
RAIRO. INFORMATIQUE THÉORIQUE

ROCKFORD ROSS

KARL WINKLMANN
Repetitive strings are not context-free
RAIRO. Informatique théorique, tome 16, no 3 (1982), p. 191-199
<http://www.numdam.org/item?id=ITA_1982__16_3_191_0>

© AFCET, 1982, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1982__16_3_191_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Informaties
(vol. 16, n° 3, 1982, p. 191 à 199)

REPETITIVE STRINGS ARE NOT CONTEXT-FREE (*)

by Rockford Ross and Karl WINKLMANN (x) (2)

Communicated by M. NIVAT

Abstract. — Let S be an alphabet. A string of theform xyyz with x, ze£* and y e T* is called
répétitive. In this paper we prove that the set of répétitive strings over an alphabet of three or more
letters is not context-free, settling a conjecture from [1].

Résumé. — Soit 2 un alphabet. Un mot contient un carré s'il est de la forme xyyz avec x, z e X* et
ye£ + . Dans cet article, nous prouvons que V ensemble des mots contenant un carré sur un alphabet à
trois lettres n'est pas algébrique, résolvant une conjecture de [1].

Let £ be an alphabet. A string of the form y y with y e Z + is called a répétition.
A string which contains a répétition as a substring (i. e. a string of the form xyyz
with x, zeX* and yelrt) is called a répétitive string. Interest in répétitive and
nonrepetitive strings dates back at least as far as Thue's 1906 paper [13]. One
question which has defied an answer for some time is whether or not the set of
répétitive strings over an alphabet of three or more characters is context-free.
(For binary alphabets the question is trivial.) This question is settled in this
paper, confirming a conjecture from [1].

THEOREM. — The set of répétitive strings over an alphabet of three or more
characters is not context-free.

Classical techniques for showing languages to be not context-free appear to be
of no use in proving this resuit, cf. [1, pp. 374-375]. At the same time, intuition
very strongly suggests that répétitive strings are not context-free for the same
reason that répétitions (i. e. strings of the form ww with w e l +) are not context-
free: the first-in-last-out nature of a pushdown store does not provide the means

(*) Received in October 1980, revised in March 1981.
t1) Computer Science Department, Washington State University, Pullman, Washington 99164

U.S.A.
(2) Supported in part by N.S.F. Grant No. MCS-80004128.

R.A.I.R.O. Informatique théorique/Theoretical Informaties, 0399-0540/1982/ 191/$ 5.00
© AFCET-Bordas-Dunod

192 R. ROSS, K. WINKLMANN

to remember one substring and then check it for equality with another
substring — the information needed first for such a check is bound to réside at the
bottom of the store.

Thus, the situation is one where strong intuition does not readily translate into
a proof. We regard this as a deficiency in the theory of context-free languages,
which we expect to repair by first dealing with a special instance (the non-
context-freeness of répétitive strings) and then, in a subséquent paper,
generalizing our proof technique into a new necessary condition for context-
freeness.

The remainder of this paper consists of a proof of the above theorem and some
concluding remarks. Ends of proofs are marked with the symbol D.

We first prove that répétitive strings over a six-letter alphabet are not context-
free. The extension to three-letter alphabets will follow quite easily, using a resuit
from [2].

Let .R be the set of répétitive strings over some fixed alphabet containing at
least the six symbols a, b, c, S, 0, and 1. For the sake of deriving a contradiction
assume that R is context-free. Let M be a nondeterministic pushdown
automaton with L(M) = R. Without loss of generality we may assume that M
has the following properties:

— it accepts by empty store,
— it has only one internai state,
— it changes its stack height by at most 1 in any single step, and
— it reads one input symbol in every step.

These properties of M are the result of assuming that the grammar for R is
given in "2-Greibach-Normal-Form" [5, 9,11,12], where all productions are of
the form A -> a BC, A -• a B, or A -> a with A,B,C being syntactic variables and
a a terminal symbol. The standard construction ôf a nondeterministic pushdown
automaton from a context-free grammar (see e. g. [8], pp. 115-116) then yields a
machine with the above properties.

The basic idea behind our proof is to analyze how the pda M can store
information about its input. Specifically, we are going to exploit the fact that
information received (on the input tape) during an early stage of the computation
is bound to réside near the bottom of the stack. Information on the stack simply
cannot be arbitrarily juggled around. Some of the technical details of such an
analysis are simplified by the assumption that the height of the stack changes by
at most 1 in any single move. But while convenient, this assumption is not
essential. At the cost of adding some technical detail to the proof we could adopt
the weaker assumption that there is some constant k, not necessarily 1, such that

R.A.I.R.O. Informatique théorique/Theoretical Informaties

REPETITIVE STRINGS ARE NOT CONTEXT-FREE 193

M changes its stack height by at most k in any single step. This weaker
assumption corresponds to assuming that the grammar for R is given in
Greibach-Normal-Form but not necessarily in 2-Greibach-Normal-Form.

