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THE MONADIC SECOND-ORDER LOGIC OF GRAPHS III: TREE-
DECOMPOSITIONS, MINORS AND COMPLEXITY ISSUES (*)

by B. COURCELLE (*)

Communicated by A. ARNOLD

Abstract. - We relate the tree-decompositions of hypergraphs introduced by Robertson and
Seymour to the finite and infinité algebraic expressions introduced by Bauderon and Courcelle. We
express minor inclusion in monadic second-order logic, and we obtain grammatical characterizations
of certain sets of graphs defined by excluded minors. We show how tree-decompositions can be
used to construct quadratic algorithms deciding monadic second-order properties on hypergraphs
ofbounded tree-width.

Résumé. — On étudie les liens entre les décompositions arborescentes d'hypergraphes introduites
par Robertson et Seymour et les expressions algébriques d'hypergraphes finies ou infinies de
Bauderon et Courcelle. On exprime l'inclusion au sens des mineurs en logique monadique du second
ordre, et on obtient des caractérisations grammaticales de certains ensembles de graphes définis
par mineurs exclus. On utilise les décompositions arborescentes pour construire des algorithmes
quadratiques qui décident les propriétés des hypergraphes de largeur arborescente bornée expri-
mables en logique monadique du second ordre.

INTRODUCTION

This paper continues the study of graphs, hypergraphs and sets thereof
using methods of formai language theory, universal algebra and logic, a study
initiated in Bauderon and Courcelle [7] and Courcelle [13, 17].

In the present work, we show the relations between algebraic notions
introduced in [7, 13, 17] and combinatorial notions introduced independently
by Robertson and Seymour [25-30] in their study of graph minors.
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258 B. COURCELLE

Opérations on hypergraphs have been defined in Bauderon and Courcelle
[7, 13, 17], that make it possible to dénote finite hypergraphs by finite alge-
braic expressions, and infinité ones (countably infinité ones, to be précise) by
infinité algebraic expressions (comparable to formai power series).

An expression is actually a tree and in a natural way defines a tree-
structuring of the hypergraph it dénotes. By a tree-structuring, we mean a
hierarchical construction of the hypergraph in terms of smaller ones, and,
recursively, of these latter ones in terms of others, etc. Expressions actually
dénote sourced hypergraphs, i.e., hypergraphs equipped with a séquence of
distinguished vertices. The length of this séquence is called the type of the
hypergraph.

A notion of width of a hypergraph arises in a natura! way: the width of
an expression is the largest type of the hypergraph denoted by some subex-
pression, and the width of a hypergraph is the minimal width of an expression
denoting it. (It is closely related to the tree-width introduced by Robertson
and Seymour as we shall establish.)

In Section 2, we establish a correspondence between the tree-decomposi-
tions of hypergraphs introduced by Robertson and Seymour [25-27] and
their tree-structurings defined by expressions. We show that the width of a
hypergraph is linearly related to its tree-width, a notion that follows naturally
from that of a tree-decomposition and is essential in the theory of Robertson
and Seymour. Our proof works for finite as well as infinité hypergraphs, and
the resuit for infinité hypergraphs is used in Courcelle [15].

The notion of a hyperedge replacement grammar (Habel, Kreowski [21, 22],
Bauderon and Courcelle [7]) can be considered as an extension to graphs and
hypergraphs of the notion of a context-free grammar defining words. Other
types of graph grammars can be considered as context-free {see Courcelle [12])
but hyperedge replacement grammars are presently the most useful and well-
studied ones. A set of hypergraphs will be called context-free iff it is generated
by an HR (hyperedge replacement) grammar.

Every context-free set of hypergraphs is of bounded width [7], hence of
bounded tree-width. Since the set of finite hypergraphs of tree-width at most
k is context-free, it follows that every statement of the form: "for every set
of hypergraphs of bounded tree-width..." also holds, "for every subset of a
context-free set of hypergraphs" and vice-versa. There are many complexity
results of this form. We refer the reader to Arnborg et al. [3] for an exhaustive
list of results that subsumes many partial results obtained previously. (See
Courcelle [17] and Van Leeuwen [33] for other références.)

Informatique théorique et Applications/Theoretical Informaties and Applications



TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 259

In Section 2, we also defïne a mapping from hypergraphs to graphs that
makes it possible to transfer several known results from graphs to hyper-
graphs.

