B. LE SAËC I. LITOVSKY Rebootable and suffix-closed ω-power languages

Informatique théorique et applications, tome 26, nº 1 (1992), p. 45-58 http://www.numdam.org/item?id=ITA 1992 26 1 45 0>

© AFCET, 1992, tous droits réservés.

L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Informatique théorique et Applications/Theoretical Informatics and Applications (vol. 26, n° 1, 1992, p. 45 à 58)

REBOOTABLE AND SUFFIX-CLOSED ω-POWER LANGUAGES (*)

by B. LE SAËC $(^1)$ and I. LITOVSKY $(^1)$

Communicated by J. BERSTEL

Abstract. – The ω -languages \mathbb{R}^{ω} such that (1) $\operatorname{Pref}(\mathbb{R}^{\omega})\mathbb{R}^{\omega} = \mathbb{R}^{\omega}$, (2) $\operatorname{Suf}(\mathbb{R}^{\omega}) = \mathbb{R}^{\omega}$ or (3) $\operatorname{Pref}(\mathbb{R}^{\omega})$ Suf $(\mathbb{R}^{\omega}) = \mathbb{R}^{\omega}$ are characterized via properties of the language $\operatorname{Stab}(\mathbb{R}^{\omega}) = \{ u \in \Sigma^* : u \mathbb{R}^{\omega} \subset \mathbb{R}^{\omega} \}$ and via properties of ω -generators of \mathbb{R}^{ω} . Nicely, each characterization for (1) provides one for (2) and (3) by replacing "prefix" by "suffix" and "factor", respectively. Moreover (3) characterizes the ω -languages \mathbb{R}^{ω} which are left ω -ideals in Alph (\mathbb{R}^{ω}).

Résumé. – Les ω -languages R^{ω} tels que (1) $\operatorname{Pref}(R^{\omega}) R^{\omega} = R^{\omega}$, (2) $\operatorname{Suf}(R^{\omega}) = R^{\omega}$ on (3) $\operatorname{Pref}(R^{\omega})$ $\operatorname{Suf}(R^{\omega}) = R^{\omega}$ sont caractérisés au moyen de propriétés du langage $\operatorname{Stab}(R^{\omega}) = \{ u \in \Sigma^* : u R^{\omega} \subset R^{\omega} \}$ et au moyen de propriétés des ω -générateurs de R^{ω} . Toute caractérisation pour (1) fournit une caractérisation pour (2) et (3) en remplaçant « préfixe » pour « suffixe » on « facteur », selon les cas. De plus (3) caractérise les ω -langages R^{ω} qui sont des ω -idéaux à gauche de Alph (R^{ω}).

0. INTRODUCTION

In this paper, we study properties of ω -languages over a finite alphabet Σ . An intuitive motivation may be found in regarding ω -languages as infinite behaviours of process (*cf*. [2]). In this way, Σ is a set of actions. Moreover the processes are assumed to be controlled by a manager while the users can only observe the sequences of actions. We shall use this interpretation in the sequel.

First we study the behaviour of a process when an interruption arises: could the manager restart the process without "disturbing" the users, that is, without asking the users to forget the sequence already seen? Hence the manager is interested in the *rebooting points*, that is, the points where the process may be restarted as if it was in the initial state, but without cancelling

^(*) Received June 1990, revised September 1990.

^{(&}lt;sup>1</sup>) Laboratoire Bordelais de Recherche en Informatique, U.R.A. 1304 du C.N.R.S., E.N.S.E.R.B., 351, cours de la Libération, 33405 Talence Cedex, France.

Informatique théorique et Applications/Theoretical Informatics and Applications 0988-3754/92/01 45 14/\$3.40/@ AFCET-Gauthier-Villars

the action sequence already performed. In other words, given the ω -language L of acceptable behaviours of P, we find the prefixes x of L such that the ω -language x L is contained in L. That leads us to consider the greatest language X such that XL = L. In particular, languages or ω -languages L such that Pref(L) L = L where Pref(L) is the set of all prefixes of L are very convenient for the manager. Such languages or ω -languages L are said to be *rebootable*.

Next, we consider the following situation: a process P is active and a new user arrives. Then the manager has to find the *access points*, that is, the points x such that the end of any acceptable behaviour beginning with x remains in L. In other words we are interested in the greatest language X included in Pref(L) such that $X^{-1}L=L$. So the *accessible* ω -languages are convenient for the manager: they are defined by Pref(L)⁻¹L=L. They are called the *suffix-closed* ω -languages [7].

Finally, we consider the ω -languages having both features, being rebootable and suffix-closed. They are characterized by the following property: one can substitute any prefix of L for any other one without changing the membership to L. Such ω -languages may be called *prefix-switchable*. This notion is an extension of the one of *absolutely closed* ω -languages [7] where the condition $\operatorname{Pref}(L) = \Sigma^*$ is added.

In this paper, the results concern mainly ω -power languages L, that is, ω languages of the form R^{ω} for some language R. Counterexamples show that these results do not hold without assuming that L is an ω -power language. The different charactarizations for the ω -languages R^{ω} are only based on properties of languages. In this way, the stabilizer Stab (R^{ω}) of R^{ω} introduced in [14] as the set $\{u \in \Sigma^* : u R^{\omega} \subset R^{\omega}\}$ works well. Indeed each property of R^{ω} is characterized bu a corresponding property of Stab (R^{ω}) . So the characterizations state:

 R^{ω} is rebootable iff Stab (R^{ω}) is prefix-closed;

 R^{ω} is suffix-closed iff Stab (R^{ω}) is suffix-closed;

 R^{ω} is a left ω -ideal iff Stab (R^{ω}) is factor-closed.

