
INFORMATIQUE THÉORIQUE ET APPLICATIONS

JIŘÍ MATOUŠEK
Spanning trees with low crossing number
Informatique théorique et applications, tome 25, no 2 (1991),
p. 103-123
<http://www.numdam.org/item?id=ITA_1991__25_2_103_0>

© AFCET, 1991, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1991__25_2_103_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 25, n° 2, 1991, p. 103 à 123)

SPANNING TREES WITH LOW CROSSING NUMBER (*)

by Jiri MATOUSEK (X)

Abstract. - Let P be a point set in the plane and T a spanning tree on P, whose edges are
realized by segments. We define the crossing number of T as the maximum number of edges of T
intersected by a single Une. We give a A(n2m5) deterministic algorithm finding a spanning tree with
crossing number O(fh) on a given n point set {this crossing number is asymptotically optimal),
and a A(«4/3) randomized (Las Vegas) algorithm finding a spanning tree with crossing number
O(^Jnlogn) (hère f (n) = A (g (n)) means f(n) = O(g(n)\o%cn) for a constante). This improves
results of Welzl and Edelsbrunner et al.

We also consider the construction of a family of OQogri) spanning trees, such thatfor every
Une X there is a tree in this family such that X crosses only O(fn.\o%2n) ofits edges. We obtain
a A (H) Monte Carlo algorithm for this problem, improving a resuit of Edelsbrunner é tal . This
resuit has numerous conséquences for the construction offurther randomized algorithms, using the
above problems as a subroutine.

Résumé. - Soit P un ensemble de points du plan et soit T un arbre recouvrant de P, dont les
arêtes sont des segments. Le nombre de croisements de T est le nombre maximal d'arêtes de T
intersectées par une même droite. Si f et g sont deux fonctions, on pose f(n) = A(g(n)) s'il existe
une constante c telle que ƒ (n) = O(g(n)\off(ri)). Nous donnons un algorithme déterministe en
A (AÏ2'5) pour construire un arbre recouvrant dont le nombre de croisement est O(/n), où n est le
nombre de points (ce nombre de croisement est asymptotiquement optimal); on donne également
un algorithme probabiliste en A(«4/3) pour construire un arbre recouvrant dont le nombre de
croisement est O(fn\ogn). Ceci améliore des résultats de Welzl, Edelsbrunner et al.

On considère également la construction d'une famille de O(\ogn) arbres recouvrants tels que,
pour chaque droite X il existe un arbre de la famille tel que X intersecte seulement O(fiï log2 M)
arêtes de l'arbre. On obtient un algorithme probabiliste en A (n) pour ce problème, ce qui améliore
un résultat de Edelsbrunner et al. Ce résultat a de nombreuses conséquences pour la construction
d'autres algorithmes probabilistes, qui utilisent alors les solutions des problèmes ci-dessus comme
sous-programmes.

1. INTRODUCTION

It will be convenient to adopt the "A-notation" of [8], which is similar
to the usual "big-0" notation: we write ƒ (ri) = A (g (ri)), which means that

(*) Received January 1989, revised April 1990.
C) Department of Computer Science, Charles University Malostranské nâm. 25, 11800

Praha 1, Czechoslovakia.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/91/02 103 21/S4.10/© AFCET-Gauthier-Villars

104 J. MATOUSEK

ƒ (n) = O (g (n) logc n) for a constant c. For the sake of simplicity, we shall not
pay the price of more complicated methods for an optimization of the
polylogarithmic factors.

Let P be a set of n points in the plane, let T be a spanning tree with vertex
set P and let its edges be realized by straight segments (we also call this
realization a spanning tree on P). For a line X, we define the crossing number
of T relative to X as the number of edges of T intersected by X, and we define
the crossing number (some authors use stabling number) of T as the maximum
of crossing numbers of T relative to X over all lines X.

We consider the following problem: Given a set P of n points in the plane,
construct a spanning tree T on P with crossing number as small as possible.

