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by V. J. Raywarp-SmiTH (*) and D. REBAINE (%)

Communicated by K. ApT

Abstract. — The concept of interprocessor delay is introduced to the open shop model. Delays
are uniform if they are always the same for any job and between any pair of machines. Scheduling
an open shop with uniform delays is shown to be NP-complete even for two machines. However, if
all tasks are unit execution time and the delays are uniform then a polynomial algorithm to solve
the decision problem is exhibited. If the delays are nonuniform, the problem remains NP-complete.
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Résumé. — Le concept des temps interopératoires est introduit dans un atelier open-shop. Ces
derniers sont dits uniformes s’ils sont identiques pour chaque tdche et quelle que soit la paire de
machines utilisée. L’ordonnancement d'un atelier open shop avec des temps interopératoires unifor-
mes se révéle NP-complet, méme pour deux machines. Cependant, si les durées d'exécution des
tdches sont unitaires et les temps interopératoires sont uniformes, un algorithme polynomial est

disponible pour résoudre le probléme de décision correspondant. Si les temps interopératoires sont
non uniformes, le probléme reste NP-complet.

Mots clés : Ordonnancement; atelier open shop; temps interopératoires.

1. INTRODUCTION

The usual model of open shop scheduling involves a number, me Z*, of
machines and a set J={1,2, ..., r_z} of jobs. Each job jeJ has to be
processed on each machine and thus comprises m tasks, t,;, t5;, ..., ¢
where t;; has to be processed on machine i. For each task, t;, there is an
associated length, /;€ Z*, denoting the time taken by machine i to process
that task. In open shop scheduling the tasks of any job can be processed in
any order and we seek a nonpreemptive schedule of all the jobs which
minimizes some measure, most usually the overall completion time.

Thus, we seek a schedule o: {1,2, ..., m}x{1,2,...,n} > Z" such that

mj>
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440 V. J. RAYWARD-SMITH, D. REBAINE

1) oG )>c@ k)y=0c(,)2o(, k)+1, for 1<i<m, 15j, k<n {this
ensures pre-emption is unnecessary },

(2) 0o (h, )—o(, ))<l;=h=i for 1<h, i<m, 1<j<n {this ensures
two tasks of one job are never processed at the same time}, and

(3) subject to (i) and (ii), the completion time

C=max{o(,j)+1;|1Li<m, 15j<n}

is minimized.

Open shop scheduling is shown to be NP-complete in [Gonzalez and Sahni,
1976] even for the case m=3. It is NP-complete in the strong sense for
arbitrary m [Lenstra, 1977]. However, for the special case m=2, and, similarly,
for pre-emptive scheduling on an arbitrary number of machines, there exist
polynomial time algorithms [Gonzalez and Sahni, 1976].

In this paper, we introduce the concept of an interprocessor time delay.
This models the situation where the machines are remote and there is a time
delay when a job is transferred from one machine to another. Job shop
scheduling with such delays has been discussed in [Hwang. ez al., 1989;
Rayward-Smith, 1987 a; Rayward-Smith, 1987 5].

Let d,; denote the time delay encountered in transferring job j from
machine /4 to machine i. Condition (2) above is then replaced by

) 0= 6 (h, j)—0 (i, j)<l;+dgy=h=i

jih

and any schedule satisfying (1) and (2') is called valid. The delays are
symmetric if dy;=d, for all 1<j<n, 1<i, h<m, and uniform if d,;=d for
all 1<jEn, 154, hEm.

By setting d,;=0 for all 1<j<n, 1<i, h<m, it follows immediately from
the NP-completeness of open shop scheduling that open scheduling with
uniform delays is NP-complete for any fixed m=3. In section 2, we prove
the stronger result that open shop scheduling with delays is NP-complete
even with uniform delays and m=2. Moreover, for UET (unit execution
time) tasks, open shop scheduling with symmetric delays on an arbitrary
number of machines is NP-complete. In Section 3, we present a polynomial
time algorithm to solve the decision problem in the special case where m is
arbitrary and all delays are uniform but all the tasks are UET. Section 4 is
our conclusion.
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2. NP-COMPLETENESS RESULTS

The decision problem associated with scheduling a two processor open
shop with uniform delays is as follows.

Open shop with two machines and uniform delays (02D)

Instance: An open shop with two machines; a set of n jobs, each job, j,
having an associated pair of positive integers, (/,;, [,;), where [;; is the time
to process the job on machine i (i=1, 2); a uniform delay, deZ* and a
bound LeZ™*.

Question: Is there a valid open shop schedule of the n jobs on the two
machines with uniform delay 4 and completion time <L?

In this section, we will prove 02D is NP-complete but before we do so, we
need to establish a lemma.

For each job, jeJ, a schedule is going to process one task earlier than the
other —such a task is called a first task. The remaining task is a second task.

