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THE LIMITING COMMON DISTRIBUTION OF TWO LEAF
HEIGHTS IN A RANDOM BINARY TREE (*)

by W. GUTJAHR (*) and G. Ch. PFLUG (X)

Communicated by J. E. PIN

Abstract. - Let $n be the family of extended binary trees with n internai nodes. Assume that
each teâ$n has equal probability. We compute the asymptotic common distribution of the heights
of leaf i resp. j (where the leaves are enumerated from left to right) as i, j and n tend to infinity,
such that i/n resp. j/n tends to x resp. y, 0<x<y<\. As a corollary, the asymptotic covariance of
the two heights is determined. Applications are indicated.

Résumé. — Soit Mn la famille des arbres binaires à n sommets. On suppose que chaque arbre
teâ$n est de même probabilité. Nous déterminons la distribution asymptotique commune des hauteurs
des feuilles i et j {les feuilles étant énumérées de gauche à droite) quand i, j , n -• oo, ainsi que
i/n —> x, j/n —*• y (0 < x < y < 1). Comme corollaire, la covariance asymptotique des deux hauteurs est
déterminée. Des applications sont indiquées.

1. INTRODUCTION AND DEFINITIONS

Random binary trees occur as input models for the performance analysis
of algorithms. Parameters of interest of particular algorithms often depend
on the heights of one or several leaves of the input tree. (For this point of
view, see e. g. [10, 2, 7, 8].) The asymptotic distribution of one single leaf
height in a binary tree was recently identified by the authors as a Maxwell
type distribution [5], The purpose of this paper is to détermine the two-
dimensional asymptotic distribution of two leaf heights z, j , from which the
calculation of covariances and conditiönal expectations is easily possible.

This common distribution turns out to be derivable from three independent
Rayleigh-distributions, which are known as the speed distributions of thermo-
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2 W. GUTJAHR, G. CH. PFLUG

dynamic particles in a two-dimensional space, whereas the Maxwell distribu-
tion describes the speed distribution of such particles in the three-dimensional
space. These analogies with statistical mechanics are somewhat surprising; an
explanation for them has not y et been found.

Let Mn be the family of extended binary trees with n internai nodes n +1
leaves. We assume throughout this paper that all trees te$n have equal
probabilities.

Consider a special tree te0iln. The leaves of t can be labelled, from left to
right, with the numbers 0, . . ., n. Let nt (z) dénote the (uniquely determined)
path Connecting the root with the leaf labelled with z, and let ht (z), called
the height of i, dénote the number of internai nodes on nt(i).

The number of trees te$n with ht(i) = k will be denoted by a(i, k, n), and

c * = •-—p-i
dénotes the Catalan numbers. Thus, P [ht(i) = k\ te@n} = a(ii k, n)/cn.

In this paper, the limiting behaviour of the probabilities

as n, i, j - • oo and i/n -• x, j/n -+y(0<x<y<l) will be investigated.

2. THE COMMON DISTRIBUTION OF TWO HEIGHTS

We start this section with some further définitions:

Let i9j be leaves of t(i<j). Set nlt(i,j): = nt(i), n3t(ij): = nt(j), and let
%2,t(hj) dénote the (uniquely determined) path from leaf / to leaf ƒ

The number of internai nodes on the path nm t (i, j) will be denoted by
hmtt(i,j)(m=l,2,3),

We make the foliowing convention concerning the index m: Incréments of
m are always cyclic incréments, i. e.

m+p means (rn+p- l)(mod 3)+1 O^O). (2.1)

Obviously, for fixed i and j the following inequalities hold:

hm,t(ij)^hm+ltt(i,j) + hm + 2tt(ij) (m=l,2,3). (2.2)

Informatique théorique et Applications/Theoretical Informaties and Applications



DISTRIBUTION OF LEAF HEIGHTS IN A RANDOM BINARY TREE 3

We call them "triangle inequalities", since they require that the heights
^i,r ^2, f> ̂ 3, t c a n t*e the lengths of the sides of a triangle.

