
INFORMATIQUE THÉORIQUE ET APPLICATIONS

S. VENKATASUBRAMANIAN

KAMALA KRITHIVASAN

C. PANDU RANGAN
Algorithms for weighted graph problems on the
modified cellular graph automaton
Informatique théorique et applications, tome 23, no 3 (1989),
p. 251-279
<http://www.numdam.org/item?id=ITA_1989__23_3_251_0>

© AFCET, 1989, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1989__23_3_251_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 23, n° 3, 1989, p. 251 à 279)

ALGORITHMS FOR WEIGHTED GRAPH PROBLEMS ON THE
MODIFIED CELLULAR GRAPH AUTOMATON (*)

by S. VENKATASUBRAMANIAN (1), KAMALA KRITHIVASAN (*)

and C. PANDU RANGAN (*)

Communicated by J. BERSTEL

Abstract. - A Modified Cellular Graph Automaton (MCGA) is formulated and algorithms for
solving weighted graph problems viz., minimum weight spanning tree construction (based on
KruskaVs [5] sequential algorithm) and single source shortest paths (based on Dijkstra's [6]
sequential algorithm) are described on it. The original Cellular Graph Automaton (CGA) of Wu
and Rosenfeld [3, 4] is modified by the introduction of a second type of Finite State Automaton
(FSA) on the edges of the input d-graph. The équivalence of the MCGA to the CGA with respect
to the acceptance of graph languages is shown. The memory size of the FSA in our MCGA is
made proportional to the area (i. e., the total number ofnodes) of the input graph, as suggested by
Wu and Rosenfeld [3, 4]. It is shown how the above two modifications to the original CGA
facilitâtes construction of simpler and faster algorithms for solving weighted graph problems.

Résumé. - On définit la notion d'automate cellulaire modifié pour graphes (ACMG) et on décrit,
dans ce cadre, des algorithmes pour des graphes pondérés, comme le problème de Varbre recouvrant
minimal, ou le problème des plus courts chemins à partir d'une origine commune.La modification
par rapport à V automate cellulaire original de Wu et Rosenfeld consiste en Y introduction d'un
deuxième type d'automates finis qui est associé aux arêtes du graphe.

1. INTRODUCTION

Von Neumann's book on Theory of Self-Reproducing Automata was the
pioneering work on cellular automata. A. R. Smith [1] studied in detail the
acceptance powers of the one-dimensional cellular automata and itérative
automata. The itérative automaton is slightly different from the cellular
automaton in the sensé that the input string is fed into the automaton from
one end of the chain of finite state automata. The cellular graph automata

(*) Received January 1987, revised September 1988.
C) Department of Computer Science and Engineering, Indian Institute of Technology, Madras

600036, India. Net Address: — uunet! shakti! shiva! rangan

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 89/03 251 29/S4.90/© Gauthier-Villars

2 5 2 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

of Wu and Rosenfeld [3] (CGA, hereafter) incorporâtes the input pattern
into the initial configuration of the underlying graph.

The CGA, which is more gênerai than the 1-D cellular automata or 2-D
cellular arrays, was first studied by Rosentiehl [2] under the term "intelligent
graphs", apparently because the network of finite state automata (FSA,
hereafter) can measure the properties concerning its own underlying structure.
He presented algorithms to find Eulerian paths, spanning trees and Hamil-
tonian cycles on this "intelligent graph" where all nodes have fixed degree.
Wu and Rosenfeld [3] introduced special kind of single degree nodes that
are always in "quiescent" state, thus enabling a node to have degree less
than the maximum possible number for that FSA. The graph obtained after
the introduction of such single degree nodes is called a d-graph, where each
node has à arcs emanating from it and each arc end at a node is given a
distinct number between 1 and à. Such rf-graphs have also been studied by
Mylopoulos [8], as mentioned in Wu and Rosenfeld [3]. The two papers on
cellular Graph Automata by Wu and Rosenfeld [3, 4] give a fairly comprehen-
sive treatment of the CGA which can accept various kinds of graph structures
of bounded degree and also measure their various graph properties viz.,
radius, area, centre, cut-nodes, blocks, etc. Their formalism of having only
single type of FSA at all the nodes of the input d-graph was not found to be
particularly suitable for solving problems related to digraphs, weighted graphs
etc., where the edges also bear some special properties e. g., direction, weights,
labels, etc. It was found that algorithms on this CGA for solving problems
like finding fundamental cutsets, rooted acyclic graph récognition, minimum
weight spanning tree construction, single source shortest paths, etc., become
unduly complicated and inefficient This has led us to propose a slight
modification to their original CGA, which is the introduction of a second
type of FSA on the edges of the input rf-graph. These edge automata take
care of the special properties viz., direction of digraph edges, costs of the
weighted edges, etc., so that the algorithms become simpler and f aster. We
have also açhieved improvement in the time complexities of the algorithms
by making the memory size of the FSA proportional to the area (i. e., the
total number of nodes) of the input graph. This was actually suggested by
Wu and Rosenfeld themselves as a case for further research, and accordingly
we observe its effect of speeding up the algorithms.