Furthermore, we note that when an ω -language L is not an ω -power language, the stabilizer of L gives no longer reliable characterizations. On the other hand, by considering only regular ω -languages R^{ω} (and even deterministic regular ω -languages R^{ω} for the first characterization below), we link properties of R^{ω} with properties of ω -generators of R^{ω} in the following way:

 R^{ω} is rebootable iff $R^{\omega} = G^{\omega}$ for some language G such that Pref(G) G = G; R^{ω} is suffix-closed iff $R^{\omega} = G^{\omega}$ for some language G such that Suf(G) G = G; R^{ω} is a left ω -ideal iff $R^{\omega} = G^{\omega}$ for some language G such that Fact(G) G = G; or equivalently iff $R^{\omega} = G^{\omega}$ for some ideal G.

In the non-regular case, we do not yet have results.

The paper is organized as follows. After recalling definitions and notation (Part 1), we study the rebootable ω -languages (Part 2), next we study the suffix-closed ω -languages (Part 3). In Part 4, left ω -ideals are investigated first as rebootable and suffix-closed ω -languages, then using finitary ideals, and finally via their syntactic monoids.

1. PRELIMINARIES

Let Σ be an alphabet. Σ^* and Σ^{ω} are the sets of all finite words and of all ω -words over Σ , respectively. Let L be a subset of a set S. The complement of L is denoted by ${}^{c}L$. The union set $\Sigma^* \cup \Sigma^{\omega}$ is denoted by Σ^{∞} . The empty word is denoted by ε and the language $\Sigma^* \setminus \{\varepsilon\}$ is denoted by Σ^+ . Subsets of Σ^* , Σ^{ω} and Σ^{∞} are called languages, ω -languages and ∞ -languages, respectively. The set of letters which occur in an ∞ -language L is denoted by Alph(L). Let u, v be two words $\in \Sigma^{\infty}$. As usual uv denotes the concatenation of u and v. Let X be a language, and let Y be an ∞ -language. XY denotes the set $\{uv \in \Sigma^{\infty} : u \in X \text{ and } v \in Y\}$ and $X^{-1} Y$ denotes the set $\{w \in \Sigma^{\infty} : uw \in Y \text{ for some } u \in X\}$. Let L be an ω -language. $UP(L) = \{w \in L : w = uv^{\omega} \text{ for some } u, v \text{ in } \Sigma^+\}$.

Let $u \in \Sigma^{\infty}$ and $X \subseteq \Sigma^{\infty}$. A word v is a prefix of u if $u \in v \Sigma^{\infty}$. Let Pref(u) denote the set of all prefixes of u, and let $\operatorname{Pref}(X) = \bigcup_{u \in X} \operatorname{Pref}(u)$. An ∞ -word $u \in X$

v is a suffix of u if $u \in \Sigma^* v$. Let Suf(u) denote the set of all suffixes of u, and let Suf(X) = $\bigcup_{u \in X}$ Suf (u). The language Fact(X) of the factors of X is the

language Pref(Suf(X)). X is said to be prefix-closed, suffix-closed or factorclosed if Pref(X) = X, Suf(X) = X or Fact(X) = X, respectively.

Let $R \subseteq \Sigma^*$. The language X is a left-ideal, a right-ideal or an ideal in R if $RX \subseteq X$, $XR \subseteq X$ or $RXR \subseteq X$, respectively. R is a prefix-free language (or prefix code) if $R\Sigma^+ \cap R = \emptyset$. R is a semaphore code if $R = \Sigma^* S \setminus \Sigma^* S\Sigma^+$ for some nonempty set $S \subseteq \Sigma^+$ [3]. R is an ifl-code if every ω -word has at most one factorization over R[16].

The adherence Adh (R) of R is the ω -language $\{w \in \Sigma^{\omega} : \operatorname{Pref}(w) \subseteq \operatorname{Pref}(L)\}$ [10, 4]. Recall that every adherence is a closed set for the usual topology in Σ^{ω} . The limit Lim (R) of R is the ω -language $\{w \in \Sigma^{\omega} : \operatorname{Pref}(w) \cap R \text{ is infinite}\}$.

For every language $R \subseteq \Sigma^+$, the ω -power R^{ω} of R is defined by $R^{\omega} = \{u_1 \ldots u_n \ldots : u_n \in R \text{ for each } n\}$. An ω -generator of R^{ω} is a language $G \subseteq \Sigma^+$ such that $G^{\omega} = R^{\omega}$. An ω -generator G of R^{ω} is said to be minimal if

no proper subset of G is an ω -generator of R^{ω} . The stabilizer Stab(L) of an ω -language L is the language $\{u \in \Sigma^* : uL \subseteq L\}$ [14]. Clearly the language Stab(L) is a submonoid of Σ^* .

A finite automaton over Σ is a quintuple $\mathscr{A} = (\Sigma, Q, \delta, S, F)$ where Q is the (finite) set of states, $S \subseteq Q$ is the set of initial states, $F \subseteq Q$ is the set of accepting states, and δ is the next state relation, that is, a function from $Q \times \Sigma$ into 2^Q . The automaton \mathscr{A} is said to be deterministic if S is a singleton and δ is a function from $Q \times \Sigma$ into Q. A run of \mathscr{A} on an ω -word $w_1 \ldots w_n \ldots$ is an ω -word $q_0 \ldots q_n \ldots$ in Q^{ω} such that $q_0 \in S$ and for each $n, q_{n+1} \in \delta(q_n, w_n)$. For any run r, let Inf(r) be the set $\{q \in Q : q = q_n \text{ for}$ infinitely many $n\}$. An ω -word w is said to be recognized by \mathscr{A} if $Inf(r) \cap F \neq \emptyset$ for some run r of \mathscr{A} on w [5]. The ω -language Büchi-recognized by \mathscr{A} is the set of all ω -words recognized by \mathscr{A} . Such ω -languages are said to be regular. Recall that the deterministic automata are less powerful than the nondeterministic ones for this recognizing mode. Every ω -language recognized by some deterministic automaton is called a deterministic ω language. An ω -language is deterministic iff it is the limit of some language [8].