LEMMA 1: There exists an optimal schedule where for each machine i=1, 2,
there exists a time T; such that for all t<T;, machine i processes first tasks

and for all t>T,, machine i processes second tasks.

Proof: Consider an optimal schedule which does not satisfy the statement
of the lemma. Without loss of generality, assume machine 1 processes the
second task of job j immediately before the first task of job k. These can be
interchanged still obtaining a valid optimal schedule. Repeating this argument
establishes the lemma.

A schedule that satisfies the condition of Lemma 1 is called a staged
schedule.

THeOREM 1: 02D is NP-complete.

Proof: 02D e NP since we can guess a schedule, 6, and, in polynomial time,
check whether it is valid.

The theorem is thus established by proving IT o 02D for some known
NP-complete problem, Il. In this case, we choose PARTITION, proved
NP-complete in [Karp, 1972].

vol. 26, n® 5, 1992
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Partition

Instance: Finite set, 4, and a size s(a¢)e Z* for each ae 4.

Question: Is there a subset 4" £ A4 such that
T{s(a)|acA }=Z{s(a)|acA—A4"}?

Without loss of generality, we can assume all instances of PARTITION have
z {s(a)]aeA }=2M for some integer, M; otherwise the instance is trivially
a NO instance. Moreover, by introducing a scaling factor if necessary, we
can safely assume each s(a)z2. We then define f: Dparmimon — Do2p bY
mapping each a of size s(a) into job j,. The pair associated with job j, is
(s (a), s(a)), so the job needs the same amount of processing time on each
machine. We also introduce four other jobs which we will call the capital
jobs, denoted by ¥, W, X, Y. The associated pairs are (1, M), (1, M), (M, 1)
and (M, 1), respectively. Thus, given an instance, I, of PARTITION, the
constructed instance f(I) of 02D comprises these n+4 jobs, a uniform delay
d=2M and a bound L=4 M+2. We need to establish that fis a polynomial
transformation. Clearly f can be computed in polynomial time so all we need
show is that Te Yparrmon fff (D) € Yo2p-

Ie Yparmimion = f(D € Yo,p: Assume A4’ is such that
X{s(a)|acA' }=Z{s(a)|acA~A"}=M.

Then a valid schedule for f with delay 2 M and of length 4 M+ 2 is given in
figure 1. Since this satisfies the bound, f(I)e Y,p.

0 1 M+1 2M+1 3M+1 4M+1 4M+2
v Y X A | W
1SRRG
Figure 1

f(De Yy,p=>Ie Ypsrmimon: Consider the valid schedule of 02D which com-
pletes in time <L=4 M+2. Since both machines 1 and 2 have tasks of
length 4 M +2 to process, the schedule must have no idling whatsoever. By
Lemma 1, we can assume this optimal schedule is a staged schedule.
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In order that the schedule can be completed in time 4 M+2, T, and T,
must both satisfy

T,<4M+2—d—1=2M+]1.

Also, since we have no idling and no second task can possibly be processed
before time 2 M+ 1, T;22 M+ 1. Hence we deduce T, =T,=2 M+ 1.

The only tasks of size 1 are tasks associated with capital jobs. Thus if a
first task is to complete at time 2 M +1 it must be the large task associated
with a capital job. Similarly if a second task is to start at time 2M+1, it
also must be the large task associated with a capital job. The only valid
schedule must thus have the capital tasks filling the shaded area of the Gantt
chart of figure 2.

A ..

M+l 2M+1 3M+1 4M+1 4aM+2

NN N
NN

Figure 2

%

The remaining jobs must be processed at the unshaded times. Let 4'={a|j,
is a first job on machine 1}. Then Z {s(a)|a€ 4’} =M so I€ Yparmimion:

Thus, we have established a polynomial transformation from PARTITION
to 02D and the proof of the theorem is completed.

When the tasks are all UET and the delays are uniform, we can solve the
decision problem in polynomial time (see Section 3). However, if the tasks
are UET and the delays are nonuniform, the problem remains NP-complete.
Formally stated, the decision problem is as follows.

Open shop with UET tasks and nonuniform delays (OmDU)

Instance: An open shop with m machines; a set of n jobs, each job, j,
requiring unit processing on each i(1 <i<m); delays d;,,€ Z* (1<j<n, 15h,
i<m); and a bound LeZ*.

Question: 1s there a valid open shop schedule of the n jobs on the m
machines with the given delays and completion time < L?

THEOREM 2: OmDU is NP-complete even if the delays are symmetric.

vol. 26, n° 5, 1992
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Proof: The proof uses a simple polynomial transformation from Hamil-
tonian Path, proved NP-complete in [Karp, 1972].