Hypergraphs can also be considered as logical structures, and logical
formulas can be used to write their properties in a formai syntax. Monadic
second-order logic has proved to be quite powerful while having important
decidability properties (Courcelle [13, 14, 17]). In particular the validity of a
monadic second-order (MS) formula in every hypergraph of a context-free
set is decidable. Another important result is that the validity of an MS
formula in a hypergraph G, given with a dérivation séquence d, relative to
an HR grammar, is decidable in linear time in the length of d [7, 17]. The
major diffïculty is to construct d from G. Constructing a tree-decomposition
of width^A: is an attractive alternative but is still difficult for k ̂ 4 . (See
Section 3 for details.)

In Section 3, we show how some results of Robertson and Seymour [28, 29],
appropriately extended to hypergraphs, make it possible to overcome this
diffïculty.

Section 4 is concerned only with graphs (as opposed to hypergraphs). We
exploit the easy observation that if a set of graphs is characterized by finitely
many excluded minors (this is the case of planar graphs by a variant of
Kuratowski's theorem), then is defmable by an MS formula.

By using other results of Robertson and Seymour [27] (whom we owe a
lot for this paper) we obtain the existence of #i?-grammars generating minor-
closed sets of graphs that do not contain ail planar graphs. We also show
how the minimal excluded minors can be effectively constructed from MS
formulas in certain cases. Our construction uses 7/iî-grammars and gives
alternative proofs to some results of Fellows and Langston [20]. Section 1 is
devoted to a review of définitions from [7, 13, 14].

1. PRELIMINARIES

We dénote by N the set of nonnegative integers, and by f̂ J+ the set
of positive ones. We dénote by [n] the interval {1, 2, 3, . . ., «} for n^O
(with[O] = 0 ) .

For sets A and B, we dénote by A — B the set {aeA \a$B}. The cardinality
of a set A is denoted by Carû(A). The powerset of A is denoted by 0*(Â).

The domain of a partial mapping ƒ :A -» B is denoted by Dom(/). The
restriction o f / t o a subset A' of A is denoted by ƒ [A'. The partial mapping
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260 B. COURCELLE

with an empty domain is denoted by 0 , as the empty set. If two partial
mappings f:A-^B and ƒ ' : À' ->• B coïncide on Dom ( ƒ ) f\ Dom ( ƒ') then we
dénote by ƒ U ƒ' their common extension into a partial mapping: A\J A' -+ B,
with domain Dom (ƒ) U Dom (ƒ').

A binary relation R on a set A is considered as a subset of y4 x A. Hence,
xRy and (x, y)eR are equivalent notations. The transitive closure of R is
denoted by R+, and its reflexive and transitive closure is denoted by R*. The
set of équivalence relations on A is denoted by Eq(^4).

The set of nonempty séquences of éléments of a set A is denoted by A+.
The generic séquence is denoted by (au . . ., an) with commas and parenth-
eses. The empty séquence is denoted by ( ), and A* is A+ {J {( )}. When
À is an alphabet, i.e., when its éléments are letters, a séquence (al9 . . ., an)
in A+ can be written unambiguously a1a2 - - - an. The empty séquence is
denoted by s, a special symbol reserved for this purpose. The éléments of A*
are called words. The length of a séquence (i is denoted by \\i\.

Hypergraphs

As in [7, 13, 14, 15, 17], we deal with labeled, directed hypergraphs
equipped with a séquence of distinguished vertices called the séquence of
sources. The labels are chosen in a ranked alphabet, i.e., in a set Â, each
element of which has an associated integer (in N) that we call its type. The
type mapping is %\A -» N. The type of the label of a hyperedge must be
equal to the length of its séquence of vertices. (This type may. be 0, i.e., we
allow hyperedges with no vertex.)

Let A (and x) be as above, let ne N. A concrete n-hypergraph is a quintuple
G= <VG, EG, labG, vertG, srcG>where:

— VG is the set of vertices of the graph,

— EG is its set of edges,

— labG : EG -> A is a total mapping that assigns to each hyperedge of G a
label in the alphabet A,

— vertG : EG -> Vg is a total mapping that associâtes with a hyperedge e
of G, the séquence of its vertices (this séquence must be of length
T (e) : = (labG (e)) and its z-th element is also denoted by vertG (e, i), and fïnally

— srcG is a séquence of length n in \% (or equivalently a mapping:
[n] -> VG), called the séquence of sources.