We first define our modified CGA in the next section. Section 3 establishes
the équivalence (w. r. t. acceptance power) of CGA and MCGA. In section 4,
we give details of certain high level descriptions of actions that are frequently
used in our algorithms. In section 5, we present the actual algorithms on

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 3

our modified cellular graph automaton for solving various weighted graph
problems.

2. DEFINITION OF THE MODIFIED CELLULAR GRAPH AUTOMATON

2.1. Graphs

2 . 1 . 1 . A gênerai graph

A graph in the context of our discussions is described by a five tuple
(JV, A, fN9 fE, g) where:

TV is a finite non-empty set of the nodes of the graph;
A is a collection of pairs of distinct éléments of JV, called the set of arcs or

edges;

fN : N -> LN is a function that maps each node in N to a label in LN;

fE: A-+ LE is & function that maps each are in A to an edge label in LE;

giNxN^Z is the neighbourhood ordering function that defines the
ordering of the immédiate neighbours of a node. That is, if g (n, m) = i9 then
we say that m is the ï-th neighbour of n. "g" is a partial function because it
is not defined for all the éléments of NxN. Note that "g" is defined for
only those pairs where the second component node is a neighbour of the
first component node. LN and LE are finite non-empty label sets.

2.1.2. d-bounded graph

A d-bounded graph is a graph in which the degree of every node is bounded
by the integer "d". In our context, d is a constant and it is independent of
the total number of nodes in the graph. For example, figure 1 a illustrâtes a
4-bounded graph.

2.1.3. d-graph

To any d-bounded graph, we can add suitable number of dummy nodes
and introducé new edges between the nodes of the graph that have degree
less than "d". We introducé the edges in such a way that each non-dummy
node has degree d. Since the dummy nodes introduced have all degree one, g
may be extended for the dummy nodes as follows: g (x, m) = 1 where x is a
dummy node and m is adjacent to x,

Now the resulting graph will have nodes with degree d or one. We recall
once again that only the newly introduced nodes (dummy nodes) have degree
1 and all of them have a reserved label #. The label # is not used for any

vol. 23, n° 3, 1989

2 5 4 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

other node that has degree d. We will call the resulting graph as a d-uniform
graph or a d-graph in short.

(Fig. 1 b illustrâtes the resulting 4-uniform graph of the 4-bounded graph
given in fig. 1 a.)

2.1.4. Underlying graph

The d-bounded graph obtained after the deletion of all the vertices labeled
in a d-graph F is also referred to as the underlying graph U(F).

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 5

2.2. Modified ceUular d-graph automaton

2.2.1. Informai description
2.2.1.1. General description

Our modified cellular graph automaton, which is working on a d-graph,
will have only two kinds of finite state automata (FSA), with one kind of
FSA placed at every vertex of the input graph and the other kind on every
edge. We shall dénote by MNA the FSA that is placed on the vertices and by
MEA the FSA placed on the edges. In the earlier models, the automaton
placed at a vertex can "know" the state of the automaton placed on each of
its neighbouring nodes. But, in our model, we use an edge automaton to
pass "information" between the two node automata placed on the end
vertices. We represent a typical state of the edge automaton as a 3-tuple
where the second and last component dénote the states of the node automata
placed at the end vertices of the given edge and the first one is related to the
edge itself. We shall now turn to the informai description of how the node
automata and the edge automata actually work.