Furthermore, consider the sub-paths nmtt(Uj) of nm t(i,j), containing ail
nodes which do not lie on any of the other two paths (m= 1, 2, 3):

V , ( h j) ' = Km,t(h j)\nm +ltt0', j) ( m - 1, 2, 3) . (2.3)

The number of internai nodes on %mt(î,j) will be denoted by sm t(i,j),

Theorem 1 establishes the asymptotic common distribution of the three
numbers smt(i,j)(rn= 1, 2, 3). As a corollary, the asymptotic common distri-
bution of the three heights hm t(i,j) (m= 1, 2, 3) will be derived; Computing
the marginal distribution for m = 1 and 3 yields the asymptotic common
distribution of ht(ï) and ht(j% and Computing the marginal distribution for
m — 1 yields the asymptotic distribution of ht (i).

For the proof of Theorem 1, it is convenient to use an alternative définition
of an extended binary tree:

An extended binary tree of size n is a plane tree with n internai nodes,
each of degree 3, and «.+ 2 leaves, where one of the leaves is marked.

By removing the marked leaf and the incident edge, and marking the other
node which was incident with this edge as the root of the remaining tree, we
get an extended binary tree in the usual sensé. It is clear that the correspon-
dence is one-to-one.

The paths nm t(i,j) partition the given tree / into three subtrees tu t2, t3:

n+1

Each internai node v lying on one of the paths ftm t (ij) is counted to the
subtree tm, if there is an edge leading from v to the area of tm(m^ 1, 2, 3);
each of the leaves i,j, n+\ is counted to both adjacent subtrees. Then, by

vol 26, n° 1, 1992



4 W. GUTJAHR, G. CH. PFLUG

marking the leaves i,j\ resp. «+1, the subtrees tl9 t2, t3 become extended
binary trees in the sense of the above définition.

Example 1; The tree

2 i=3 4 5

is partitioned into the following subtrees:

10

3 4 5

t2 t 3

From the number of leaves in each subtree it can be concluded that
tm(m=l, 2, 3) has im internai nodes with

(2 •4)

Informatique théorique et Applications/Theoretical Informaties and Applications
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The proof of Theorem 1 relies on the knowledge of the height distribution
of leaf 0 (the leftmost leaf):

Ruskey [12] shows

with

fc Vkl
a(U K *)= I . \a(0,j, /MO, k-j, n-l)

j=o\jJ

, , , k /2n-k'
*(0, *,«) = - i.

2n—k\n—k I

(2.5)

(The last formula was generalized in [13] to the case of /-ary trees.)
In [5], the authors approximate the probability a(0, k, n)/cn that leaf 0 has

height k asymptotically:

LEMMA 1:

a(O,k,n)_ k

To each a>0 there are constants N and M, such that

\R(k,n)\SMk/n, Vn^N, k^ajm D

Now we are ready to prove the announced theorem.

THEOREM 1: Let (sf\ (j(2
n)), {sf\ (/(n)) and (fn)) be séquences of positive

integers with

(m=l,2,3),

-̂  x, fn)/n - (2.6)

Then

where x1: = x, x2:=
:y — x,

in a cyclic sensé.
: = \~ y, and the incréments of m are interpreted

vol. 26, n° 1, 1992



6 W. GUTJAHR, G. CH. PFLUG

Proof: Dénote by A {ij, sl9 s2, s3, n) the number of trees te08n with
sm,t(hj) = sm(m=l> 2, 3), and classify these trees according to the numbers
lm of edges turning off from nm t(iJ) in the direction of the subtree
/M(/n=l,2,3).

There are m possibilities to select, from the sm nodes, lm nodes with an

edge turning off in the indicated (counter-clockwise) direction. The remaining
sm~lm nodes have edges turning off in the direction of tm + 2, i.e. in clockwise
direction.

That border of the tree tm which is formed by the path nmt{i,j), contains
'm + CWi- 'm+i) internai nodes. So, for fixed lm9 sm (m=l, 2, 3), ij and n,
there are a(0, lm + sm+1 — lm+u im) possibilities to choose a tree tmi where im

is given by (2.4).