Let s dénote the size of the stack alphabet of M. Choose two natural numbers,
p and q, such that they satisfy:

E

and:

2«>(2p)2s (••)

YJ $h is a bound on the nurriber of different stack configurations possible in M up

to height Aq\ (2p)2 s is the number of different triples consisting ofone stack
symbol and two positions in a string. of length 2p {l e. two numbers between 1
and 2p)\ and 2P and 2q are, of course, the numbers of different binary strings of
lengths/? and q, respectively. Why we want inequalities (•) and (••) to hold will
become clear shortly. At the moment just note that numbers p and q satisfying
(•) and (••) do indeed exist. To see this we can combine (•) and (••) into:

(2*/s)lf2/2>p>log2(| À

and observe that the value of the expression on the left grows exponentially with
q whereas the value of the expression on the right grows only linearly with q.
Therefore by choosing q large enough we can indeed find an integer/? satisfying
(•) and (••).

Using these chosen numbers we will now construct a set A of strings whose
4'répétitive properties" are easily understood. We will then show that even on
this restricted set A the pda M will not be able to distinguish some répétitive
strings from "similar" nonrepetitive ones.

The set A is constructed as follows. Let w be a fixed string of length n—p + q
over { a, b, c, S } with the property that ww co.ntains only one répétition (ww
itself). One way to get such a string w is to choose a nonrepetitive string w' of
length n — 1 over {a, b, c] and let w beSw/. (The fact that arbitrarily long
nonrepetitive strings over a three-letter alphabet do exist was first shown in [13].
Proofs can also be found in [4, 7, 10, 14] and [6, pp. 36-40]. See also [3].) The
éléments oîA9 then, will be ail strings obtained from ww by inserting a 0 or 1 after
each character of ww.

vol. 16, n° 3, 1982

194 R. ROSS, K. WINKLMANN

Formally, define for every string ue { 0, 1 }2" the interleaving, I(u)9 of u with
the f\xcd string ww t o be :

I{u) = w1u1 . . . wnunw1un + 1 . . . wnu2n.

(Here w = w1 . . . wn with |u;.| = l for 1-^/^w, and u — u1 . . . u2n with | Wj| = l

for l^j^ln. Recall that w;e{<3, è, c, 5 } * and u e { 0 , l}*.)Then:

The cardinality of A is 22n, the number of different binary strings of length 2«.
Furthermore, our choice of IÜ ensures that I(u) is répétitive if and only if u is a
répétition, i. e. if and only if u = xx for some xe{0, l}". This is stated as
Lemma 1.

LEMMA 1: For al! x, .r'e{0, 1}", I (xx')eR if and on!y ifx = x'.

Proof: Straightforward. G
In describing the actions of thepda M as it examines an interleaved string I (w),

it will be necessary to refer to certain portions of the input I (M). Therefore, we will
consistently write u as yzy' z' with y, y' e (0, 1 }p and z, z'e {0, 1 }5; thus,

= u ;^ ! . . . wpypwp

In / (yzy' z') we will refer to:

w1yl . . . wpyp as the "first y-portion",

wp+lz1 . . . wp + qzq as the "first z-portion",

w1 y[. . . wpy'p as the "second ^-portion", and

wp+1 z[. . .top+4z'9 as the "second z-portion".

Informally speaking, any pda which can distinguish between répétitive and
nonrepetitive strings from A must have the first/? 0' s and T s of the input stored
on its stack at the moment when the last character of the first y-portion has been
read. Otherwise there could not be a comparison with the corresponding
characters in the second half of the input. In other words, we expect a typical
accepting computation of M (on inputs from A) to use enough storage space to
hold at least p bits of information just after the first y-portion of the input string
has been read. The following définition makes this notion of "typicaF'
computations précise. Lemma 2 then says, roughly, that those computations
indeed deserve to be called "typical".

R.A.I.R.O. Informatique théorique/Theoretical Informaties

REPETITIVE STRINGS ARE NOT CONTEXT-FREE 195

For every y e {0, l)p, ze {0, 1 }q and computation C on input I(yzyz) define
StackHeightc (yzyz) to be the height of the stack in computation C immediately
after reading last character of the first y-portion of the input I {yzyz), and call C
"typical" if Stack Heightc {yzyz) > Aq. (Recall that by (•) a stack height of 4 q is
not enough to store p bits of information.)