2.2.1.2. Node automaton

A node automaton's next state is dependent upon its current state and the
states of the d edge automata that are placed on the d edges incident on the
node. Recall that a typical state of an edge automaton is a 3 tuple; the first
one pertains to the information related to the edges and the second and third
components are the states of the end vertices. Therefore, the current node's
state may occur as the second or third component in the state of an edge
automaton. If the current node's state occurs as the second component then
its neighbour's state will occur as the third component and vice versa. Thus,
we see that at any given node if we want to access the state of a neighbouring
node, then we must look at the second or third component of the state of
the corresponding edge automaton depending upon the given node's state
occurring as third or second component of the state of the edge automaton.
Observe that the "g" function provides an order to the neighbours of a node
and that every (non-dummy) node has d neighbours. Also note that g is not
symmetrie, Le. g(n,m) = i need not imply that g(m,ri) = l We specify that
the ï-th neighbour's state occurs in the corresponding edge automaton's state
as fe-th component (fe = 2 or 3) by the pair (i,k). For any given node, the
séquence (l , ^) , (2,fc2), . . ., {d9kd) defines a "neighbourhood state position
vector" or in short a "neighbourhood vector". The neighbourhood vectors
do not change and are determined once for all by the input d-graph.

vol. 23, n° 3, 1989

2 5 6 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C PANDURANGAN

Let u and v be adjacent nodes in the d-graph. Fix u. NOW V might be the
z-th neighbour of u and u might be the 7-th neighbour of v. We may
incorporate this mutual order in the neighbourhood vector of u by replacing
the pair (i,kt) by (i,fej,j). Such a séquence of triplets are called mutual
neighbourhood vector of u. In fact, the first component of the tuple in the
above définitions can be dropped as they are implied by the order of tuples
in the vector. Henceforth, we will assume that the neighbourhood vectors
have the form (2, 3)d and mutual neighbourhood vectors to have a form
((2, 3) x Zd)

d, where Zd is the set (1,2, . . ., d).

2 .2.1.3. Edge automaton

We shall now see what is actually involved in the transition of an edge
automaton. Recall that a second kind of FSA is placed on each of the edges
of the input d-graph. Actually, this is the place where our MCGA differs
from the original CGA of Wu and Rosenfeld [3,4]. In their CGA, each node
automaton is directly connected to d other neighbouring node automata
whereas in our case it is connected to the d incident edge automata. In order
to retain the properties of the original CGA (while trying to improve it), it
has become necessary that the intervening edge automaton (between every
pair of node automata) communicate the states of the end nodes to each
other. To achieve this, the state of an edge automaton is always in the form
of a 3-tuple in which:

(i) The first component gives the information relating to the actual state
of the edge automaton and in f act, might itself be a 2-tuple (we,qe) where we

is the constant label or weight that is to be associated with the edge automaton
throughout the life of the edge automaton, and qe is used to record the
information concerning that edge that changes with time.

(ii) The second and third components directly indicate the states of the
two end nodes and thus enable them to know each others' state.

The transition of an edge automaton actually involves the storing of the
end nodes' states in the respective (2nd or 3rd) components as well as an
updation (if any) of qe in the first component. As a given node automaton
knows the state of a neighbouring node automaton only through the state
of the intervening edge automaton, the alternation of the transition phases
of the edge automata and node automata is necessitated. Thus, in each time
step, our MCGA exécutes two phases of transition, wherein,

(i) the first phase corresponds to that of all the edge automata of the
MCGA, and

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 7

(ii) the second phase corresponds to that of all the node automata of the
MCGA.

