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by François MORAIN (*) Jorge OLIVOS (2)

Communicated by P. FLAJOLET

Abstract. - We show how to compute x* using multiplications and divisions. We use this method
in the context of elliptic curves for which a law exists with the property that division has the same
cost as multiplication. Our best algorithm is 11.11% faster thon the ordinary binary algorithm
and speeds up accordingly the factorization and primality testing algorithms using elliptic curves.

Résumé. - Le but de cet article est de montrer comment calculer x* en utilisant des multiplications
et des divisions. Nous utilisons cette méthode pour effectuer des calculs sur les courbes elliptiques,
pour lesquelles la division a le même coût que la multiplication. Notre meilleur algorithme est
11,11 % plus rapide que la méthode binaire ordinaire et cela permet d'accélérer en conséquence les
algorithmes de primauté et de factorisation qui utilisent les courbes elliptiques.

1. INTRODUCTION

Recent algorithms used in primality testing and integer factorization make
use of elliptic curves defined over finite fields or Artinian rings (cf. section 2).
One can define over these sets an abelian law. As a conséquence, one can
transpose over the corresponding groups all the classical algorithms that
were designed over Z/NZ. In particular, one has the analogue of the p— 1
factorization algorithm of Pollard [29, 5, 20, 22], the Fermat-like primality
testing algorithms [1, 14, 21, 26] and the public key cryptosystems based on
R.S.A. [30, 17, 19]. The basic opération performed on an elliptic curve is the
computation of the analogue of xk mod N in the case where we work over
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X/NZ. Whatever the model of computation may be, the number of elemen-
tary opérations (understood as being the product of two large integers modulo
an integer N) is very high. Thus, reducing the number of such opérations is
a primary goal when implementing these algorithms.

One can look fîrst for expressions of the law that minimizes the number
of opérations [9]. Another idea is to reduce the number of multiplications
needed to reach xk. One way of handling this problem is to introducé the
concept of addition chain [18] for exponents. An addition-chain for the
exponent k is given as an (r+ l)-tuple (k0, . . ., kr) of positive integers such
that

fco = l, *, = *, (1)

and

Thus, if we have an addition chain for k with length r, we can compute xk

with r multiplictions.

Many results are known [4, 11, 18, 28, 31] and some good algorithms exist,
among which the binary algorithm, recalled in section 3, and some of its
variations (see [18] and the implementation of the 2m method in [10]). The
authors of these papers have also studied briefly the so-called addition-
subtraction chains, defined as in (1) but with

(3) V i e l . . . r , 3a(i), b(i)£i, kt= ±ka{i)±kb{iy

This idea corresponds to the évaluation of xk by multiplications and divisions.
In the case of integers, division is a costly opération and this idea does not
seem to have implemented. The situation dramatically changes when we try
to compute on an elliptic curve, because in this case, division is replaced by
multiplication by the inverse and that inverse is available at no cost
(cf. section 2). We are going to describe two algorithms that use addition-
subtraction chains to compute x*5 the second one being an optimized version
of the first one discovered by aid of a computer program. The expected gain
is about 8.33% for the fîrst one, and 11.11% for the second one.

In section 2, we list some results about elliptic curves. Section 3 describes
the binary algorithm. The new algorithms are presented in sections 4 and 5.
We analyze the cost of these algorithms in section 6. In section 7, we compare
the implementation of our algorithms to that of the 2m method.
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2. THE LAW ON AN ELLIPTIC CURVE
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Let K be a field of characteristic prime to 6. An elliptic curve E over K is
a nonsingular algebraic projective curve of genus 1. It can be shown [7, 32]
that E is isomorphic a curve of équation

y z = x + axz +bz , (4)

with a and b in K. We note E(K) the set of points of coordinates (x:y:z)
which satisfy (4) with z= 1, together with the point at infmity OE = (0:1:0).