Let L be any ω -language. We use the syntactic congruence of L in Σ^* defined in [1] by $u \approx u'$ iff for every v, w_1, w_2 in Σ^* , we have (1) $w_1 u w_2 v^{\omega} \in L$ iff $w_1 u' w_2 v^{\omega} \in L$ and (2) $v (u w_2)^{\omega} \in L$ iff $v (u' w_2)^{\omega} \in L$. The set $\mathcal{SM}(L)$ of \approx -classes is a monoid, called the syntactic monoid of L, which is finite if L is regular [1]. We denote by π the morphism which associates each word with its \approx -class. Note that this notion of syntactic monoid for ω -languages is different from the one considered in [7].

2. REBOOTING

Let L be an ω -language. The language Stab(L) is the greatest solution of the equation XL = L since Stab(L) = { $u \in \Sigma^* : uL \subseteq L$ }. In this part, the goal is to characterize the ω -languages such that Pref(L) is the greatest solution of this equation, that is, such that Stab(L) = Pref(L).

DEFINITION 2.0: Let $Y \subseteq \Sigma^{\infty}$. Y is said to be rebootable if Pref(Y) Y = Y.

If L is regular, then Stab(L) is a regular and constructible language. That is, given an automaton which recognizes L, one can construct an automaton recognizing Stab(L) [12]. Hence, one can decide whether L is rebootable.

From now on, we consider only ω -power languages. We try to characterize those ω -power languages R^{ω} which are rebootable via properties of the

stabilizer of R^{ω} and via properties of ω -generators of R^{ω} . We need the following lemmas.

LEMMA 2.1: Let $R \subseteq \Sigma^+$ and let $L \subseteq \Sigma^\infty$. Then $L \subseteq RL$ implies $L \subseteq R^\omega$.

Proof: Let $w \in L$. Then $w = r_1 w_1$ for some $r_1 \in R$ and $w_1 \in L$. In this way, one can constuct a sequence of words $r_i \in R$ such that $r_1 \ldots r_i w_i = w$ for every *i*. Hence $\operatorname{Pref}(w) = \operatorname{Pref}(r_1 \ldots r_i \ldots)$, that is $w = r_1 \ldots r_i \ldots$

LEMMA 2.2.: Let \mathbb{R}^{ω} be an ω -power language, and let G be any ω -generator of \mathbb{R}^{ω} . Then the language $G \setminus G(\operatorname{Stab}(\mathbb{R}^{\omega}) \setminus \{\varepsilon\})$ is also an ω -generator of \mathbb{R}^{ω} .

Proof: Let us denote G' the language $G \setminus G(\operatorname{Stab}(R^{\omega}) \setminus \{\varepsilon\})$. As $G' \subseteq G$, $G'^{\omega} \subseteq G^{\omega}$. Now as $G \subseteq G' \cup G' \operatorname{Stab}(R^{\omega})$, $GG^{\omega} \subseteq (G' \cup G' \operatorname{Stab}(R^{\omega})) G^{\omega}$. Hence $G^{\omega} \subseteq G' G^{\omega}$ since $\operatorname{Stab}(R^{\omega}) \cap G^{\omega} \subseteq G^{\omega}$. Thus $G^{\omega} \subseteq G'^{\omega}$ by the previous lemma.

In the general case, the languages $G \setminus G(\operatorname{Stab}(R^{\omega}) \setminus \{\varepsilon\})$ are not minimal ω -generators of R^{ω} . However, whenever R^{ω} is rebootable, they are iffl-codes and therefore minimal ω -generators of R^{ω} . Hence one can states the following result.

PROPOSITION 2.3: Let \mathbb{R}^{ω} be a rebootable ω -language. Then each ω -generator of \mathbb{R}^{ω} contains an ω -generator of \mathbb{R}^{ω} which is an ifl-code.

In other words, whenever R^{ω} is rebootable, all minimal ω -generators of R^{ω} are ifl-codes. Of course, this condition is necessary but not sufficient. The set R=ab is a counterexample. A first characterization of the rebootable ω -languages is given below.

PROPOSITION 2.4: Let R be a language in Σ^+ . The following conditions are equivalent:

- (i) R^{ω} is a rebootable ω -language.
- (ii) $\operatorname{Stab}(R^{\omega})$ is a prefix-closed language.

Proof: The implication (i) ⇒ (ii) is immediate since Stab (R^{ω}) = Pref (R^{ω}). Conversely, we have $R^+ \subseteq \text{Stab}(R^{\omega})$ and $\text{Pref}(R^{\omega}) = \text{Pref}(R^+)$. Hence Pref (R^{ω}) \subseteq Pref (Stab (R^{ω})). And since Stab (R^{ω}) is prefix-closed, Pref (R^{ω}) \subseteq Stab (R^{ω}). As Stab (R^{ω}) \subseteq Pref (R^{ω}), R^{ω} is rebootable.

Remarks: (1) For any ω -language L, the fact that L is rebootable implies that $\operatorname{Stab}(L)$ is prefix-closed. However, the converse does not hold. As an example, let L be the ω -language a^*b^{ω} . Then $\operatorname{Stab}(L) = a^*$ which is a prefix-closed language. While L is not rebootable.

vol. 26, nº 1, 1992

(2) Of course, if R is a prefix-closed language, R^{ω} is a rebootable ω language. While R^{ω} may be rebootable without any ω -generator being rebootable. Indeed, let R be the language a^*b . Then R^{ω} is rebootable. However, every prefix-closed ω -generator of R^{ω} would contain the letter a, this is a contradiction!