Therefore,

A {ij, sl9 s2, s3, n)
sl S2 5 3 3

= 1 1 z n ! •«'

and using Lemma 1, we can write this as

3 -, 3

m=l, 2, 3

. (2.9)

in, f ] m

m=lUmJ
Therein, f ] m [l/2]Sm is the probability function of the common distri-

U
bution of three independent, B (sm, l/2)-distributed random variables
Lm(m= 1, 2, 3), where B(n, p) dénotes the Biomial distribution. The sum in
(2.9) may be interpreted as the expected value of

y ^ Y Î Ï (Lm + Sm+1~ A w + l ) i p / r , p r • \ \
X e X P ~ — + K l L m + ^ + r L m + l > lm) \'

Informatique théorique et Applications/Theoretical Informaties and Applications



DISTRIBUTION OF LEAF HEIGHTS IN A RANDOM BINARY TREE 7

We normalise the variables Lm by defîning Zm : = Lm/sm, and consider the
distributions \im of Zm, which are linear transforms of B(sm, 1/2).

Taking account of the dependence on n, we provide the symbols sm, im, jm9

etc. with upper index n and assume (2.6).

By the use of the probability meausres u\n), n(
2
B), |i(3

n), and by the substitutions

(o*? -* om, xW ->xm) (m = 1, 2, 3),

the sum in (2.9) can be représentée as

n312 f f f ' F„ (zl5 z2, z3) dp? (zx). . . 44n) (z3) (2 -10)
Jo Jo Jo

with

3

F„(ZU Z29 Z3):= [ ] ^m^m+^m+lCi-^m+l))

xexpl - -

in))|- (2.11)

Because of s$ -^co for n —> oo and the Law of Large Numbers, Zm —» 1/2
in probability or

rt?-81/2 weakly (/n=l,2,3), (2.12)

where ôz dénotes the point mass in z.

Obviously a * : = sup a^} < oo and x ~ : = inf x^} > 0 for sufficiently large N,

and thus for m = 1, 2, 3

Therefore, the remainder estimation of Lemma 1 can be applied to (2.11):
The sum of the three remainder terms

n (o£> zm + aj;>+ x (1 - zm+,)), nx%) (wi = 1, 2, 3)

vol. 26, n° 1, 1992



8 W. GUTJAHR, G. CH. PFLUG

in (2.11) is bounded by M.n~1/2 with some constant M.

A rather tiresome, but quite straightforward estimation shows then that

Fn(zu z2, z3)-F(z l s z2, z 3 ) ^ 0 (2.13)

uniformly on Q: = [0, l]3, where

3

1, Z2>
 Z3)'= I I (Gmï

m = l

( 2

Let |i (n): = u(
1
n)(x)u2

n)®u(3n) dénote the product measure of the measures u.^\
and let 5 (z l>Z2tZ3) dénote the point mass in (z1? z2, z3). Then by (2.13), (2.12)
and the fact that F is continuous and bounded on g,

- f
J<2

2, 1/2)

FdÔ
( 1 / 2 i l / 2 j l / 2 )

0.

So (2.10) is asymptotically equivalent to

} <2l5>

Inserting (2.15) for the sum in (2.9), dividing the expression by cn and
applying Stirling's formula to the Catalan numbers yields the assertion. D

Remark 1; An inspection of the proof of Theorem 1 shows the following:
If the séquences a ^ in (2.6) depend on the parameter a^(a1, a2, a3), and
s{^{a)ljn^<jm uniformly in a cube oeQc = [0, C]3(m=l, 2, 3), then the
convergence of (2,13) is uniform for a e g c , and as a conséquence also the
convergence of (2.7) is uniform for oeQc. In particular, this holds for

•
COROLLARY 1: The limiting common distribution of the normalized heights

hm,t(iJ)isJn(m=\, 2,3) for i, j9 n^>co, i/n-+x,j/n->y ( 0 < X < ^ < 1 ) , hos

Informatique théorique et Applications/Theoretical Informaties and Applications



DISTRIBUTION OF LEAF HEIGHTS IN A RANDOM BINARY TREE 9

the density function

!

x.y(w l 9 vv2, w3) =
=l, 2, 3),

(2.16)

0,

(xu x2, x3 as in Theorem 1).