2.2.1.4. Initial configuration

The initial configuration for the MCGA consists of the input d-graph with
each of the node automata and the edge automata bearing a label from the
sets LN and LE respectively. The node automata placed on the "dummy
nodes" that have a degree one have their initial (unchanging) state as "#".
The corresponding edge automaton (whose one end node has a label "#")
also bears a label "#" that also does not change with time. (Recall the
notation introduced in définition 2.2.1.3. In f act, # is nothing but We of
définition.) This is because the pendant ("dummy") node and the correspond-
ing pendant edge do not form a part of the underlying graph that actually
has the labels assigned to edges and nodes.

2.2.2. Formai définitions

The MCGA is a 5-tuple (F, MNA9 MEA, HNA, HEA) where:
T is the input d-graph
HNA—is the neighbourhood vector defined for all the nodes in F. The first

component of the z-th element in this vector indicates to the node automaton
which component (2nd or 3rd) of the i-th edge automaton is to be considered
in its transition function and the second component gives the mutual neigh-
bourhood number, Le., if HNA(n) (ï,2) = /c, then this node n is the /c-th
neighbour of its i-th neighbour.

MNA—is the first kind of FSA (QNA, bNA) placed at each of the nodes. The
transition function is:

§ ^ : QNA x QEA x H NA -* QNA

(if qNA = #, then <f+A
x = # for all instants, t = 1,2, . . .).

HEA—is the neighbourhood vector for the edge automaton. For a given
edge automaton e, the two éléments of HEA (e) give the two are end numbers
of this edge with respect to the two adjacent nodes.

MEA — is the second kind of FSA {QEA, §EA) placed on the edges of F. The
transition function is:

&EA : QEA x QIA x HEA -> QEA.

Usually,

&EA ((fe Qu Qii), <lu q'2, (t h tl)) =(C q'u q'2).

vol. 23, n° 3, 1989

2 5 8 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

A configuration of M is a pair of mappings, one corresponding to the
nodes and another for the edges. The mappings assign states to the nodes
and edges and we dénote them by cN and cE respectively. Thus,

and

CE: A —> QEA

and the configuration itself is denoted as c — (cmcE).
At the end of a time step, the configuration of the MCGA might change

from, let us say, c to c' and we dénote that by c\ —c'. We also dénote the
initial configuration by c0 and the configuration resulting at the end of the
t-th time step by cv The corresponding functions are denoted by cN t and c£ t.

One can define a MCGA with distinguished node as the one for which a
particular state in the set QNA is marked as distinguished, which is recognisa-
ble by all FSA, and the node bearing this as the label at the initial step is
called a "distinguished node". This unique label usually does not change for
that node and is used to initiate many algorithms. A configuration ck at the
end of the fc-th time step is said to be a terminal configuration if the node
automaton with a distinguished label D enters into a final state.

One significant improvement on the size of the input symbols for the node
automaton in our MCGA is noted below as a lemma.

LEMMA 2 .2 .1: Ifthe state ofevery node automaton is always in the farm of
a d-tuple, (storing in its i-th component the information relevant to its i-th
neighbour,) then the total number of the symbols for the original CGA is d2.
However, for the MCGA, the number of input symbols is just 3d.

Proof: Usually, the node automata send some signais to one or more of
their d neighbours. In that case, their states are in the form of a d-tuple where
each component contains some information relevant to the corresponding
neighbour. For the original CGA, the node automaton has to consider the
d-tuple from each of its d neighbours before getting into its next state. This
means that each node automaton has to process d2 input symbols at every
transition step. However, we shall see how an additional edge automaton
between every pair of node automata reduces this number by an order of
magnitude (with respect to "d"). An edge automaton, by using the informa-
tion provided by HEA (e) (the neighbourhood vector for the edge automaton),
can register in its second and third components only those components of
the d-tuples of its end nodes that will be relevant to each other.

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 2 5 9

For example, define the neighbourhood vector for a given edge automaton
e as HEA(e) = (tl,t2)eZ% for each edge automaton e, where e is the 11-th
incident edge on its first end node and 12-th incident edge on its second end
node. Assume that the state of each node automaton is in the form of a d-
tuple denoted as

where qi is the information relevant to the i-th neighbour of that node. Then,
in the case of the original CGA of Wu and Rosenfeld, the transition of a
node automaton is typically of the form

(0* i> -*>Ud))>H00) = (0 i , k i » « 2 , k 2 > • • • >0d,w)

where ki = H(ri) (i), that is, rc is the fci-th neighbour of its i-th neighbour.
Thus, the node automaton at n has to process d2 input symbols at every
transition step.