In gênerai one cannot have a better crossing number than Q(/n) [14], The
example is simple: Consider a set L of l{2n) lines in gênerai position, and
choose one point in every région of the arrangement of L, yielding a (roughly)
n point set P. Then every edge of the n—l edges of any spanning tree on P
must cross at least one of the lines of L, and thus the average (and also
maximum) number of intersections per a line of L is of order Q.(/n).

Welzl [14] proved that for every «-point set in the plane there exists a
spanning tree with crossing number O(/(nlogn)), and gave a polynomial
algorithm (not very efficiënt) finding such a spanning tree (in fact, his result
applies to a more gênerai situation).

The primary aim of this paper was to improve this algorithm. During the
préparation of the paper the author obtained a version of the paper of
Edelsbrunner et al, [8] (by the kindness of Emo Welzl), which contains some
quite similar ideas, and their results were used to simplify some of the proofs.
The paper [8] gave an O («3 log ri) deterministic algorithm constructing a
single spanning tree with crossing number O(Vn.logri). Since the construc-
tion of a single "good" spanning tree seems to be difficult, they suggested to
construct a small family of spanning trees on a given point set, such that for
every line there is a "good" spanning tree in this family. Such a family can
replace a single tree in many applications.

If F is a family of spanning trees, let the crossing number of F relative to a
line X be the minimum of crossing numbers of Te F relative to X, and let the
crossing number of F be defined similarly as for a single tree. [8] gave a
A(w3/2) Monte Carlo algorithm (see section 2 for the explanation of various
notions of randomized algorithms), which finds a family of O (log n) spanning
trees with crossing number O(fn.log2ri). Our techniques used for the single
spanning tree can also be applied to an improvement of their results.

Informatique théorique et Applications/Theoretical Informaties and Applications

SPANNING TREES WITH LOW CROSSING NUMBER 105

The version of this paper originally submitted for publication contained
the following results: A single spanning path with crossing number
O(/nlogri) can be found by a deterministic algorithm in time A(n2'5), or
by a randomized (Las Vegas) algorithm in time O(n1'A'+&) for every ô > 0. A
family of O(\ogri) spanning paths on P with crossing number O(/n.log2n)
can be computed by a deterministic algorithm in time A(V'75), or by a
randomized (Las Vegas) algorithm in time A(«4/3 + ô) for every 5 > 0, or by
a Monte-Carlo randomized algorithm in time A (ri) with high probability.

Later on, significant new developments have occurred in the work on the
problems discussed hère. Chazelle and Welzl [5] have shown that even the
crossing number O(/ri) can be always attained. Applying their results, our
deterministic algorithm for the construction of a single spanning tree could
easily be modified to yield the following:

1.1. THEOREM: Given a set P of n points in the plane, a spanning path on P
with crossing number O(fn) can be found by a deterministic algorithm in time
A(«2-5).

Applying results of Agarwal [1, 2], our randomized algorithm for the
construction of a single spanning tree could be simplified (or, at least, its
description) and made slightly more effective:

1.2. THEOREM: Given a set P of n points in the plane, a spanning path on P
with crossing number O(/nlogri) can be found by a randomized (Las Vegas)
algorithm in expected time A(«4/3).

Agarwal [1] proved (applying his deterministic plane partitioning algorithm
and some of the techniques of the present paper) that a family of O (log n)
spanning trees with crossing number O(/ri) can be found deterministically
in time A (w3/2), and this is the best known resuit in this direction so far.

As for the Monte Carlo algorithm for a family of spanning trees, we show
the following:

1.3. THEOREM: Given a set P of n points in the plane, a family of O (log w)
spanning paths on P can be computed by a Monte-Carlo randomized algorithm
in expected time A (ri), so that the crossing number of this family is
O (/n. log2 ri) with high probability.