We may define on any E(K) an abelian law, but we shall introducé it
only in the case where K = R. This law, noted additively, plays the role of
multiplication in our earlier discussion of addition chains. Addition chains
are thus used to compute k M on a curve, where M is a point on E.

Over R, let us consider the curve of équation

(5)

Figure 1. - An elliptic curve over R.

An example of such a curve is represented in figure 1 (assuming the discrimi-
nant A — Aa3 + 27b2 to be négative).

Let Mx and M2 be two points on the curve. We want to associate with
them a third point M3 lying on the curve that we call the sum of Mx and
M2. Let S be the line MXM2 (if M1 = M2, 3) is the tangent line). One can
see that @ intersects E at only one other point P. The point M3 = Mx -f M2
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is then taken to be the reflexion of P along the x-axis. The neutral element
of this law is OE. The opposite of a point M of coordinates (x:y: 1) is —M
whose coordinates are (x:-y:l). Thus taking the inverse of a point is
essentially free.

It is easy to make this process effective. We only list the results. First,
M+OE = OE + M=M. When M2=-M1 (Le. xx = x2 and y1=-y2), then
M3 = OE. Otherwise, the coordinates of M3 = (x3 : y3 :1) are

x3 — X — x1—x2, (6)

J>3 = M*3-*i)-J>i, (7)

where

yi ~ yù (x2 ~ xi) 1 if xx^x
(3 x\ + a) (y1 + j 2 ) " 1 otherwise.

One shows that the preceding équations are valid over any field K and that
they properly defïne the addition on 1$ (K).

If K is not a field, but just an Artinian ring, one can also define a law on
E(K) (cf. [3]). However, when working over Z/NZ, N not prime, we do as
if we were working over a field and use the preceding équations. The rationale
behind this is that if we cannot invert an element, then we have a factor of
TV, which is the goal we usually want to reach.

The reason why elliptic curves are so attractive is that two different curves
provide two différent laws, contrary to the case where we work in Z/NZ,
where we only have multiplication. In the case of integer factorization,
different curves define distinct factorization algorithms.

It should be noted that adding two different points on a curve (over Z/7VZ)
requires three modular multiplications (Le. multiplication of two integers
followed by a réduction modulo N) and one gcd, and that doubling a point
on the curve costs one more modular multiplication. We will corne back to
this problem later.

All the algorithms that use elliptic curves over finite fîelds require the
computation of the point kM on E, where k is a large integer and M a point
of the curve. These computations are to be performed as fast as possible, so
this motivâtes the study that follows.

Informatique théorique et Applications/Theoretical Informaties and Applications
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3. THE BINARY ALGORITHM AND SOME GENERALIZATIONS

We just describe the algorithm. For validity and explanation, see [18],

procedure BINEXP (P, M, k)
i =

Q
if ko = l then P: = M else P: = OE;
for i — 1 . . . n

Q
if Jfc,=

end.

Following [18], we introducé

(8)

(= l } . (9)

Let c€2? be the cost of a "doubling" (Le. evaluating P+P) and ^P+Q the cost
of an "addition" (Le. evaluating P + g with P^Q), supposed independent of
P and Q. Then the cost of BINEXP is

(10)

The 2m-ary algorithm (see [18]) consists of working with base 2m, rather
than base 2. The cost of this algorithm is roughly (see [10])

(11)

where vm(k) dénotes the number of non-zero digits of k in base 2m.

4. THE FIRST ALGORITHM

The idea cornes from the observation that long chains of I's in the exponent
c are better treated by division. For instance, we have

1 5 _ _ ( ( ( ) ) )
X ,

X X

which is more economical than the standard binary algorithm. In other
words, one replaces a block of at least two \'s by a block of O's and a division.
If we imagine that we compute with exponents whose binary digits are
0,+ l and—1, then in terms of this extented représentation, the algorithm

vol. 24, n° 6, 1990
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corresponds to the transformation

Î^K-^IO""1 —1.