However, in our MCGA, the transition of the edge automata précèdes
that of the node automata. The transition of the edge automaton placed on e
is:

tel 1, 02, 2> • • • » 02, d))5 ̂ £ ^ («)) = (0e? 01. f 1, 02, *

so that, for node ny

&NA ((0« 15 0n 2? • * - > 0nd)5 (0e 1 » 0e 2» • -

where each gei is in the form of a 3-tuple.

Thus, the intervening edge automaton reduces the number of input symbols
for a node automaton in this case from a possible d2 in the case of the
original CGA to 3 d in our MCGA. This leads to the réduction in the size
of each time step.

2.3. Modifïed cellular d-graph languages

A modified cellular d-graph acceptor is an MCGA

M=(r,MNAiMEA,HNA,HEA)

vol. 23, n° 3, 1989

2 6 0 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C. PANDURANGAN

with a distinguished node such that MNA is a finite state acceptor specified
by the 4-tuple

\Ql, NA>

where (i) (QNA, 5NA) is an FSA of the node defined as in the previous section;
(ii) QItNA is the set of initial states. QI>NA = Ld

N, and (iii) FNA^QNA is the set
of final states.

An initial configuration of Ml is denoted as c0 and it consists of: (i) the
function cNy 0 that maps N9 the set of nodes of the input d-graph F into LN,
the set of node labels of F, and (ii) the function c£) 0 that maps A> the set of
edges in F into LE, the set of edge labels of F.

A configuration of the modified cellular d-graph aeceptor M, at the end
of m time steps, denoted as cm> is said to be a terminal configuration whenever
the finite state acceptor MNA placed on the node with a distinguished label
"D". (appearing as a part of its state) has entered into a final state at that
instant. Symbolically, if n is a node whose corresponding node automaton
bears the label "D" in its state, then, cN m(ri)eFNA.

M=(T9MNA,MEA,HNA,HEA)

accepts the d-graph T = (N, A,fNifE,g) if there is a finite séquence of configur-
ations c05 cl9 . . .,cm, such that co = (fNJE) (recall that fN and fE are the
labeling functions of F equivalent to cNt 0 and cEt 0 respectively) is an initial
configuration, cm is a terminal configuration (m>0) and ct\ —ci+1 for 0< i<m
as defined above. For a given finite state acceptor on the nodes

MNA = (8 1 , NA> QNA> §NA> FNA)>

and the FSA on the edges MEA = (QEA, bEA), we can define the class of
modified cellular graph acceptors determined by MNA and MEA as

C (MNAi MEA) = { M | M = (F, MNA, MEA, HNA, HEA) }

where HNA and HEA are neighbourhoôd vectors as defined earlier.

The language of d-graphs accepted by C (MNA, MEA) is the set

& (M^ , MEA) = { r | M = (r, MNA, MEA, HNAi HEA)e C (MNA, MEA) accepts F }.

A d-graph F is accepted by C(MNA, MEA) if and only if Te£f?{MNÂJMEA).

Informatique théorique et Applications/Theoretical Informaties and Applications

ALGORITHMS ON CELLULAR GRAPH AUTOMATA 261

3. EQUIVALENCE OF MCGA AND CGA

Let us dénote the language accepted by an MCGA as LMCGA and that by
a CGA as LCGA. We shall make use of this notation in our proofs for the
équivalence of MCGA and CGA. Also, throughout this section, whenever
NA and EA are used, they shall refer to node automaton and edge automaton
respectively.

In the following Lemma, we shall dénote the class öf MCGA determined
by a pair of FSA, i. e., Mx N placed on the nodes and M1E placed on the
edges, as C(M1N9MlE). We shall also dénote by C(M2N) the class of CGA
determined by the FSA on the nodes, i. e., M2N.