If we use this algorithm as a subroutine in applications, the crossing
number of the family usually will not affect the correctness of the output of
the application, but only its running time. This means that as a whole, we
get a Las Vegas algorithm — the usual type of a randomized algorithm in
computational geometry.

vol. 25, n° 2, 1991

106 J. MATOUSEK

Spanning trees with low crossing number have by now a wide range of
applications in computational geometry. The first ones were given in [14],
and a very impressive list is in [2]; see also [5, 8], We shall not list all the
applications hère, but we shall try to give the reader an idea why such
spanning trees are useful.

The basic application is the construction of efficient algorithms for answer-
ing geometrie range queries. Data structures with fast query answering are
one of the main tools in computational geometry, as many problems can be
reduced to them (as the present paper also illustrâtes). Let us consider e. g. a
halfplanar range counting problem as the basic case. This is the following
algorithmic problem: Given a set P of n points in the plane, preprocess it so
that given a query halfplane h, the number of points of P lying inside h can
be determined quickly.

Suppose now that we have a spanning path on P with crossing number
c=O(/n). Given a query halfplane h, its boundary line cuts the path into
at most c+ 1 pièces, each of them lying entirely inside h or entirely outside /z.
With a suitable (and not quite simple) data structure {see [8] or [5] for such
structures) the points of intersection can be determined quickly. Now if the
vertices of the path are numbered along the path, it is easy to count the
number of vertices in every pièce in time O (c) in total. This yields a data
structure for the halfplanar range counting problem, which uses only A{n)
storage and answers a query in time A(/n), As the results of Chazelle [4]
on lower bounds for query answering algorithms indicate, this is probably
nearly optimal (up to logarithmic factors) solution to this problem. This
method can be also generalized for triangular ranges, etc. A small familly of
spanning paths can be used similarly in most of the applications. E. g.,
combining Theorem 1.3 with the algorithm described in [1], we get the
following:

1.4. COROLLARY: Given a set P of n points in the plane and a parameter
m(nlog2n ^ m ^ n2), we can compute a data structure of size O(m) for
counting the number of points of P in a query triangle, by a Monte Carlo
algorithm in expected time A (m). With high probability, the worst-case query
time for this data structure is A(n/fm).

The plan of the paper is the following: section 2 gives some background
material we shall use. Section 3 présents some results (mainly from the
literature) on data structures for answering geometrie queries. Section 4
describes how to select a small test set of lines, which suffïce for vérification
that a spanning tree on given point set has a small crossing number. Section 5

Informatique théorique et Applications/Theoretical Informaties and Applications

SPANNING TREES WITH LOW CROSSING NUMBER 107

describes a modification of the algorithm of Welzl [14] (formulated for a
genera! range space), and section 6 gives the proofs of Theorems 1.1-1.3.

2. PRELIMINARIES

In addition to usual deterministic algorithms (for which we measure the
worst-case complexity) we shall consider two types of randomized algorithms.
These algorithms use a random number generator in their computation. A
Las Vegas algorithm of complexity ƒ (n) computes a correct answer for each
input, and the expected time for obtaining an answer for input of size n is at
most/ (ri). A Monte Carlo algorithm of complexity ƒ (n) and failure probabil-
ity p (p < 1) computes an answer for every input of size n in expected time
S f (n). The answer be wrong, but with probability at most p.

When we say that something happens with high probability during a com-
putation of some randomized algorithm, we mean that this probability can
be made n~c (n the size of input) for every fixed c > 0, by an appropriate
choice of constant factors appearing in the algorithm. In this sense, all our
Monte Carlo algorithms give correct results with high probability. With some
additional effort we can implement them so that the exécution time does not
exceed the claimed bound with high probability.

Note that if we have a Las Vegas algorithm of complexity f (n) for verifying
the correctness of an answer obtained by the Monte Carlo algorithm of the
same complexity, we can solve the original problem by a Las Vegas algorithm
of complexity f (n).

Let us introducé some geometrie terminology and notation.

A finite set L of lines in the plane détermines a cell complex in the plane,
called the arrangement of L. The 2-dimensional faces of the arrangement are
called régions; their sides —the 1-dimensional faces —are called edges of the
arrangement.