We shall dénote by srcG(z') the z-th element of the séquence srcG. (If
« = 0, then G has no source.) "Source" is just an easy sounding word for
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TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 261

"distinguished vertex". There is no notion of flow involved. The integer n is
the type of G. We shall also dénote by SRCG the set of sources of G.

Whenever we need to specify the alphabet A, we say that G is a concrete
« — hypergraph over A. Let G and H be concrete graphs of the same type n. A
homomorphism: G -• H is a pair of mappings h — (hy, hE) where hy : VG ->• YH,
«E : EG -•EH , and such that:

hy(\ertG(e, i)) = vertH(hE(e)9 i) for all ie[t(e)], all
/ÏV (srcG (/)) — srcH (i) for all f G [n],
If no ambiguity can arise, we dénote hy and hE by /Ï. An isomorphism is a

homomorphism such that hy and «E are bijective. The isomorphism class of
a concrete hypergraph is called an abstract hypergraph, or simply a hypergraph
in the sequel.

A graph is a hypergraph, all hyperedges of which are of type 2. A hyper-
graph G is finite if VG and EG are finite. Otherwise, a hypergraph has at
most countably many vertices and edges (in this paper).

We dénote by FCG(A\, by FCG(^), by FG(^)n5 and by FG(^), the sets
of finite concrete ^-hypergraphs, of finite concrete hypergraphs, of finite n-
hypergraphs, and of finite hypergraphs respectively, over A. The notations
CG(v4)„5 CG 04), G(^)„ and G(A) are used similarly for hypergraphs.

A vertex v belongs to an edge e if v = vertG (e, i) for some L A vertex is
isolated if it belongs to no edge.

For every n in N, we dénote by n the unique w-graph with n pairwise
distinct sources. For every a in A of type «, we dénote by a the «-hypergraph
with a single edge e labeled by a, no internai vertex, and a séquence of n
pairwise distinct sources equal to the séquence of vertices of e.

Let G be a concrete hypergraph; let « be an équivalence relation on VG.
We dénote by [[v]] the équivalence class of v w.r.t^.We dénote by (?/« the
concrete graph H such that

VH = VG/*, EH = EG, labfl = labG, vertH(e, i) = [[vertG (e, OU

for ail eeEH( = EG), ail ie[ï(e)], and srcH(/) = [[srcG(0]] for ail ie[x(G)]. We
calî G/^the quotient graph of G by^.

Opérations on hypergraphs

We recall the définitions of the basic opérations on hypergraphs introduced
in Bauderon and Courcelle [7] (see also [6, 13, 14, 17]}. The fîrst one is the
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262 B. COURCELLE

disjoint union © such that, if GeG(A)n, HeG(A)mi then K^G® H is such
M, m «, m

that:

(we assume that V G O V H = 0 and EG D EH = 0 )

vert* - vertG U vertH

srcx = srcG. srcH, namely is equal tö the concaténation of the séquences of
sources of the two hypergraphs.

The second opération is the source redéfinition. For each mapping a
from [p] to [«], we have an opération aa such that for G in G(A)n,
cJa (0) == { YG, EG, labG, vertGs srcG

 ö a )* If p = 0, then a is necessarily the empty
map (always denoted by 0 ) , and ott(G} is the 0-graph obtained from G by
"förgettïng" its sources. We also dénote it by G°.

When/? is small it is convenient tö write oti i2 t> (<7) instead of aa(G),
with i ^ { j ) t j \

The third opération is the source fusion. For every équivalence relation ô
on [n], we let 65 be the mapping: G (Â)n -» G (̂ 4)tt that transforms a hypergraph
G into its quotient by the équivalence relation generated by the set of pairs
of vertices { (srco (f), srco (j))/(i, j) s 8}.

Intuitively, 8Ô (G) îs obtained from G by fusing the i-th and y-th sources,
whenever i and ^ are equivalent w.r.t S. If Ô is the équivalence relation on
\n\ generated by a single pair (/,/), then we dénote 6Ô by QUJ. It is clear
that if 8 is the équivalence relation generated by a set of pairs

These opérations and the constants n (for ail weN) and a (for ail # in A)
introduced abôve form a many-sôrted signature denoted by H^. Every Finite,
welî-formed term written with them dénotes a finite hypergraph. These terms
will be called hypergraph expressions, The width of an expression is the
maximal sort of any symbol in it. The width wd(Cr) of a hypergraph G is the
minimal width of an expression denoting it.