Proof: For a triple (wl3 w2, w3) not satisfying the triangles inequalities

2 (m=\, 2, 3), (2.17)

the asymptotic probability density is obviously zero. Assume now that (2.17)
is fulfilled. It is easy to see that

-[hmjî{iJ

(m=l,2,3) .

(2.18)

So if for n -> oo

then the numbers

(rn= 1,2, 3),

satisfy the condition s^j/n -> crm^O of theorem 1 with

c - = I ( W -w +w ) (TO=1 2 3) (2.19)

The équations (2.19) are equivalent to

vfm=am+am + 1 (m=l,2,3) . (2.20)

By Theorem 1 and Remark 1 we find that the distribution function

P { V , (tn\ Jin))ijn ^am (m - 1, 2, 3) 1

vol. 26, n° 1, 1992
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converges for every o = (o1, a2, a3)(am^0), and the limiting distribution
function yields the asymptotic probability density

i a2, a3) = - L - n x-^2(am + a m + 1 )ex P r - ( a - | C T - + t ) | (2.21)
256 | 16 J

A linear transformation of the density yx y with respect to (2.20) establishes
the result. •

Remark 2: If Sm, resp. Hm(m=l, 2, 3) are random variables distributed
according to the limiting distribution of smt(ij)//n, resp. hmtt{ij)j/h
(m= 1, 2, 3), then from (2.21), resp. (2.16), the moments

can be computed. In gênerai, the limit of moments of distributions can be
larger than the corresponding moment of the limiting distributions. However,
it turns out that the random variables

n

are uniformly integrable with respect to n. (The proof must be omitted hère
for the sake of brevity). As a conséquence, the expected values of (2.23)
converge to corresponding expected values (2.22). D

Remark 3/ The probability density

Sx (w)= const. w exp ( —

appearing as a factor of yXi y (wu w2i w3) in (2.16) is the density of a Rayleigh
distribution (special case c = 2 of a Weibull distribution, see [6], p. 251) with
parameter OL = 4/X^. Thus we can —to each given x and y — simulate the
normalized heights wx, w2, w3 in the following way:

(1) Draw values wu w2, w3 independently from each other, where wm is
Rayleigh-distributed with parameter a = 4 lxm (m=\, 2, 3).

Informatique théorique et Applications/Theoretical Informaties and Applications
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(2) If the drawn values satisfy the triangle inequalities (2.17), accept them;
otherwise, reject them and go to (1).

We observe the noticeable fact that the random variables wl9 w2, w3 depend
from each other only by the condition that they must satify the triangle
inequalities. •

COROLLARY 2: The limiting common distribution of the normalized heights
ht (ï)I^Jn and ht (j)I^Jn for i, j \ n -* oo, i/n -> x, j/n -• y (0 < x <y < 1) has the
density fonction

( u2\ ( v2

xexp - — - .exp - :
lôxj V 16(1-7)

f / (u-v)2 \ ( {u + v)2 W _ ̂ ^
exp - - i — -exp - - ^ —\ \. (2.24)

Proof: The triangle inequalities (2.17) are equivalent to

| wx — w3 | ̂  w2 ̂  Wj + w3.

So the density of the marginal distribution of (wu w3) is given by

\ W1-W3 |

A short calculation and setting u : = wu v : = w3 yields the density x,, y (u, v)
above. D

COROLLARY 3: The limiting distribution of the normalized height ht(i)//n
for i, n -> oo, i/n —• x (0<x< 1), has the density function

(2.25)

For k^.0,

vol. 26, n° 1, 1992
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In particular,

ra4^R (2-27)

Var I - ^ -» (24 - 64/w) x (1 - JC). (2.28)

Proof: (2.25) is obtained from (2.24) by computing the marginal distribu-
tion

f 0

Jo

Computing the Ar-th moment about the origin of the distribution (2.25)
yields the right hand side of (2.26). Because of Remark 2, this moment of
the limiting distribution is equal to the limit of the moments on the left hand
side of (2.26). D

The density (2.25) is that of a Maxwell distribution, i. e. the distribution
of JX\ + X\ + X\9 where Xt are independently normally distributed (see [1],
pp. 32, 48). In [5], the authors dérive the assertions of Corollary 3 by
the considération of only one leaf i. Result (2.27) was already found by
Kirschenhofer in [9].