We shall use the line-point duality transform, This is a transform D, which
maps points to lines and nonvertical lines to points, and its main property is
that it preserves the relation "lying above" for pairs point-line or line-point
(see e. g. [6] for more information).

For the sake of simplicity we shall assume that all the arrangements and
point configurations we deal with are non-degenerate. The results hold also
for the gênerai case, as one can show by a perturbation argument (simulation
of simplicity, see [6]).

vol 25, n° 2, 1991

108 J. MATOUSEK

If X is a nonvertical line, then X+ will dénote the upper closed halfplane
determined by A,.

A probabilistic approach to computational geometry problems turned
out to be very fruitful (let us quote the pioneering works of Clark-
son —e. g. [3] —and Haussier and Welzl [10]). Important notions hère are
range spaces and e-nets.

A range space S is a pair (X, R), where X is a set and R is a set of
subsets of X. Members of R are called ranges of S. S is finite if X is fïnite.
The basic combinatorial characteristics of a range space is its dimension,
a concept introduced in [13]. The Vapnik-Chervonenkis dimension (or simply
dimension, [10]) of S is the largest integer d for which there exists a ^-element
set A <= X such that the set [A C\ r; reR] consists of ail subsets of A. If no
such maximal d exists, we say that the dimension of S is infinité.

Let S=(X, R) be a finite range space, 8 a nonnegative real number and N
a subset of X. We say that N is an e-net for S, if N intersects each range
reR s u c h t h a t \r\ >s\X\.

A basic resuit about e-nets (obtained by a counting argument) is the
following:

2 .1 . THEOREM [10]: Let S be a finite range space of dimension d
and let 5, £6(0, 1) be real numbers. Then a sample N of at least
max [4e"1 log (2/S), 8 de ~1 log (8 dj e)] points, drawn independently from X
(with uniform probability distribution), is an e-net for S with probability at
least 1-5. •

This theorem holds also if the points of S are considered as a multiset,
i. e. a point may have a multiple occurrence (in this case we count the
cardinality with the multiplicities).

3. QUERIES ON SETS OF POINTS, LEVES AND SEGMENTS

Our algorithms will use some data structures, which allow to answer
range counting queries efficiently; we shall need various tradeoffs between
preprocessing and query time. By now, most of the data structures we need
have appeared in the literature, but we shall briefly mention the underlying
principles hère (at least for the simpler results).

First we mention a data structure (by now classical) for halfplanar range
counting queries with fast query answering and rather long preprocessing.
The problem "count how many points of P lie above given Une À" is (by

Informatique théorique et Applications/Theoretical Informaties and Applications

SPANNING TREES WITH LOW CROSSING NUMBER 109

duality) equivalent to the problem "count how many lines of L = D{P) lies
above the point D(k)". The answer remains constant within the régions of
the arrangement of L, hence we may associate these counts with the régions.
Then, given a query point, it suffices to détermine in which région it lies.

A suitable représentation of the arrangement of a set of n lines can be
constructed in time O(n2) [9]. Applying an optimal algorithm for point
location in planar subdivisions (e. g. that of Kirkpatrick [11]), the arrange-
ment can be further preprocessed [in time O(n2)], so that given a query point,
the région of the arrangement containing it can be located in time ö(logn).

A slightly more complex type of queries, which we shall need in the proof
of 1.3, is described in the following lemma (which appears e.g. in [8]):

3.1 . LEMMA: Given a set S of n segments', we may preprocess it in time
O(n2), so that then given a query Une, we can compute the number of segment
o f S intersecting it in time OQogri).

