = tm, „(s), e' = tmn(e).
See [8] for details.

For a picture word w, defme the standard (drawn) picture by
p{w) = (g(w), (0, 0), pos(w))5 and define the (drawn) picture of w by the
équivalence class of pictures, which are translation equivalent to p(w). p(w)
is the standard représentative of this class. Similarly, the graph g(w) is the
standard basic picture of w and the set of translation equivalent graphs is
the basic picture of w.
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52 F. J. BRANDENBURG, J. DASSOW

To simplify terminology we shalî address a translation équivalence class
by its standard représentative and refer to p(w) and g(w) as the (drawn)
picture and the basic picture of a picture word w.

Two picture words w and w' are equivalent, if they describe the same
picture, i.e., p(w)=p(w'). Similarly, the équivalence of basic pictures is
defîned.

Let |w| dénote the length of a string H>. The size \p\ of a picture p is
the number of edges of the graph (F, E) associated with p. Notice that
\V\ - 1 ^ | £ | ^ 2 | F | with \p\ = \E\, where \V\ and \E\ dénote the sizes of
the sets of vertices and edges. Moreover, \w\= £ ƒ (e) and \p\ ^ \w\ for

eeE

every picture word w describing p.

3. REDUCTIONS

Next, we defîne four réduction rules on picture words. These rules change
the order of repeated traversals of cycles and shorten the description.

It is intuitively clear that (u, d) and (/, r) are pairs of inverses, so that
w^a1"1, etc. This extends canonically to picture words, so that for w = xy,
w~l=y~1 x'1 is the inverse of w. The inverse of w draws p(w) backwards
from pos (w) to the origin.

A picture word w is a cycle if pos(w) = (05 0). For ae{u, d, l, r} , w is an
open a-cycle, if wa is a cycle. Note, that if w is a cycle, then so are w~l and
ww. If w is an open a-cycle, then aw is a cycle and w"1 is an open öT^cycle.

Now we defîne our réduction rules. Rule i?3 defmed below generalizes
réductions from [5].

DÉFINITION: Let ae{u, d, /, r}, C and C open a-cycles, D an open a'1-
cycle, and O and O' cycles. Defme the rules

Rx: aCaCa -> aC C"1

R2: aCaOa~x C'^O
R3: aOa~1Ofa
J R 4 :

 1

Let R be the infinité System of all rewriting rules obtained from
Ru R2i R3, R4., ae{u, d, /, r} and the inflnitely many open a-cycles C, C",
D and cycles O, O'.
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R is a rewriting system and defînes a réduction relation on picture words
by w-*Rw' iff w — zxz\ w' = zyzf and x-*Ry îs a rule from R. Then x —>Ry
is said to be applicable to w. Let -•£ dénote the reflexive, transitive closure
of the réduction -+R.

A picture word w is R-irreducible, if no rule from R is applicable to w.

Let IRR(w) dénote the set of R-irreducible picture words of w, i. e.,

IRR(w).= {w' | w ->£w' and v/ is Jî-irreducible}.•

Observe, that IRR (w) is not necessarily unique, Hence, R is not a confluent
rewriting system. For example, let w = u C u O dO' u with C = rdl, O = lurd and
O' = ldru. Then w-*R urdldluruuldr by i? l5 w ->K rullurddlurdu by i?2 and
w ->B urdlldruulurd and w -»K Idruurdlulurd by i£3, and these words are irredu-
cible.

The following properties are easily established:

LEMMA 1: Each rule of R preserves pictures and decreases the length of
picture words by two, i.e., if w^>Rw' thenp(w)=p(w') and \ w\ = \ w' | + 2 .

COROLLARY \\Ifvs IRR (w) then p (v) =p (w) and \v\ ^ \w\.

LEMMA 2: If w is R-irreducible then ever y edge e of the associated weighted
graph g(w) has weight f(e)^2.

Proof: Assume the contrary and let e be the first edge of g(w) with ƒ (e)^ 3,
when edges of g(w) are traversed according ro w. Without loss of generality
let w = axa'ya"z, where a, a' and a" correspond to the first three traversais
of e. Then a', a"e {a, a " 1 } .

If a' = a, then x is an open a-cycle. If a"r = a, then y is an open a-cycle,
and Rx is applicable to w; otherwise, if a" = a~1, then y is a cycle and R2 is
applicable. If a'— a'1, then x is a cycle. If a"' — a then y is a cycle and R3 is
applicable; otherwise, if a'^a'1, then >> is an open a~x-cycle and RA is
applicable. In each case, w is not /î-irreducible.

LEMMA 3: It is linear time decidable whether a picture word w is R-irreducible.