LEMMA 2 : There is a ye{0 l}p such that for each z e { 0, 1 } q ail accepting

compuîations C on input I(yzyz) are typical

Proof: Assume to the contrary that for ail y e { 0, 1 }p there is a z { 0, 1 }q and
there is an accepting computation C on input I(yzyz) with StackHeightc

{yzyz) ̂ 4 q. By (•) there are more strings in { 0, 1} p, viz. 2P, than there are stack

configurations up to height 4 q, viz. £ $*. Hence there are two strings y and y'

in {0, 1}P, y¥^y', such that for some z, z'e{0, l } 9 there are accepting
computations C and C' (on inputs /(yzyz) and l{y'z'y'z') respectively) where
the stack configurations just after reading the first y-portion of the input are the
same in C and C''. (Recall that M has only one internai state, hence the stack
contents alone détermine the future behavior of M on a given input.) Therefore
M will also accept l{yz' y' z') and ï{yf zyz), neither of which, by Lemma 1, is
répétitive. D

To repeat, the intuition behind this Lemma 2 is quite simple: if M is to accept
all répétitive strings but no others, then for it to accept a string of the form
I{yzyz) it must "remember" the first y-portion to make sure it matches the
second one.

Again speaking informally, what is left to show is that if our pushdown
automaton M behaves in this "typical" way, which it must by Lemma 2, then
something else is bound to go wrong. Specifically, what we will show is that M
will be unable to check z against z' in inputs of the form /(yzyz'). Consequently,
some nonrepetitive strings will be accepted.

In every typical accepting computation C on input / {yzyz), the foliowing
"events" happen:

Event Définition of Event

Exitc {yzyz). .

Entryc {yzyz).

For the last time dur ing the reading of the first y-portion of the input 1 {yzyz),
the stack height changes from 2 q to 2 # +1

For the first time after the reading of the first y-portion of the input I {yzyz), the
stack height changes from 2<? + 1 to 2q.

By définition, the event Exitc {yzyz) will occur when reading a symbol in the first
y-portion of the input / {yzyz) [always presuming that C is a typical computation

vol. 16, n° 3, 1982

196 R. ROSS, K. WINKLMANN

on input I(yzyz)]. Since M accepts by empty store, Entryc {yzyz) must happen at
some point during the computation C and, in fact, it must happen when reading
a character in the second y-portion of ƒ (yzyz); it cannot happen during the first z-
portion, because at the beginning of the first z-portion the stack height is more
than 4 q and the 2 q symbols of the z-portion do not give M enough time to
decfease the stack height by more than 2q. Similarly, it cannot happen during
the second z-portion because then M would not have time to empty the stack in
order to accept the input. Figure 1 illustrâtes this.

Input Tape
(Characters of ww are not shown.)

bot tom

Figure 1. - The movements of the stack head plotted against the movement
of the input head in a typical accepting computation.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

REPETITIVE STRINGS ARE NOT CONTEXT-FREE 197

tor typical acceptmg computations G, let Exit-Timec {yzyz) be the position of
the input character being read in I {yzyz) when Exitc {yzyz) occurs in the
computation C. Similarly, let Entry-Timec {yzyz) be the position of the input
character read when Entryc {yzyz) occurs in the computation C. And fïnally let
Exit-Symbolc {yzyz) be the symbol put into stack location 2q+l when Exitc

(yzyz) occurs. From the remarks in the preceding paragraph we know that Exit-
Timec {yzyz), taken over all typical accepting computations and ail inputs
I(yzyz), ranges over no more than 2p values, and that the same is true for
Entry-Timec (yzyz). The range of Exit-Symbolc (yzyz) obviously is no more
than the s symbols in the stack alphabet of M. This will be used in the proof of
Lemma 4 later on.

LEMMA 3: If

Exit-Timec (yzyz) = Exit-Timec (yz' yz'),

Exit-Symbolc (yzyz) —Exit-Symbolc (yz' yz1) and

Entry~Timec (yzyz) = Entry-Timea (yz' yz'),

for some y e { 0, 1 }p, z, z' e { 0, l}q and typical accepting computations C on input
I(yzyz) and C' on input I (yz' yz'), then M accepts inputs I (yz' yz) and I (yzyz).

Proof: The following is an accepting computation of M on input / (yz' yz) : M
runs as in C until the event Exitc (yzyz) occurs, then runs as in C' until Entryc

(yzf yz') occurs, and then fmishes as in C. Similarly for input I(yzyz'), D

LEMMA 4: There is a string yç{0, 1 } p and there are strings z, z ' e{0 , I } q ,
z^z', and typical computations C on input I (yzyz) andC' on input I (yz' yz') which
satisfy the conditions of Lemma 3.

Proof: Choose y as shown to exist in Lemma 2. Then by Vs there are more
different strings z in { 0, 1 }q than there are different "Exit-Time", Exit-Symbol,
Entry-Time" triples. •

Lemma 4 shows that M will indeed accept strings which are nonrepetitive.
Therefore, there does not exist &pda accepting R, and, hence, R is not context-
free. This fmishes the proof of the Theorem for six-letter alphabets.