We now describe the fîrst algorithm used to compute k M using two basic
opérations + and—. This idea is to construct two integers k_ and k+ such
that k = k+—k_, but for which the évaluation of k+ M and k^M require less
opérations than that of k M, We represent the algorithm by the automaton of
figure 2 a. It is easy to deduce from this the following recursive procedure
for the computation of kM.

procedure ADDSUBCHAIN-A (P, M, k)
Q' = M;
P : = OE; {the resuit is contained in P }
TREATO (*);
end.
procedure TREATO (k) { invariant : R = P+kQ]
if fc = 0 then return (P)

else if k is even
then Q: = 2Q;

TREATO {[k/2]);
else TREAT1 (flfc/2]);

end.
procedure TREAT1 {k) {invariant : R = P + (2k+ l)Q}
if A: = 0 then return (P+ fi)

else if k is even
then P: = P+Q\

Q: = 4Q;
TREATO ([Jfc/2]);

else P: = P-Q;
Q: = *Q;
TREATH ([k/2]);

end.
procedure TREAT11 (k) {invariant : R = P+(k+ l)fi}
if k = 0 then return (P + Q)

else if k is even
then P: =

Q Q;
TREATO ([k/2]);

else Q: = 2Q;
TREAT11 ([Jfc/2]);

end.

Example: Using the binary method, k= 1101001110111 is calculated by
12 doublings and 8 additions; in total 20 opeations. Using ADDSUBCHAIN-
A, we compute

k 1101001110111
k_ 100000010001

k+ 10001010001000

Informatique théorique et Applications/Theoretical Informaties and Applications
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Q:-2Q Q:-2Q

Figure 2 a. — Finite Automaton, version A.

Figure 2 b. — Finite Automaton, version B.

vol. 24, n° 6, 1990
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for which there are 13 doublings, 5 additions and 1 subtraction; in total
19 opérations.

The following is an optimized itérative from of this algorithm.

procedure ADDSUBCHAIN {M, k);

• b: = Q, P: = OE, Q: = M;
• for i : = 0 . . . n

if kt = Q
thenif 6#0

then P. =ƒ>+£>;
if 6 = 1
b: = 0;

endif
Q- = 2Q;

elseif ô = 0
then6:=l;
elseif 6=1

endif

• P:~P+Q;
• end

5. A SECOND ALGORITHM

The idea is now to extend the preceding idea to the case where there are
isolated O's in the binary représentation of the exponent. In this case, an
isolated 0 inside a block of I's only contributes one extra division. Using the
rule of algorithm A, we have first

But since — 2 + 1 = — 1, we can pile up the transformation — 1 11—• 0 — 1, whence
the rule describing algorithm B

l«0 lbi—> 1 0a— 1 0*"1 — 1.

This process is represented by a suitable modification of automaton A to
produce automaton B: we introducé state 110 that takes this into account.
We will make the analysis on this automaton (see section 6), but the actual
program can be made simpler. This follows from the remark that the arcs
that leave state 110 are the same as those that leave state 1. We can now
build procedure ADDSUBCHAIN-B, that is the same as ADDSUBCHAIN-
A except for procedure TREAT11.
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procedure TREAT11 k {invariant : R = P + (k+ 1) Q}
if & = 0 then return {P + Q)

else if k is even
then TREAT1 ([/c/2]);
éïseQ: = 2Q;

TREAT11 flfc/2]);
end.

Exemple; With the same value of k, we find

k 1101001110111
fc_ 100000001001

k+ 10001010000000
thus requiring only 13 doublings, 4 additions, and 1 subtraction; in total
18 opérations.

6. ANALYSES OF THE ALGORITHMS

We recall that the expected cost of the binary method is 3/2 « + 0(1) and
that of the 2m method is n(\ +(1 -2~m)/w) + O(l) when all the opérations
have the same cost (see [15]).