PROPOSITION 2.5: Let R be a rebootable language in Σ^+ . Then R^{ω} is a rebootable ω -language.

Proof: if R is a rebootable language, R is a semigroup and thus $Pref(R^{\omega}) = Pref(R)$. Hence R^{ω} is rebootable.

For the converse, we consider only the regular ω -power languages. Note that regular rebootable ω -power languages may be nondeterministic, as shown by the following example.

Example 2.6: Let R be the regular language $ac (a^* b)^* + a$. As $Pref(R) \subseteq R^+$, $Pref(R^+) R^{\omega} = R^{\omega}$, that is, R^{ω} is rebootable. On the other hand, it is easy to verify that R^{ω} is not a deterministic regular ω -language.

LEMMA 2.7: Let R^{ω} be a deterministic regular ω -language. There exists an integer n such that for each ω -generator G of R^{ω} , Stab $(R^{\omega}) G^n$ is an ω -generator of R^{ω} . Moreover, if \mathcal{A} is a deterministic automaton recognizing R^{ω} then n can be chosen such that n-1 is the number of states of \mathcal{A} .

Proof: For each integer n > 0, $G^n \subseteq \operatorname{Stab}(R^{\omega}) G^n$. Hence $G^{\omega} \subseteq (\operatorname{Stab}(R^{\omega}) G)^{\omega}$. Now, let $\mathscr{A} = (\Sigma, Q, \{s\}, T, \delta)$ be a deterministic automaton Büchi-recognizing R^{ω} , we denote Card(Q) + 1 by *n*. Given $w \in (\operatorname{Stab}(R^{\omega}) G^{\omega})^{\omega}$, we can write $w = u_1 v_1 \ldots u_i v_i \ldots$ where for each *i*, $u_i \in \operatorname{Pref}(R^{\omega})$ and $v_i \in G^n$. As $u_1 v_1 \ldots u_i v_i^{\omega} \in R^{\omega}$, for each *i*, the set

$$Ex \left(\delta \left(\delta \left(s, u_1 v_1 \ldots v_{i-1} u_i \right), v_i \right) \right) \cap T \neq \emptyset$$

where $Ex(\delta(q, x_1 \dots x_n))$ denotes the set $\{q' \in Q : q' = \delta(q, x_1 \dots x_i) \text{ for some } i \text{ in } \{1, \dots, n\}\}$. Hence $w \in R^{\omega}$.

Thus for the deterministic regular ω -power languages, we obtain the following characterization:

PROPOSITION 2.8: Let R^{ω} be a deterministic regular ω -language. The following properties are equivalent:

- (i) R^{ω} is a rebootable ω -language.
- (ii) R^{ω} has a rebootable ω -generator.

Moreover, if \mathbb{R}^{ω} is rebootable and recognized by a given deterministic finite automaton \mathcal{A} , then from \mathcal{A} one can construct a finite automaton recognizing a rebootable ω -generator of \mathbb{R}^{ω} .

Proof: The implication (ii) \Rightarrow (i) is stated in Proposition 2.5. It remains to prove the implication (i) \Rightarrow (ii). In view of Lemma 2.7, for any ω -generator G of R^{ω} , $\operatorname{Pref}(R^{\omega}) G^n$ is an ω -generator of R^{ω} for some n. Furthermore, $\operatorname{Pref}(R^{\omega}) G^n$ is rebootable. Indeed, we have the equality $\operatorname{Pref}(\operatorname{Pref}(R^{\omega}) G^n) = \operatorname{Pref}(R^{\omega})$ and thus the equalities

$$\operatorname{Pref}\left(\operatorname{Pref}\left(R^{\omega}\right)G^{n}\right)\left(\operatorname{Pref}\left(R^{\omega}\right)G^{n}\right) = \operatorname{Pref}\left(R^{\omega}\right)\left(\operatorname{Pref}\left(R^{\omega}\right)G^{n}\right)$$
$$= \left(\operatorname{Pref}\left(R^{\omega}\right)\operatorname{Pref}\left(R^{\omega}\right)\right)G^{n} = \operatorname{Pref}\left(R^{\omega}\right)G^{n}$$

since $\operatorname{Pref}(R^{\omega})$ is equal to the monoid $\operatorname{Stab}(R^{\omega})$. Furthermore, we can construct regular ω -generators of R^{ω} [12]. Hence we can construct regular rebootable ω -generators of R^{ω} .

3. SUFFIX-CLOSED ω-LANGUAGES R[®]

Given an ω -language L, we consider the points of L where one can access while remaining in L, that is, we find the prefixes x of L such that $x^{-1}L \subseteq L$. This set of *cancellable* prefixes is $\{x \in \operatorname{Pref}(L): x^{-1}L \subseteq L\}$ and it is easy to verify that it is equal to $\operatorname{Stab}(^{c}L) \cap \operatorname{Pref}(L)$. We are interested in ω -languages in which every prefix is an access point. Therefore, we investigate the ω languages such that $\operatorname{Pref}(L) \subseteq \operatorname{Stab}(^{c}L)$.

DEFINITION 3.1: Let L be an ω -language in Σ^{ω} . L is said to be suffix-closed if $(\Sigma^*)^{-1}L = L$, that is, if $\operatorname{Suf}(L) = L$.

Let us note that $(\Sigma^*)^{-1} L = L$ is equivalent to $(\operatorname{Pref}(L))^{-1} L = L$ and that the suffix-closed languages are characterized by the fact that $\operatorname{Pref}(L) \subseteq \operatorname{Stab}(^{c}L)$.

Since $Suf(R^{\omega}) = Suf(R) R^{\omega}$, it is immediate that:

LEMMA 3.2: Let R be a suffix-closed language, then R^{ω} is a suffix-closed ω -language.