Informatique théorique et Applications/Theoreticai Informaties and Applications



TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 2 6 3

Finite terms with variables dénote mappings on hypergraphs called derived
opérations. More precisely, if t is a term of sort p written with variables
xu . . .,xn of respective sorts mu . . . ,m„, then / dénotes in a standard way a
total mapping: G (A)mi x . . . x G (A)mn -+ G (A)r

Infinité expressions without variables have been used in Courcelle [14] and
Bauderon [6] in order to dénote infinité hypergraphs. Such expressions can
be considered as infinité trees, the nodes of which are labeled by symbols
from { ®, 06, aa, n, a}. The formai définition of the hypergraph denoted by

n, m

an infinité expression will be recalled from Courcelle [14] just prior to its use,
in the proof of Theorem (2.2). The notion of width is as for finite hypergraphs.
Some infinité hypergraphs have an infinité width, whereas the width of a
finite hypergraph is always finite.

Logical structures representing hypergraphs

A hypergraph can be considered as a two-sorted logical structure with two
domains: the set of vertices and the set of hyperedges. Constants sl5 . . .,s„
dénote the n sources of an w-graph, and for each a in >4, a relation
édg^e, vl9 . . ., a*) expresses that eis a hyperedge with label a, and séquence
of vertices (TJ1? . . ., vk).

Hence, one can express graph properties by logical formulas. We shall
consider monadic second-order (MS) formulas, where quantified variables
can dénote edges, vertices, sets of edges, and sets of vertices. The symbol if
will refer to this logical language. In particular, a set of graphs is definable if
it is the set of ail graphs satisfying such a formula. The monadic {second-
order) theory of a set of graphs L is the set of ail closed MS formulas that
are valid in ail graphs of L. It îs denoted by Th(L).

2. TREE-DECOMPOSÏXIONS AND HYPERGRAPH EXPRESSIONS

We establish that from every (finite or infinité) expression defming a
hypergraph, one can construct a tree-decomposition of this hypergraph and
conversely, from a tree-decomposition, one can construct an expression. It
foliows from these two constructions that the tree-width of a hypergraph as
defined by Robertson and Seymour [26] and its width as recalled above from
Bauderon and Courcelle [7, 14] are linearly related.
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264 B. COURCELLE

(2.1) DÉFINITION: Tree-width.

Let G be an n-hypergraph. A tree-decomposition of G is a pair (T9f)
consisting of a tree T with root r(7), and a mapping ƒ : VT-• ^ (VG) such
that:

(1) VG=U{/(O/»eVr},
(2) every hyperedge of G has all its vertices in ƒ (i) for some i,

, (3) if i,j\ keVT, and if y is on the unique, cycle-free, undirected path in T
from i to K then ƒ (0 O ƒ(*)£/•(ƒ)>

(4) SRCGg/(r(7)).
The wtó/A of such a décomposition is defined as:

Max {Card ( ƒ (/))// e V r } - 1.

The tree-width of G is the minimum width of a tree-decomposition of G,
It is denoted by twd(G), and belongs to N U { oo }.

For a 0-hypergraph, condition (4) is always satisfïed in a trivial way.
Similarily, condition (2) is always satisfïed for the hyperedges of type 0 or 1
(provided condition (1) holds). Such hyperedges can be added to or deleted
from a hypergraph without changing its tree-width.

If i and j are two adjacent nodes of T, one may have ƒ (z) Df (J)=Z0.
Hence, G is not necessarily connected, although it is described by a
(connected) tree. It is not hard to see that for every 0-hypergraph G,
twd(G) = Sup{twd(G')/G' is a connected component of G}. Our aim is to
establish the following result:

(2.2) THEOREM: Let A be ranked alphabet, such that
T (A): = Max {x (a)/a e A } < oo. For every hypergraph G over A we have:

(1) twd(G)gwd(G)-l,

(2) wd(G)gMax{2twd(G) + 2stwd(G)+l + T(^)5^(G)}.
For proving this theorem, a few preliminary définitions and lemmas are

necessary.

(2.3) DÉFINITION: Tree-gluings.