In dual form, the problem reads as follows: given a set W of n double
wedges, count for a given point the number of double wedges of W in which
it lies. We may consider the arrangement of the boundary lines of the
éléments of W, and associate with every région the answer for points in that
région; then again the point location is used. •

The halfplanar range counting is a basic problem, but sometimes we need
to handle more complicated ranges (wedges, triangles). A standard tool which
allows us to pass to these ranges are the range trees (see e.g. [12] for more
information and examples of application of this idea). Let {xls x2, . . ., xn}
be a linearly ordered set (x1 S x2 ^ . . . ^ xn). Let us imagine a rooted
binary tree T of height O(\ogri) with leaves xu . . ., xn, such that the order
of leaves from left to right is just the order of the x^s. A canonicai range is a
set of all leaves of the subtree of T rooted at some vertex of T (thus canonicai
ranges form intervals in our ordered set). The sum of sizes of all canonicai
ranges is O(n\ogn) and every contiguous interval in the set {x1? . . ., xn) can
be partitioned into O(logn) canonicai ranges.

Given a point set P, we may sort the points by the x-coordinate and make
a range tree on it. Then we preprocess every canonicai range for halfplanar
range counting, and this data structure allows us to answer a counting query
for a range given as the intersection of a halfplane with a vertical strip. Both
the preprocessing and the query time increase at most by a logarithmic factor
compared to the original algorithm for halfplanar range counting. Now the
complement of every triangle can be partitioned in at most five ranges of
the above form, which allows to handle range counting queries for triangles.

vol. 25, nô 2, 1991

110 J. MATOUSEK

The foliowing useful result of Agarwal [1] speaks about a fast deterministic
processing of a batch of many queries:

3.2. THEOREM [1] (Red-blue intersection counting): Given a set of n blue
segments and a set of m red segments, we can count for every red segment the
number of its intersections with the blue segments, de terministically and in time

Let us remark that the time can be made A(m + n + m2/3 n2/3) by a slight
modification of the methods of [1].

3.3. COROLLARY: Given a spanning tree T on a n point set and a set Lofm
Unes, we can compute the crossing number of T relative to every line of L in
total time A ((m + w)4/3). •

A very sophisticated data structures for arrangements of lines are given in
[8]. Among many applications of their technique mentioned there, we select
one tailored to our purpose. We define a canonical triangulation for an
arrangement of lines. This triangulation is obtained as follows: we piek the
leftmost vertex of every région and we connect it to ail other vertices of the
région (except for its neighbors). The results of [8] immediately give the
following:

3 .4. LEMMA [8]: Given a set L of n lines, one can preprocess it by a Monte
Carlo algorithm in expected time A (n3f2), yielding with high probability a data
structure, which allows to answer in time A(nlf2) queries of the following form:
Given a query point p, return the triangle A of the canonical triangulation of
the arrangement L in which p lies. M

In fact, Theorem 1.3 allows to reduce the preprocessing time to A(n).

A powerful range counting structure is that of Corollary 1.4. This is proved
from Theorem 1.3. Actually if one takes the algorithm of Agarwal [1] for
triangle range counting and replaces the deterministic construction of a
family of spanning trees with low crossing number [in time A(rc3/2)] by the
Monte Carlo construction from Theorem 1.3 [running in expected time A (M)],
one immediately obtains the claim of Corollary 1.4. We shall not repeat the
proof hère.

We shall apply 1.4 in the proof of Theorem 1.2 (but we avoid its use in
the proof of 1.3). We apply it via two lemmas, which are already tailored to
our application:

3.5. LEMMA: A set P of n points in the plane can be preprocessed by a
A (n4/3) Monte Carlo algorithm, yielding with high probability a data structure

Informatique théorique et Applications/Theoretical Informaties and Applications

SPANNING TREES WITH LOW CROSSING NUMBER 111

which allows to draw a random point from the set PDA, where A is a query
triangle, in time A(«1/3) {provided that this set is nonempty),

Proof: We order the points of P arbitrarily and build a range tree on it.
For a node p of the range tree, we dénote by set(p) the canonical range
associated with p.