In order to analyze the algorithm (both versions), we will count the number
of opérations required to calculate k, assuming that C&2P~<$P+Q= 1 f° r ^ e

sake of simplicity in the first version and the real cost in the second version,
Le. <€2P — KJràt and <ëP + Q = KJr'i (see section 2 and below). Our analysis is
based on the automata shown in figures 1 and 2. We will use an approach
based on grammatical spécification (see e. g. [16]). The associated bit strings
belong to the language L={0, 1 }* 1 where we have inverted the binary
représentation of a number greater than or equal to 1. The idea is to associate
with each string in L a commutative polynomial in variables z and u that
represents the relevant parameters: the number of bits (z) and the calculation
cost of the string (u). For instance, in the the binary case

011001 h->z6w7.

The corresponding production rules (see fig. 2 a) are the following

To
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Usual techniques can be used to obtain the generating function

where an m(=[znum]A(z, u)) is the number of strings with n bits (only n—\
of which are really involved hère because the last is always 1), and with cost
m (in number of opérations). We only need to solve the foliowing System of
équations

A =T0

To =

where each new bit has an associated z and u whose exponent is equal to
the cost given on the corresponding arcs of the automata (fig. 2 a). A(z, u)
has been obtained by sol ving this System using MAPLE [8]. Since we are
interested in the expected cost, we compute

i 0-2*) 0-2z)

from this we deduce

= — n+ -.
2„

This compares favorably with the cost of the binary algorithm which is
3 / 2 H + O ( 1 ) . The relative saving in the number of additions is 25% [(1/2-
3/8)/(l/2)], and there is an overall relative saving of 8.33% if ail opérations
are considered.

In a similar manner for version B (recall that program ADDSUBCHAIN-
B does not correspond precisely to fig. 2 b), the production rules are

B ^To
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Introducing the respective costs for elliptic curves, the corresponding équa-
tions are

B =T0

T0 =
Ti =
T = 7 T
J I I Z i n o

From which we found, using MAPLE, the excepted cost

With version B we achieve a relative saving of 33% with respect to additions,
and 11.11% if ail opérations are considered.

We must note that version B of the algorithm was discovered with the
help of ÀyQ [12], a powerful System designed to perforai automatic analysis
of a broad class of algorithms, developed at I.N.R.LA.

We now give the results for elliptic curves when we have c£2P — K+4 and
^P + ö = i£+3, where K is the cost of a gcd over the integers, the unit being
the time of a multiplication modulo TV. For example, in [5], the author takes
,£=30. P. Zimmermann kindly computed the costs of the algorithms given
this assumption, using ÀyQ. Hère are the results

Binary algorithm: (3 K+ 11)/2 « + O(1)

2m-ary algorithm: (K+ 4 + (K+ 3) (1 - 2~m)/m) n + O (1)

Algorithm A: (11 *T+41)/8 « + O (1)

Algorithm B: (4 K+ 15)/3 « + O(l).

Our algorithms require no extra-storage, contrary to the 2m method, which
needs to store 2 x 2m~1 n-bits integers (if we work over Z/NZ with N an n-
bit integer).

7. IMPLEMENTATION AND CONCLUSIONS

The fîrst author has used the second algorithm in his implementation of
the so called Atkin's test [26] for primality testing. The overall gain is about
3% in time for 100-digit numbers and 2.7% for 300-digit numbers.
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It should be possible to combine the idea of addition-subtraction chains
with that of the 2m-ary algorithm. As for now, it is not clear how we could
do that, the problem being that our algorithm must keep track of what
happened a few bits bef ore.

The second author would like to express his gratitude to I.N.R.LA. for an
invited visit during which his work on the subject was done. Many thanks
are due to P. Flajolet. This work has also benefitted from fmancial assistance
from the French-Chilean coopération program whose help is gratefully ack-
nowledged.

Both authors would like to acknowledge the help of P. Zimmermann with
the AyQ system and that of P. Flajolet who very carefully read the first
version of the paper and made valuable remarks.
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