Let T be a rooted tree. For every x in VT, let Gx be a hypergraph. We
assume that Gx is disjoint from Gy, for x^y. For every x in VT, let Ex be a
(possibly empty) subset of VGx x VGjc and for every pair (x9 y) of nodes such
that y is a son of x9 we let Rxy be a subset of VGjc x VGy.

Let £ : = U {QJxeYT}, equipped with srcr(ï:) as a séquence of sources.

Informatique théorique et Applications/Theoretical Informaties and Applications



TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 265

Let^be the équivalence relation on \K generated by

R: = U{Ex/xeYT}U(U{Rxy/x,ye\T})

(i.e.,ttis the reflexive, symmetrie, and transitive closure of R).
Let G: = K/&, i.e., be the quotient of K by the équivalence relations on

VK. (Any two equivalent vertices of K become identical in G.) We dénote
this hypergraph by Z ( r E R) {GJxe\T} and call it a tree-gluing of the family

(GJxeVr
A tree-decomposition of G can be obtained canonically from this construc-

tion. Let h : K^> K/œ ~ G be the canonical surjective homorphism, and:

ƒ (x) : = hy(VGx)sVG for all xeV r .

With this notation:

(2.4) LEMMA: (T,f) is a tree-decomposition of G. If Card (VGjc) ̂  k for all
xeVT, then the width of this tree-decomposition is at most k—l.

Proof : We only have to verify Condition (3) of Définition (2.1), the other
conditions being clearly satisfied. Let x, ye\Ti let (x, zl5 z2, . . ., zk, y) be
the unique path linking x to y in T.

Let v be a vertex of/(x) C\f(y). We shall prove that v belongs to all the
sets f(zt), Ï = 1 , . . .,k. There exist wx in YGx and wy in VG such that
n(wx) = h(wy) = v' Since h(wx) = h(wy), wx&wr From the définition of^, it is
clear that there exist vertices w1,w[,. . ., w'k, w'y of Gy such that
wxxw'x, (w'x, w J e S ^ ^ ^ « w ' i , (w'ls w2)eS2 1 i Z 2 ) w2^W2, . . . wkvw'k,
(w'k9 w'y) e SZki y, w'y « wy, where 5Ui „ : = i?U) „ U (Ru, „) ~x for all w, u.

Hence

This establishes that v = h(w^) belongs to ƒ (zt) for all /= 1, . . ., k. D
(2.5) Remark: Let G be a hypergraph, and (T,f) be one of its tree-

decompositions. Then G = X^TtEiR){GJxeyT}, and (T,f) is the associated
tree-decomposition as defined by the construction of Définition (2.3) for well-
chosen E, R, and Gx. To see this, let:

• Gx be a subhypergraph of G, the set of vertices of which is ƒ (x), and
such that every edge of G belongs to Gx for one and only one x in Vr;

• Rxy = {(v, w)e\Gx x YGJv = w} for all pair (x, y) of nodes of T such that
y is a son of x;
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266 B. COURCELLE

• the séquence of sources of Gr(T) is that of G.

It is clear that G = E ( r E R) { GJx e V r} and that (T, ƒ) is the tree-decompo-
sition of G associated with (T, E, R) by Définition (2.3).

Proof of Theorem (2.2), assertion (1): We dénote by H^1 the restriction of
H^ to symbols of sort at most k. We dénote by M00 (H^1) the set of infinité
(expression) trees formed over Hjf1. It follows that wd(G)^& iff G = val (7)
for some T in M00 (H^1). Let G satisfy this condition. We shall build from T
a tree-decomposition of G. The construction of G = val (T) of Courcelle [14,
Définition 5.3] can be formulated with the notation of Définition (2.3) as:

where E, R and the hypergraphs Gx are defined as follows:

(1) for every node x of T having a label in HA-A, we let Gx: = m where
m = x(x);

(2) for every node x with label a in A we let Gx: = a;

(3) for every node x, we let Ex be 5 if the label of x is 9Ô? and be 0
otherwise;

(4) for every node x labeled by ® then, if y and z are its first and second
n, m

s u c c e s s o r s , w e le t

RXj y : - { ( s r c G x ( / ) , src G y ( / ) ) / / = 1, . . . , » } ,

(5) for every node x labeled by 05 with 8 G Eq ([«]), then, if y is its unique
successor, we let:

(6) for every node x labeled by aaJ where a:[w]-^[m], then, if y is its
unique successor, we let

Rxy : = {(srcGx (i), srcGy (a (/)))//G M}.