However, it may happen for some suffix-closed and deterministic regular ω -languages R^{ω} that R^{ω} has no suffix-closed ω -generator, as shown by the following example.

Example 3.3: Let R be the regular prefix-free language a^*ba . As $Suf(R) = R + a + \varepsilon$, $Suf(R) R \subseteq R^+$. Hence, R^{ω} is suffix-closed. R^{ω} is obviously regular. Furthermore, $R^{\omega} = Lim(R^+)$, that is, R^{ω} is deterministic [8]. However,

vol. 26, n° 1, 1992

no ω -generator of R^{ω} is suffix-closed. Indeed every ω -generator would contain a or b. Thus a^{ω} or b^{ω} would belong to R^{ω} , a contradiction!

In other words, the suffix-closed ω -generators do not characterize the regular suffix-closed ω -languages R^{ω} . Instead, they are characterized via suffix-closed languages by the following proposition.

PROPOSITION 3.4: Let R be a language in Σ^+ . The following properties are equivalent:

(i) R^{ω} is suffix-closed.

(ii) Stab (R^{ω}) is suffix-closed.

Proof: Assume that R^{ω} is suffix-closed. Let $u \in \operatorname{Stab}(R^{\omega})$. We have $u R^{\omega} \subseteq R^{\omega}$ and for any suffix u' of u, also $u' R^{\omega} \subseteq R^{\omega}$. Hence $u' \in \operatorname{Stab}(R^{\omega})$. Conversely, as $R \subseteq \operatorname{Stab}(R^{\omega})$, $\operatorname{Suf}(R) \subseteq \operatorname{Stab}(R^{\omega})$. On the other hand $\operatorname{Suf}(R^{\omega}) = \operatorname{Suf}(R) R^{\omega}$, hence $\operatorname{Suf}(R^{\omega}) \subseteq R^{\omega}$.

Remark: If L is not an ω -power language, the fact that Stab(L) is suffixclosed does not imply that L is suffix-closed. Consider $L = a^+ b^{\omega}$ for example.

On the other hand, by definition, the fact that R^{ω} is suffix-closed implies that Stab (${}^{c}(R^{\omega})$) \cap Pref (R^{ω}) is prefix-closed. Unfortunately this last condition is not sufficient. Consider for example $R = ba^{*}$, where Stab (${}^{c}(R^{\omega})$) \cap Pref (R^{ω}) is reduced to the set { ε }. Nevertheless, we shall see that it can be completed to a sufficient condition.

LEMMA 3.5: Let R be a language in Σ^+ . If R^{ω} is suffix-closed then each ω generator of R^{ω} contains a prefix-free ω -generator of R^{ω} . Furthermore each
prefix-free ω -generator of R^{ω} is contained in Stab (°(R^{ω})) \cap Pref (R^{ω}).

Proof: Let G be an ω -generator of R^{ω} . By Lemma 2.2 the language $P = G \setminus G(\operatorname{Stab}(R^{\omega}) \setminus \{\varepsilon\})$ is an ω -generator of R^{ω} . We prove that P is a prefix-free language. Assume that there exist u and $v \in P$ such that uu' = v. As $u' R^{\omega} \subseteq u^{-1}(R^{\omega})$, we have $u' R^{\omega} \subseteq R^{\omega}$, that is, $u' \in \operatorname{Stab}(R^{\omega})$. Now, the definition of P implies that $u' = \varepsilon$. Hence P is prefix-free. Now, for each $u \in P$, $R^{\omega} \subseteq u^{-1}(R^{\omega}) \subseteq \operatorname{Suf}(R^{\omega}) = R^{\omega}$. Hence $u^{-1}(R^{\omega}) = R^{\omega}$, thus

 $P \subseteq \operatorname{Stab}(^{c}(R^{\omega})) \cap \operatorname{Pref}(R^{\omega}).$

In other words, if R^{ω} is suffix-closed, then all minimal ω -generators of R^{ω} are prefix-free languages. This condition is necessary, but not sufficient, consider R = ab for example.

PROPOSITION 3.6: Let R be a language in Σ^+ . The following properties are equivalent:

(i) R^{ω} is suffix-closed.

(ii) $\operatorname{Stab}(^{c}(R^{\omega})) \cap \operatorname{Pref}(R^{\omega})$ is prefix-closed and contains an ω -generator of R^{ω} .

Proof: If R^{ω} is suffix-closed, by Lemma 3.5 Stab(^c(R^{ω})) ∩ Pref(R^{ω}) contains an ω -generator of R^{ω} . Furthermore, let $u \in \text{Stab}(^{c}(R^{\omega}))$ ∩ Pref(R^{ω}) and let $u' \in \text{Pref}(u)$. If $u' \notin \text{Stab}(^{c}(R^{\omega}))$, $u' w \in R^{\omega}$ for some $w \in ^{c}(R^{\omega})$. Since R^{ω} is suffix-closed, this is a contradiction! Hence Stab(^c(R^{ω})) ∩ Pref(R^{ω}) is prefix-closed. Conversely, let G be an ω -generator of R^{ω} , such that $G \subseteq \text{Stab}(^{c}(R^{\omega}))$ ∩ Pref(R^{ω}). We have Suf(G^{ω}) = Suf(G) $G^{\omega} \subseteq (\text{Pref}(G))^{-1} G^{\omega}$. Since Stab(^c(R^{ω})) ∩ Pref(R^{ω}) is prefix-closed, we obtain the inclusion (Pref(G))⁻¹ $G^{\omega} \subseteq G^{\omega}$. Thus $R^{\omega} = G^{\omega}$ is suffix-closed. ■

Example 2.6 shows that regular ω -power languages may be nondeterministic. In contrast to this, for the regular suffix-closed ω -power languages we have the following result.