Hamiltonian Path (HP)

Instance: Graph G=(V, E).
Question: Does G contain a Hamiltonian path?

Given an instance I in Dy, the constructed instance of OmDU has m= | V|
machines and just one job, j,, comprising m UET tasks. The symmetric
delays are defined by d,;;=0 if (v;, v;)€ E and m otherwise. It is then routine
to show that there exists a schedule of length m iff there exists a Hamiltonian
path in G. Since the transformation is polynomial time and the scheduling
problem is clearly in NP, the proof is complete.

3. UET TASKS

In this section we consider the case where we have m machines, all » tasks
are UET and the delays are uniform, i.e. dj,=d for all 1<h, i<m, 15j<n.
In this special case, we are able to exhibit a polynomial time algorithm to
solve the corresponding decision problem.

LeMMA 2: If m(d+1)<n then the optimal schedule involves no idling and
can be obtained by a simple allocation algorithm.

Proof: We define o:{1,2, ...,m}x{1,2, ...,n}>Z"* by

o, j)=(—1+ (i—1)(d+1)) mod n.

Such a schedule is based on a repeated cyclic shift of the allocation on
machine 1 by d. It is easy to confirm that o is valid provided m(d+1)<n
and has completion time of n. Figure 3 illustrates a schedule constructed
using this function with m=4, d=2 and n=12. The schedule is presented
using a Gantt chart, G, related to ¢ by G[i, k]=/ iff 6 (i, j)=k.

Now, we consider the case where f=m(d+1)—n>0. We introduce f
fictitious jobs which we number n+1, n+2, ..., n+f. We then schedule
these n+f jobs using the following algorithm to define .
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el ol 1l 23| 4t s |6 7|8 9 | 10| 11
machine
1 11213l a4l sl el 7] 8]9 |10]11] 12
2 wlu |l 1] 23] 4f:s 8 9
3 7l s | ol 0] n| 2| 1| 2 4l s| 6
4 sl s sl 71 8| olw] w2 1] 2] 3
Figure 3
t:=0;

for p:=0tom—1do

forg:=0toddo

o begin_ o
forr:=0tom—1do

begin
i:=(r+p)mod m+1;
ji=r+mg+l;
o(i,j):=1t
end;

t:=1t+1

end

end

The range of o defined by this algorithm is

clearly {0,...,n+tf—1}.
Moreover, it is relatively easy to check that o is valid according to the

time
0 1 2 3 8
machine
1 1 4 7 3 8
2 2 5 8 1 9
3 3 6 9 2 7
Figure 4

definitions of Section 1. In figure 4, we illustrate its use when m=3, d=2

and n+f=9.

We can now prove
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LemMMA 3: If m(d+ 1)>n then there exists a simple scheduling algorithm of
optimal length (m—1)(d+ 1)+ [n/m].

Proof: We schedule n+f=m(d+1) jobs using the scheduling algorithm
described above. Every task of a fictitious job is replaced by an idle
period. The length of the resulting schedule is taken to be
max {c (i, )+ 1| Si<m, 1<j<n} rather than max{c(,j)+1[1=Zism,
1<j< +f}, and this will equal (m—1)(d+1)+ [n/m] Any schedule of n
jobs on m machines must involve some job not having any of its m tasks
completed until time [ n/m |. The earliest completion time of such a job is
thus fn/m} +(m—1) (d+1). Hence a schedule that achieves this length is
optimal.

0 1 2 3 4 5 6 7
machine

s V0 |« V4 V2
3 3/////,//2 57//14

Figure S

Figure 5 illustrates an optimal schedule of 5 jobs on m =3 machines when
d=2. It is constructed from the schedule of figure 4.

Since a constructed schedule in the case where m(d+ 1)>n involves either
allocating activities or idling instructions to m?d machine time slots, the best
possible algorithm to construct the Gantt chart is O (m>d). This is the order
of the above algorithm.

The following is now a trivial result.
THeOREM 3: OmDU with uniform delays is in P.

Proof: The algorithm to solve the problem is as follows.
if (if m(d+1)<n then L=n else L<(m— 1)(d+1)+n div m) then YES
else NO.

4. CONCLUSION

We have extended the open shop model to include interprocessor delays.
Even when the delays are uniform, finding optimal schedules is NP-hard for
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any fixed m=2. It is trivial to show this result also holds for nonuniform
delays.

However, in the special case when delays are uniform and all the tasks are
UET, the length of the optimal schedule can be found using a simple formula.

When the tasks are UET but the delays are nonuniform, the decision
problem is NP-complete for arbitrary m. It is open whether this result holds
for fixed m. However, if d=max {d;;,: 1<j<n, 1<i, h<m} and m(d+1)<n
then the algorithm of Lemma 2 can be used to find an optimal schedule in
pseudo-polynomial time, O (nm).
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