LEMMA 3.1: Given a language LMCGA accepted by C (Mt N, Mx £) , there exists
a corresponding class of CGA C(M2N) tnat accepts the same language LMCGA.

Proof: Consider an arbitrary rf-graph F e LMCGA. Given that
M1-(T,M1N,MlE,HNAiHEA), we shall construct the corresponding CGA
M2 = (F,M2iV,H) formed with respect to the d-graph. The proof proceeds in
three parts. They are:

(i) équivalence of initial configurations of MCGA and CGA;

(ii) simulation of transitions of MCGA by CGA;

(iii) équivalence of terminal configurations of CGA and MCGA.

First, we shall see how the initial configuration of the MCGA Mx is
achievable in an equivalent manner by the CGA M2.

(i) Equivalence of the initial configurations.

The initial configuration of the MCGA M1 consists of the node and edge
automata in their initial states that correspond to certain labels on the nodes
and edges respectively of the input d-graph F. We can build a corresponding
initial configuration for the CGA M2 = (F, M2 N,H), where the FSA on the
nodes carry the labels of the d incident edges apart from their node labels.
Thus, the label of each node in the input rf-graph F occurs in the state of
both the end nodes' automata. For example, consider a 3-graph (d = 3 for all
the non-dummy nodes) that is specified as input to MCGA Mx and accepted
by it. (Note that all the dummy nodes and edges bear a label "#", indicating
that the FSA on those edges and nodes do not change their state at any
transition step.) The initial state of an NA in M\ is of the form (p,p,p) where
p is the label of the node. The initial state of an EA is [(a, qOa), qOm, qOn] where
a is the label of the edge. Correspondingly, in the case of the CGA M2, the

vol. 23, n° 3, 1989

2 6 2 S. VENKATASUBRAMANIAN, KAMALA KRITHIVASAN, C PANDURANGAN

initial state of a typical NA is

((P, fa 4q«))> (P> (P, qOb)\ (p, (c, qOc))).

Thus, each NA of the CGA M2 incorporâtes in its i-th component whatever
is found in the first component of the 3-tuple of the corresponding i-th
incident EA. The second and third components of the E A of M x are not
included in the NA of M2 as each NA of M2 can directly sense the state of
its d neighbouring NA.

(ii) Simulation of the transition step.
The transition step of the MCGA involves two phases. In the first phase,

the EA undergoes a transition that involves.

(a) copying the states of its end nodes into its second and third components,
and

(b) an updation (if any) of the second part of the 2-tuple placed in its first
component.

Now, each NA of the CGA M2 also has two transition steps that corres-
pond to a single step of the MCGA Mt. The first in such a pair of transitions
will correspond to the first phase of the Mx

9s transition. In this step, the 2-
tuples placed in each of the components of the NA*s d-tuple (that correspond
to the first components of the EA's state in Mx) undergo a change in exactly
the same manner as the corresponding E A in M1. In the next step, the other
parts of the d-tuple states of the node automata that represent the NA's state
in M1 undergo a transition based on the 2-tuples in the same manner as the
NA of M t .

For example, if SNA and dEA are the transition functions of the NA and
EA respectively of the MCGA Ml5 then their actions can be simulated in
two transition steps by the 5 of the CGA M2's NA as follows:

The state of each NA also has a component (apart from the regular
d-tuple) that toggles with respect to time to indicate which part of its state
(i. e., either the part corresponding to the EA of M1 or that of the NA of
Mt) is to undergo a change at that time step. Assume that if this component
has a value zero, then, at that time step, the exécution of the transition
function results in a change in that part of the NA's (of M2) state that
corresponds to the d incident EA of the MCGA Mv This change is actually
accomplished by executing the 8EA of M± on all the d 2-tuples found in NA's
(of M2) state. In the next time step, the toggle variable assumes a value one
and hence in this time step, the NA of the CGA M2 directly exécutes the
5NA of M1 on that part of its state that corresponds to the NA of Mx.

Informatique théorique et Applications/Theoretical Informaties and Applications