COROLLARY 3.7: Let R be a regular language in Σ^+ . If R^{ω} is suffix-closed then R^{ω} is a deterministic regular ω -language.

Proof: By Lemma 3.5, $R^{\omega} = P^{\omega}$ for some prefix-free language *P*. Now since *P* is prefix-free, $P^{\omega} = \text{Lim}(P^*)$. Hence R^{ω} is regular and deterministic.

Remark: If L is not an ω -power language L may be suffix-closed, regular and nondeterministic. Consider $(a+b)^* a^{\omega}$ for example.

Now we are able to characterize the regular suffix-closed ω -languages R^{ω} via their ω -generators.

PROPOSITION 3.8: Let R be a regular language in Σ^+ . The following properties are equivalent.

(i) R^{ω} is suffix-closed.

(ii) $R^{\omega} = G^{\omega}$ for some language G such that Suf(G)G = G.

Moreover, if \mathbb{R}^{ω} is suffix-closed and recognized by a given deterministic finite automaton \mathcal{A} , then from \mathcal{A} one can construct a finite automaton recognizing a suffix-closed ω -generator of \mathbb{R}^{ω} .

Proof: If R^{ω} is suffix-closed, by Lemma 2.7 the language $G = \operatorname{Stab}(R^{\omega}) R^n$ is an ω -generator of R^{ω} for some computable integer n > 0. Now G satisfies $\operatorname{Suf}(G) G = G$. Indeed $G \subseteq \operatorname{Stab}(R^{\omega})$. Hence, in view of Proposition 3.4, $\operatorname{Suf}(G) \subseteq \operatorname{Stab}(R^{\omega})$. Thus $\operatorname{Suf}(G) G \subseteq \operatorname{Stab}(R^{\omega}) G = G$ and so $\operatorname{Suf}(G) G = G$. Furthermore an automaton recognizing G can be constructed. If $R^{\omega} = G^{\omega}$ for some language G such that $\operatorname{Suf}(G) G = G$, R^{ω} is suffix- closed $\operatorname{Suf}(G^{\omega}) = \operatorname{Suf}(G) G^{\omega}$.

4. LEFT ω-IDEALS R^ω

Now we consider the ω -languages which are both rebootable and suffixclosed. They are characterized by $\operatorname{Pref}(L)\operatorname{Suf}(L) = L$. In fact, we prove that they are nothing but the absolutely closed ω -languages studied in [7]. Moreover in the case when $L = R^{\omega}$, they are exactly the left ω -ideals [7] of the form R^{ω} . Then these ω -languages R^{ω} are characterized, first by using the properties of being rebootable and suffix-closed, then via ideals of Σ^* , finally using the syntactic monoid of R^{ω} in the sense of [1].

DEFINITION 4.1: [7] An ω -language L is said to be a left ω -ideal in Σ^* if $\Sigma^* L = L$.

That is the equality $\operatorname{Stab}(L) = \Sigma^*$ characterizes the left ω -ideals. Since $\operatorname{Stab}(L)$ is a monoid, one can also note that L is a left ω -ideal iff $\operatorname{Stab}(L)$ is a left-ideal. Moreover, as in the case of languages, L is a left ω -ideal in Alph(L) iff ^cL is a suffix-closed ω -language.

DEFINITION 4.2: An ω -language L is said to be absolutely closed in Σ^* if L is both a left ω -ideal in Σ^* and a suffix-closed ω -language.

The following proposition characterizes the ω -languages which are both rebootable and suffix-closed.

PROPOSITION 4.3: Let L be an ω -language such that $\Sigma = \text{Alph}(L)$. The following properties are equivalent:

(i) $\operatorname{Pref}(L)\operatorname{Suf}(L) = L$.

(ii) L is absolutely closed in Σ^* .

Proof: Assume that Pref(L) Suf(L) = L. As $\varepsilon \in Pref(L)$, L is suffix-closed. Now, given a letter x in Σ , since L is suffix-closed, $xw \in L$ for some $w \in \Sigma^{\omega}$. And since L is rebootable, $x \in Stab(L)$. Now as Stab(L) is a monoid, we obtain $Stab(L) = \Sigma^*$. That is L is a left-ideal in Σ^* and therefore L is absolutely closed in Σ^* . The converse is obvious. ■

Hence every ω -language L which is both rebootable and suffix-closed, is a left ω -ideal in $(Alph(L))^*$. Conversely, all left ω -ideals L are rebootable since $\operatorname{Stab}(L) = \Sigma^*$ and $\Sigma^* L = L$. However, they are not suffix-closed in general. For example, $L = (a+b)^* ba^{\omega}$ is a left ω -ideal with $a^{\omega} \in \operatorname{Suf}(L) L$. In contrast to this, the left ω -ideals of the form R^{ω} are always suffix-closed as stated in the following lemma.

LEMMA 4.4: Let R be a language in Σ^+ . If R^{ω} is a left ω -ideal then R^{ω} is suffix-closed.

Proof: For every ω -word w in $(\Sigma^*)^{-1} \mathbb{R}^{\omega}$, there exists a word $u \in \Sigma^*$ such that $uw \in \mathbb{R}^{\omega}$. Hence there exist a word $v \in \Sigma^*$ and an ω -word $w' \in \Sigma^{\omega}$ such that w = vw', $uv \in \mathbb{R}^+$ and $w' \in \mathbb{R}^{\omega}$. As \mathbb{R}^{ω} is a left ω -ideal, one has $vw' \in \mathbb{R}^{\omega}$.

PROPOSITION 4.5: Let R be a language in Σ^+ . The following properties are equivalent:

- (i) R^{ω} is a left ω -ideal.
- (ii) R^{ω} is rebootable and suffix-closed.
- (iii) $\operatorname{Stab}(R^{\omega})$ is factor-closed.