Proof From w construct the weighted graph g (w) in | w | steps by a two-
dimensional Turing machine. This device can be simulated in time O ( | w \ )
on a RAM using results from [9]. w is .R-irreducible, if no edge e has weight

LEMMA 4: For every picture word w an R-irreducible picture word v e IRR (w)
can be computed in time O ( | w |2).
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Proof. As above, construct the directed weighted graph g (w) from w by a
two-dimensionai Turing machine. For an edge e with /(e) ̂ 3 apply an
appropriate rule from R to three symbols from w associated with traversals
of e. This application takes at most | w | steps, and R reduces the length by
two by Lemma 1. Hence, after at most O(|w|2) steps we are at an R-
irreducible word.

We summarize these facts and obtain:

THEOREM 1 : For every picture word w there is an R-irreducible picture word
uelRR(w) with p(w)=p(v) and \v\ ^2\p(w)\. v can effectively be computed
in time O(\ w|2). All R-irreducible words of w are of the same length.

Recall that Maurer et al. [8] have proved that the length of a shortest
description of a picture is bounded by two times its size, and that this bound
is optimal. However, their proof is by contradiction and is nonconstructive.
To the contrary, our réduction system R efficiently constructs a picture word
satisfying this bound starting from any given picture description.

Next, we take a closer look at minimal picture words. A word w is called
a minimal picture word for a picture p if p(w)=p and | w\ ̂  | w'\ for all w'
with p(w')^p. Such words are not necessarily obtained by our réduction
system. However, they can be constructed as Chinese Postman tours.

THEOREM 2: R-irreducible picture words are not necessarily of minimal length.

Proof: For any i>\ consider w^tfrdHtfrd1. Each wt is iMrreducible;
however p(w^—p{v^ with v^iïrdHr and \v{\ < | w£|. In f act, for any e>0
there is an i such that | wt | /1 vt | ^ 2 — e.

THEOREM 3: For every picture word w a minimal picture word v with
P(w) —P(v) can oe computed in time O(max {| w |, \g(w) |3}).

Prof: First, construct the graph g(w) = (V, E) from w in time O(|w|).
Then by Edmonds and Johnson's algorithm [2] compute a shortest Chinese
Postman tout on g(w) from the start point to the end point, which takes
time O(\ F|3). This tour defines a minimal picture word. The time bound
now follows from | V\ - 1 ^ \E\ and \E\ = \g(w)\ S | w|.

Notice that the construction of minimal and irreducible picture words can
be made canonical by introducing elementary orders. This leads to unique
représentatives. Define an arbitrary order on the symbols describing direc-
tions, u<r<d<l, say, and for a picture p fix its start and end points. This
order induces a canonical lexicographie order on picture words. In particular,
cycles with the same entry are traversed according to the induced order.
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Obviously, for every picture word w there is a unique picture word v
describing the same picture such that v is of minimal length and is the
lexicographie first This v can be obtained by an appropriate Chinese Postman
tour.

Unique réductions by R can be obtained by imposing a leftmost condition.
A rewriting step zxz -+Rzyz' by a rule x -> y of R is leftmost, if no rule of R
is applicable to a proper prefix of zx. It is easily seen that for every picture
word there is a unique i?-irreductible picture word obtained by leftmost
rewriting steps.

Finally, we show that neither réductions by R nor minimizations preserve
the regularity and the context-freeness of picture languages. This demonstrates
that our réduction rules and the minimization are based on non-trivial
computations, which cannot be done e. g. by pushdown machines.

THEOREM 4: There are regular sets LY and L2 such that the set of R-
irreducible strings IRR (LJ = {IRR (w) \weL1) and the set of minimal picture
words min (L2) = { v | w e L2> p (w) =p (v) and v is of minimal length } are not
context-free.

Proof Define Q = u+ r+ d+ l+ and K={ ukrndmlp\ki m, n, p^ 1, fe^m and

If Li = g 3 then K= IRR (Lx) H ô-

This follows from the fact that rules from R are applicable only if an edge
of the associated graph is traversed at least three times and the intersection
with Q forces a single traversai.

If L2 = Q2 then ^ = min (L2) H ô- To see this observe that words
w = uhrn dm F uk' f1' dml F' from L2 describe two cycles, which are not necessarily
closed and may not interfère with each other. However, the sélection of
pictures described by words from Q implies that the cycles must overlap,
so that n=p = ri and k' = m = m'. Then min (w) = uk" rn dm lp" with
k" = max {k, k'} and /?" = max{/?, p1}.

Using the Pumping Lemma for the context-free languages K can be shown
non-context-free and the closure of the context-free languages under intersec-
tion with regular sets then proves that IRR(L1) and min(L2) are non-context-
free.
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