3. THE COVARIANCE OF TWO HEIGHTS

For abbreviation, we set C7(n) : = ht (i)j/n, F(n) : = ht (j)lJn.

Then by Remark 2, for i9j9 n -> GO, ijn -*x,j/n -*y(0<x<y< 1),

Jo Jo
'uvxXty(u9v)dudv9 (3.1)

where xxy is given by (2.24). With a medium amount of computation effort,
the above double intégral can be solved:

(3.2)

where, as in Theorem 1, x1 = x, x2=y — x and x3= 1—y.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Combining (3.2) with (2.27) yields:

COROLLARY 4:

Cov —1(3 xx x3 + x2) arctan

L
- x 3 ) ] . D (3.3)

If x2 -> 0, (3.3) leads again to (2.28).

(3.3) also enables us to compute the asymptotic variance of the random
variable sltt(i,j) defined in Section 2:

By(2.18),

*i.. (U) = \ (A, (0 - K, (h J) + K U) " 1 ).

E (2 j l f , {UJ) + 1) = E(A, (0) - E (A2i, (rj)) + E (h,

(3-4)

(3 .5)

and

Var(2jM(i ,y)+l)

= Var {h, (i))+Var (A2>, (i,y-)) + Var (A, (j))

+ 2 [Cov (A, (0, h, (j)) - Cov (ht (i), h2t, (i,j)) - Cov (ht (j), h^, (i, y))]. (3.6)

By a (j+ l)-step cyclic re-numeration of the leaves of teâ$n, we find

and

(For details ^ee [3], Proposition 2.1.)

Using similar re-numerations of the leaves, one obtains

Cov {h, (i), A2i, (/, y)) = Cov (A, (0, At (n + i -y+ 1)),

Cov (A, (y), A2i, (i, j)) = Cov (A, 0'), K (j- i- 1)).

Now assume again i(n)\n -> x, 7<n)/« -» ƒ •

vol. 26, n° 1, 1992
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Then with (3.5), (3.7), (2.27) and the abréviations x1: = x, x2:=y — x,
x3: = l-y, am: = v / j c m ( l -x j ( /w=l , 2, 3), one finds

[ç (fin) jin)\~\ A

SutVJ ^ U - ^ ( a i - t t 2 + a3). (3.11)

With (3.6), (3.8)-(3.10), (2.28), (3.3) and the additional abréviation
P : = /x1 x2 x2, we compute

xarctan — h 4 a m + 1 a m + 2 - — - . (3.12)
W J n

Note that sx t(i,j) can be interpreted as the height of the root of the
(uniquely determined) binary subtree tu} of t with minimal height, containing
all leaves z, z + 1, . . ., j .

4. CONDITIONAL PROBABILITIES

Consider two random variables U, V distributed according to the limiting
common distribution given by CoroUary 2. Then the density of the conditional
distribution of V, given U=u fixed, can immediately be computed from
(2.24) and (2.25):

1

4 At

u2 \ f v2

XexP\TT7, : exP
1 6 ( 1 - x ) / V 1 6 ( 1 -

exp(- -?^Vex P ( - -^-^- )I (4.1)

Asymptotically, the subtree tr on the right hand side of the path nt (x fh)
contains n/(l —x) internai nodes, and the leaf x /n, resp. y^/n, of / is labelled

Informatique théorique et Applications/Theoretical Informaties and Applications



DISTRIBUTION OF LEAF HEIGHTS IN A RANDOM BINARY TREE 15

with the number 0, resp. (y-x)j(\-x) in tr. So we may expect that

^,y(v\u) = x0Ay_x)ia_x)(v(l-x)-^\u(l-xr^).(l~x)-^\ (4.2)

and this can indeed be verified from (4.1).

Surprisingly enough, it turns out that the conditional distribution (4.1)
already suffices for the computation of the common asymptotic distribution
of more than two heights:

Consider k leaves ix, . . ., ik and assume iu . . ., ik, n —• oo with

ijn —* xu . . ., ijn -• xk, 0<xx < . . . <xk< 1.