Proof: If R^{ω} is a left ω -ideal, R^{ω} is rebootable. Moreover R^{ω} is suffixclosed by Lemma 4.4. On the other hand, R^{ω} is rebootable and suffix-closed iff Stab (R^{ω}) is factor-closed by Proposition 2.4 and Proposition 3.4. Finally, If R^{ω} is rebootable and suffix-closed, R^{ω} is a left ω -ideal by Proposition 4.3.

Remarks: (1) If R^{ω} is a left ω -ideal, then ${}^{c}(R^{\omega})$ is also a left ω -ideal. The converse does not hold. Consider R = a + ba for example.

(2) If L is not an ω -power language, (iii) does not imply (i). Consider $L = a^* b^{\omega}$ for example.

When R^{ω} is suffix-closed, for each ω -generator G of R^{ω} , suf (G^+) is contained in Pref (G^+) . Hence, we have the following lemma.

LEMMA 4.6: Let R^{ω} be a suffix-closed ω -language. Then for every ω -generator G of R^{ω} , we have Fact $(G^+) = \operatorname{Pref}(G^+)$.

LEMMA 4.7: Let R be a regular language in Σ^+ . If R^{ω} is a left ω -ideal then R^{ω} is a deterministic regular ω -language.

Proof: Since the left ω -ideals R^{ω} are suffix-closed ω -power languages, Corollary 3.7 gives the results.

Remark: Some regular left ω -ideals may be nondeterministic. For example, consider $\Sigma^* a^{\omega}$.

Now, we can state characterizations for the regular left ω -ideals R^{ω} using their ω -generators.

PROPOSITION 4.8: Let R be a regular language in Σ^+ . Then the following properties are equivalent:

(i) R^{ω} is a left ω -ideal.

(ii) $R^{\omega} = G^{\omega}$ for some language G such that Fact (G) G = G.

(iii) R^{ω} as a left ideal for ω -generator.

vol. 26, n° 1, 1992

(iv) R^{ω} as an ideal for ω -generator.

Moreover, if \mathbb{R}^{ω} is a left ω -ideal and recognized by a given deterministic finite autamaton \mathscr{A} , then from \mathscr{A} one can construct a finite automaton recognizing an ω -generator G of \mathbb{R}^{ω} such that $\operatorname{Fact}(G)G = G$, G is a left ideal or G is an ideal.

Proof: (i) \Rightarrow (ii) By Proposition 4.5, R^{ω} is rebootable and suffix-closed. Then Corollary 3.7 implies that R^{ω} is a deterministic regular ω -language. Hence $R^{\omega} = G^{\omega}$ for some language G such that Pref(G)G = G by Proposition 2.8. Now Lemma 4.6 gives the implication.

(ii) \Rightarrow (i) Fact (G) G = G implies Suf (G) G = G. Hence R^{ω} is a suffix-closed ω -power language, and thus it is a regular deterministic ω -language. Then the equality Pref (G) G = G implies that the ω -language R^{ω} is rebootable.

(i) \Rightarrow (iii) By Proposition 2.7, each left ω -ideal R^{ω} has a left-ideal $\Sigma^* I$ for ω -generator.

(iii) \Rightarrow (iv) This implication comes from the equality $(\Sigma^* I)^{\omega} = (\Sigma^* I \Sigma^*)^{\omega}$.

(iv) \Rightarrow (i) If $R^{\omega} = I^{\omega}$ for some ideal *I*, then R^{ω} is a left ω -ideal.

Let us now consider the minimal ω -generators of the left ω -ideals R^{ω} . Since Stab $(R^{\omega}) = \Sigma^*$, every minimal ω -generator of R^{ω} is a prefix code. More precisely, in the case when R^{ω} is the whole left-ideal Σ^{ω} , the minimal ω -generators of R^{ω} are exactly the finite maximal prefix codes of Σ^* , otherwise we have:

PROPOSITION 4.9: Let R^{ω} be a left ω -ideal such that $R^{\omega} \neq \Sigma^{\omega}$. The minimal ω -generators of R^{ω} are exactly the infinite maximal prefix codes ω -generating R^{ω} .

Proof: Since Stab $(R^{\omega}) = \Sigma^*$, every minimal ω -generator G of R^{ω} is a prefix code. It remains to prove that G is maximal and infinite. Assume that G is not maximal, that is, G+u is a prefix code for some $u \notin G$. As $uv^{\omega} \in R^{\omega}$ for any v in R, u is a prefix of g or g is a prefix of u for some g in G, this is a contradiction! Furthermore G is infinite otherwise R^{ω} is closed [8] and then it is the whole ω -language Σ^{ω} .

Conservely the fact that C is a maximal prefix code, does not imply that C^{ω} is a left ω -ideal. For example, $C=b+a^*a$ is an infinite maximal prefix code. However C^{ω} is not a left ω -ideal, indeed $b^{\omega} \in C^{\omega}$ and $ab^{\omega} \notin C^{\omega}$. For the semaphore codes [3], which are particular maximal prefix codes, we have the following characterization.

PROPOSITION 4.10: Let R be a language in Σ^+ . The following properties are equivalent:

- (i) R^{ω} is a left ω -ideal.
- (ii) $R^{\omega} = C^{\omega}$ for some semaphore code C.

Proof: The implication (i) \Rightarrow (ii) proceeds from Proposition 4.9. Conversely, let C be a semaphore code. $C\Sigma^*$ is a left ω -ideal and $(C\Sigma^*)^{\omega} = C(\Sigma^* C\Sigma^*)(C\Sigma^*)^{\omega}$ which is contained in $C(C\Sigma^*)(C\Sigma^*)^{\omega}$. Hence $(C\Sigma^*)^{\omega} \subseteq C^{\omega}$, thus $(C\Sigma^*)^{\omega} = C^{\omega}$.