Each graph Gx has at most k vertices since every symbol of H^ occurring
in T is, by hypothesis, of type at most k. It follows from Lemma (2.4) that
the associated tree-decomposition of val (T) is of width at most k—l.

Hence, for every graph G, twd (G) ̂  wd (G) - L D

Informatique théorique et Applioations/Theoretical Informaties and Applications



TREE-DECOMPOSITIONS MINORS, AND COMPLEXITY 2 6 7

Proof of Theorem (2.2), assertion (2); Frörn a tree-decomposition (T,f) of
G, of minimal width fc-1, so that A; = Max {Card (ƒ(/))/* e V r } , we shall
construct an expression defining G, of width bounded by a function of k.
This construction takes as input a finite or infinité tree T. It is effective
whenever r i s finite or infinité as long Tis given in some effective way.

It is useful to order T in some fixed way. We do this in such a way that
every node has a finite or infinité (possibly empty) séquence of successors.

First step: We transform (T, ƒ) into a tree-decomposition (T\f) of G,
having the same width, and such that V is a binary tree, i,e. such that every
node of T has either zero or two successors. For each node x of V r, we do
the fóllowing.

If x has ö or 2 successors, we do nothing.
If x has one successor y, we add a second one y', and we le t / ' ( / ) : = 0 .
If x has a fmite séquence of successors (yu y2, . . ., yk), then we replace

by 4

Z2

*

and we le t / ' (z 1 ) :=/ ' (z 2 ) :=/ ' (z k . 2 ) :=/ (x) .
If x has an infinité séquence of successors (j;l5 y2, y$, . . .), we add simila-

rily an infinité séquence of nodes (z1? z2, . . .), and we let ƒ ' (ẑ ) : = ƒ (x) for
all L

Second step: We now let (T,f) dénote the newly obtained (T\f), in
order to simplify the notations. By remark (2.5), we can express G as
E(T) 0,R){Gx/x€VT} where R and Gxare constructed appropriately, and each
Gx has at most k vertices.

For every x in Vr, let us choose, in addition, a séquence of sources sx

enumerating without répétition the set of vertices of Gx. Then let x(x) : = \sx .
For each pair (x, ^) of nodes of T where y is a son of x, we deilne
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268 B. COURCELLE

(i,j)eRxy iff (sx(i\sy(j))zRxr

For every xeVT, let gx be an expression defining < Gx, sx). Since Gx has
at most k vertices, and since the length of its séquence of sources is also at
most k, we can construct gx9 that defmes Gx9 and is of width at most k + x(A).
(One constructs Gx by starting from the graph k', where kf = \sx\, and by
gluing successively all necessary edges; each new gluing is of the form
ao(0ô(g©<2)), where g is an expression of type k'; hence, the width of
<*« (% (g®<*)) is Max {wd (g), k' + x (a)}.)

Next we have to put together all the expressions gx, xeVT) and from a
single one, defining the graph Z(T 0 i R) {GJx e VT }.

For every node x of T having two successors y and z, we let px be the
derived opération:

px(u, v) : = a M ( 0 v ( a a ( G s ( p

where we let:

q : =T(X);

T(W) : =« : = x(););
T(V) : =m : = T(Z);

P • ["'] ~̂  W be the mapping such that P (z) is the rank in sy of the z-th
éléments of sy belonging to lm(Rxy), hence, n'-^ri);

5 e Eq ([q + n']) be the équivalence relation generated by the set

a be the inclusion map: [q] ->> [q + n'];
y : [m1] -> [m] be such that y (J) is the rank in sz of the ï-th element of sz

belonging to lm(Rxz), hence m'^m);
veEq([# + m']) be generated by {(/, q+j)/(i,J)eRxz}9 and, finally,
ja be the inclusion map: [q] -> [̂  + m'].
This derived opération is of width Max {«, m, ̂ s ^ + «', ^ + /w', wd(gj};

hence, its width is at most Max{2A:, Â: + x(A)}. It has been constructed in
such a way that, for all graphs Hy and Hz of respective types n~x{y) and
m = x(z)9 we have:

/>, (Jïy, ffr) = Z(T,f 0 ) S) { Gx, i/„ /T,}, where

S^ = {(srcGx (0, srcfly 0*))/(', J) e ̂ } ,

S „ = {(srcGx (0, srCiïz (/))/('j)
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