Then, as it will be shown in a forthcoming paper, the normalized heights
(ht(il9 ri)//n, . . ., ht(ik9 n)//n) converge in probabihty to limiting random
variables (U1, . . ., Uk) with the following Markov property:

(4.3)

Thus (4.1) détermines the common distribution of an arbitrary number of
heights.

Finally, we remark without proof that the Markovian process given by
(4.3) and (4.1) is identical with the process /B1 (x)2 + B2(x)2 + B3(x)2,
where Bu B2, B3 are independent Brownian bridges on [0, 1]. This process is
also known under the name of Brownian excursion.

So we can say that the asymptotic contour of a random binary tree is
described by the distance from the starting point of a Brownian particle in
U3, on the condition that it returns to the starting point.

5. APPLICATIONS

Since binary trees belong to the most frequently used data structures, there
are a number of possible applications of the results of Section 2-3 in Computer
Science. We mention two of them:

(1) A straightforward application is the analysis of stack oscillations during
level order traversai of a binary tree t, which is given by the following

vol. 26, n° 1, 1992



16 W. GUTJAHR, G. CH. PFLUG

recursive procedure: Visit the root —traverse the left subtree — visit the root-
traverse the right subtree - visit the root (see [8], pp. 82 f).

The size of the needed stack corresponds to the recursion depth of the
procedure.

Then the so-called MAX-turns (see [7]) m,(0), mf(l), . . ., Le. the local
maxima of the function describing the stack size, are identical to the heights
ht(0)9 Ki\\ . . . of the leaves of t. We can state the result that level order
traversai of a binary tree leads to Maxwell-distributed MAX-turns of the
stack, and the common distribution, resp. the covariance of MAX-turn i and
j are given by the formulae (2.24), resp. (3.3).

In the case of postorder traversai of a binary tree, which occurs during the
évaluation of an arithmetical or boolean expression given in infix-form, the
MAX-turns of the stack are the leaf heights of the corresponding ordered
tree ([7], p. 159); so distribution results for the leaf heights in random ordered
trees would be désirable.

(2) Another application concerns the theory of software reliability, espa-
cially input domain based models (cf. [11]) which try to describe the correct-
ness corrélation of a program in different input points. Let P be a program
with binary control flow structure t=tPe&n, assume that to each internai
node v of t there corresponds a probability p of correct exécution, and that
the correctness in v is independent from the correctness in the other nodes,
and let the random variables Ct take the value 1, if the (* + l)-th path of P is
executed correctly, 0 else (O^z^rc). In [4], the covariance of Ct and C,- is
studied on the "black box" assumption that t is unknown and all te^n are
equally likely.

Clearly,

Cov (Ci9 Cj) = E (Q Cj) - E (Ct). E (Cj)

For fixed t e ÓSn, the conditional correctness variables Q t and Cjt t are both
1, iff all nodes on nt(i) U 7ttQ) are "correct". Thus

P{C,= l, C,= l } = - £ P{C i,1=l,C,, t=l}=i X>M^)=EQ>«^>),

where ut(U j) dénotes the number of internai nodes on nt(ï) U nt0)*
Analogously,

Informatique théorique et Applications/Theoretical Informaties and Applications
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and therefore

Cov (Ch Cj) - E [/>"< <*• J*>] - E [pb(ï>] E [ph< <'>]. (5.1)

In the case of p — 1 - e with a small failure probability e, we obtain from
(5.1):

and the last value may be received from (3.11).

If, on the other side, 8 is not small, the knowledge of the expectation of
sx t(i,j) does not suffïce for the computation of (5.1). However, we have

1 3 1 1 3

ut(U)=- Z hm,t(î,j)--~- E VtOv/)>
l m=i 2 Zm = i

and since the asymptotic common distribution of the heights hmt t (i9 j) is given
by Corollary 1, the covariance (5.1) can be computed for an arbitrary
correctness probability p. With this modification, the model may be extended
to early phases of the software life cycle, where the failure probability cannot
be expected to be small.
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