Remark: It may happen that some minimal ω -generators of an ω -ideal R^{ω} are not semaphore codes.

We end this part with a characterization of the regular left ω -ideals R^{ω} via the syntactic monoid [1] of R^{ω} . Note that the syntactic monoid of a left ω -ideal R^{ω} , taken in the sense of [7] is trivial.

LEMMA 4.11: Let I be a regular ideal in Σ^* . Then I is contained in a class of $\mathcal{GM}(I^{\omega})$.

Proof: Let v and v' be two words $\in I$. For every u, $u' \in \Sigma^*$ and $w \in \Sigma^{\omega}$, $uvw \in I^{\omega}$ iff $uv' w \in I^{\omega}$ and $u(u'v)^{\omega}$ and $u(u'v')^{\omega} \in I^{\omega}$. Thus v and v' are syntacticly equivalent.

Now we have the following result which emphasizes that there exists always one greatest ideal ω -generating I^{ω} , while I^{ω} has not necessarily one greatest ω -generator [12].

PROPOSITION 4.12: Let I be a regular ideal in Σ^* . Then $\pi(I)$ is the zero in $\mathcal{SM}(I^{\omega})$ and $\pi^{-1}(\pi(I))$ is the greatest ideal ω -generating I^{ω} .

Proof: By definition, $\pi(I)$ is the zero in $\mathscr{SM}(I^{\omega})$. Moreover $\pi^{-1}(\pi(I))$ is an ideal and as $I \subseteq \pi^{-1}(\pi(I))$, $I^{\omega} \subseteq (\pi^{-1}(\pi(I)))^{\omega}$. On the other hand for each $w \in UP[(\pi^{-1}(\pi(I)))^{\omega}]$, $w = uv^{\omega}$ for some u and $v \in \pi^{-1}(\pi(I))$, since $\pi^{-1}(\pi(I))$ is an ideal. Then u and v are syntacticly equivalent with any word in I. Hence $uv^{\omega} \in I^{\omega}$. Now as I^{ω} and $(\pi^{-1}(\pi(I)))^{\omega}$ are regular ω -languages, we have the equality $I^{\omega} = (\pi^{-1}(\pi(I)))^{\omega}$ [5].

PROPOSITION 4.13: Let R be a regular language. The following properties are equivalent:

(i) R^{ω} is a left ω -ideal.

(ii) $\mathcal{SM}(R^{\omega})$ have a zero f and f is such that $\pi^{-1}(f)$ is an ω -generator of R^{ω} .

vol. 26, n° 1, 1992

Proof: If R^{ω} is a left ω -ideal, $R^{\omega} = I^{\omega}$ for some regular ideal *I*. Hence, $\pi(I)$ is a zero in $\mathcal{SM}(R^{\omega})$ and $\pi^{-1}(\pi(I))$ is an ω -generator of R^{ω} . Conversely, if *f* is the zero of $\mathcal{SM}(R^{\omega})$, R^{ω} is left ω -ideal since $\pi^{-1}(f)$ is a left ω -ideal.

ACKNOWLEDGEMENTS

The authors are very grateful to two referees. Their suggestions and corrections have greatly improved the presentation of the results.

REFERENCES

- 1. A. ARNOLD, A Syntactic Congruence for Rational ω-languages, *Theoret Comput. Sci.*, 1985, 39, pp. 333-335.
- 2. A. ARNOLD and M. NIVAT, Comportements de processus, *Rapport* interne, L.I.T.P., 1982, pp. 82-12.
- 3. J. BERTSEL and D. PERRIN, Theory of Codes, Academic Press, New York, 1985.
- 4. L. BOASSON and M. NIVAT, Adherences of Languages, J. Comput. System Sci., 1980, 20, pp. 285-309.
- 5. J. R. BUCHI, On Decision Method in Restricted Second-Order Arithmetics, Proc. Congr. Logic, Method. and Phulos. Sci., Stanford Univ. Press, 1962, p. 1-11.
- 6. S. EILENBERG, Automata, Languages and Machines, A, Academic Press, New York, 1974.
- 7. H. JÜRGENSEN and G. THIERRIN, On ω-languages Whose Syntactic Monoid is Trivial, J. Comput. Inform. Sci., 1983, 12, pp. 359-365.
- 8. L. H. LANDWEBER, Decision Problems for ω-Automata, Math. Syst. Theory, 1969, 3, pp. 376-384.
- 9. M. LATTEUX and E. TIMMERAN, Finitely Generated ω-Languages, Inform Process. Lett., 1986, 23, pp. 171-175.
- 10. R. LINDER and L. STAIGER, Algebraische Codierungstheorie-Theorie der sequentiellen Codierungen, Akademie-Verlag, Berlin, 1977.
- 11. I. LITOVSKY, Générateurs des langages rationnels de mots infinis, *Thèse*, Univ. Lille-I, 1988.
- 12. I. LITOVSKY and E. TIMMERMAN, On Generators of Rational ω-Power Languages, *Theoret. Comput. Sci.*, 1987, 53, pp. 187-200.
- 13. R. MACNAUGHTON, Testing and Generating Infinite Sequences by a Finite Automaton, *Inform. Control*, 1966, 9, pp. 521-530.
- 14. L. STAIGER, A Note on Connected ω-languages, *Elektron. Inform. Kybernetik*, 1980, 16, 5/6, pp. 245-251.
- 15. L. STAIGER, Finite State ω-Languages, J. Comput. System Sci., 1983, 27, pp. 434-448.
- 16. L. SAIGER, On Infinitary Finite Length Codes, Theore. Inform. Appli. 1986, 20, 4, pp. 483-494.
- 17. L. STAIGER, Research in the Theory of ω-Languages, *Elektron. Inform. Kybernetik*, 1987, 23, 8/9, pp. 415-439.