This resuit can be extended to alphabets with fewer than six characters by
modifications to the proof. However, a more elegant way to show that the
Theorem holds for alphabets with only three letters is provided by the following
resuit from [2]:

There is an £-free homomorphism h from a six-letter alphabet to a three-letter
alphabet which preserves nonrepetitiveness, i. e. if M; is nonrepetitive then so
is h(w).

vol. 16, n° 3, 1982

198 R. ROSS, K. WINKLMANN

For such a homomorphism h, the set of répétitive strings over a six-letter
alphabet is the image, under h ~1, of the set of répétitive strings over a three-letter
alphabet. Since context-free languages are closed under inverse homomorphism,
and since we have shown that the set of répétitive strings over a six-letter
alphabet is not context-free, it follows that the set of répétitive strings over a
three-letter alphabet is not context-free either.

A GENERALIZATION

Our proof easily generalizes to all sets Rki k^2, defined as:

Rk = {xykz\x, zei,* and ye£+ }.

SUMMARY, CONCLUSIONS, AND OPEN PROBLEMS

We have shown that the set of répétitive strings over a three - letter alphabet is
not context-free. The proof consists of a careful analysis of the distribution, in the
pushdown store of a pda, of information about the input to the pda.

Perhaps more important than the immédiate resuit is the fact that the proof
technique employed here seems, at least in this one instance, to be more powerful
than known classical techniques. Whether or not it generalizes to a new and
useful necessary condition for context-freeness remains to be seen. We expect to
follow up on this issue in a subséquent paper.

ACKNOWLEDGMENTS

We wish to acknowledge the help of David Benson, who first brought to our attention the problem
of showing that répétitive strings are not context-free, and the help of Richard Lorentz and Michael
Main in discussing details and providing insights into the problem.

We are grateful to the referee who pointed out the result from [2] which provided an elegant way to
extend our result to three-letter alphabets.

REFERENCES

1. J. M. AUTEBERT, J. BEAUQUIER, L, BOASSON and M. NIVAT, Quelques problèmes ouverts
en théorie des langages algébriques, R.A.I.R.O. Informatique Théorique, Vol. 13, (4),
1979, pp. 363-378.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

REPETITIVE STRINGS ARE NOT CONTEXT-FREE 199

2. D. R. BEAN, A. EHRENFEUCHT and G. F. MCNULTY, Avoidable Patierns in Strings of
Symbols, Pacific Journal of Mathematics, Vol. 85, (2), 1979; pp. 261-294.

3. J. BERSTEL, Sur les mots sans carré définis par un morphisme, A. MAURER, Ed.,
Automata, Languages, and Programming, Lecture Notes in Computer Science,
Vol. 71, Springer-Verlag, 1979, pp. 16-25.

4. C. H. BRAUNHOLTZ, Solution to Problem 5030, American Math. Monthly, Vol. 70,
1963, pp. 675-676.

5. S. A. GREIBACH, Eraseable Context-Free Languages, Information and Control,
Vol. 4, 1975, pp. 301-306.

6. M. HARRISON, Introduction to Formai Language Theory, Addison-Wesley, 1978.
7. G. A. HEDLUND, Remarks on the Work of Axel Thue on Séquences, Nordisk

Matematisk Tidskrift, Vol. 15, 1967, pp. 148-150.
8. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages and

Computation, Addison-Wesley, 1979.
9. G. HOTZ and R. Ross, LL (k)-andLR (k)-Invarianz von Kontextfreien Grammatiken

unter einer Transformation auf Greibach-Normalform, Elektronische Informations-
verarbeitung und Kybernetik, Vol. 15, (1/2), 1979, pp. 73-86.

10. P. A. B. PLEASANTS, Nonrepetitive Séquences, Proc. Cambridge Philosophical
Society, Vol. 68, 1970, pp. 267-274.

11. R. Ross, Grammar Transformations Based on Regular Décompositions of Context-
Free Dérivations, Dissertation, Computer Science Department, Washington State
University, Pullman, WA. 1978.

12. R. Ross, G. HOTZ and D. BENSON, A General Greibach-Normal-Form transformation,
Technical Report CS-78-048, Computer Science Department, Washington State
University, Pullman, WA. 1978.

13. A. THUE, Über Unendliche Zeichenreihen, Norske Videnskabers Selskabs Skrifter
Mat.-Nat. Kl. (Kristiania), Nr. 1, 1906, S. 1-22.

14. A, THUE, Über die Gegenseitige Lage Gleicher Teile Gewisser Zeichenreihen, Norske
Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania), Nr. 1, 1912, S. 1-67.

vol. 16, n° 3, 1982