We preprocess every canonical range for triangle range counting queries.
We choose m = n4/3; then 1.4 says that we can do the preprocessing in total
time A(«4/3) and a triangle range counting query on each canonical range
can be answered in time À(n1/3). Now given a query triangle A, a random
point of P H A is generated by the following procedure (we suppose that
A O P is nonempty):

1. Set p to the root of the range tree.

2. If p is a leaf, return it as the answer.

3. Otherwise let q, q' be the sons of p. Count the numbers n = \AC\set (q) |,
n' — \Af\set (q')\. Randomiy choose q or q' and set p to the chosen node,
the probability of choice of q being n/(n + n') and the probability of choice
of q being n'/(n + n). Continue by step 2.

Since the tree has height O (log n), we obtain the desired point after O (log n)
répétitions of steps 2-3. •

3.6. LEMMA: Given a set S of n segments, we may preprocess it by a
Monte Carlo algorithm in expected time A («4/3)5 yielding with high probability
a data structure, which allows to count for a given line X the number of segments
of S intersected by it in time A(/?1/3).

Proof: It is sufficient to reduce one query of the above form to A(l)
halfplanar range counting queries; then we apply 1.4 with m = n4/3.

When we express every segment of our set as the différence of two semilines,
a counting query on the set of segments stabbed by a query line can be
transformed to line stabbing queries on two sets of semilines.

Let us consider a query on a set of semilines by a line X. We may divide
the semilines into two groups according to their directions relative to X: In
one group, a semiline meets X iff its endpoint lies below X, while in the other
group the opposite is true. This partitioning of the semilines dépends on X,
but the directions of semilines within each group form contiguous intervals.
We build a range tree on the set of semilines ordered by their directions and
we preprocess the set of endpoints for semilines in each canonical range for
halfplanar range counting. This reduces the problem to the halfplanar range
counting. •

vol. 25, n° 2, 1991

112 J. MATOUSEK

Finally we shall need also another form of queries - reporting of lines
intersecting a query segment. The dual form of this problem is to report
points of a given set, lying inside a given query double wedge. This phase
will not be critical in our application, so we can afford to use a suboptimal
(and simple) solution, e. g. that of Edelsbrunner and Welzl [7]:

3.7. LEMMA [7]: Given a set P of n points, we may preprocess it in time
O (n log ri), so that given a query double wedge w, all the points of P inside w
can be reported in time O (n0695 + | w O ^ |). •

4. SELECTEVG TEST LINES

In this section we observe that if the spanning tree T has bounded degrees,
only O (ri) lines suffice for testing its crossing number. We shall show this
via a plane partitioning lemma (which has many other important applications
in computational geometry).

4.1 . LEMMA (partitioning lemma): Given a set L of n lines in the plane and
a number r ^ «,

(à) [1] we can partition the plane into at most r2 triangles in such a way that
the interior of every triangle is intersected by at most O(n/r) lines. This
partitioning can beperformed by a deterministic algorithm in time A(nr).

(b) we can partition the plane into at most r2 triangles in such a way that
the interior of every triangle is intersected by at most O(nAogrjr) lines. This
partitioning can be performed by a Monte Carlo algorithm in expected time
A (n + r2) [obtaining the above property of the partitioning with high probability,
theprobability of success depending on the constant in the O(n.\ogr/r) bound\,
or by a Las Vegas algorithm in expected time À((« + r2)4/3).

Proof of (b): As it was observed independently by several authors, if we
pick a random sample R of r lines of L and triangulate the régions of the
arrangement of R, then this triangulation will have the desired property with
high probability. This can be easily proved using e-net theory (in gênerai
form this appears in [14], Lemma 4.1):

Consider the range space £/, where the rôle of points is played by the lines
of L and each range is the collection of lines intersected by a given segment.
This range space has a bounded dimension, as demonstrated in [14]. Thus
by 2.1, R is an e-net for U with high probability, where & = O (log rfr), which
implies that any segment which does not intersect any line of R has is
intersected by at most en lines of L. Now if the interior of a triangle from a

Informatique théorique et Applications/Theoretical Informaties and Applications

