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ABSTRACT. — A problem which can be considered dual to the PosCs Correspondence Probiem is
shown to be decidable.

The equality sets for homomorphisms onfree monoids with two generators are studied. In particular,
for some words ail possible homomorphisms agreeing on them are shown. If ail such distinct
homomorphisms are periodic, then the word (set) is called periodicity forcing. 4 number of périodicité
forcing words or sets is shown. A number of equality sets oftheform F* with cardinality ofF at most two
is shown. In particular ail such equality sets where Fcza+ b+ u b+ a+ are given.

RÉSUMÉ. — On prouve la décidabilité dhm problème qui peut être considéré comme le dual du
problème de correspondance de Post.

On étudie les ensembles d'égalité pour les homomorphismes sur un monoïde libre à deux générateurs.
On donne, pour des mots particuliers, tous les homomorphismes qui coïncident sur eux. Si tous ces
homomorphismes sont périodiques, le mot, ou l'ensemble de mots, est appelé « periodicity forcing ». On
donne un certain nombre d'ensembles de cette nature. On donne des ensembles d'égalités de laforme F*,
où F a au moins deux éléments. En particulier, on donne tous les ensembles d'égalité de ce type où

1. INTRODUCTION

Décision problems of whether two homomorphisms on a free monoid agrée on
at least one or ail words from a given set are of crucial importance in
computability and formai language theory. The former is the classical Post's
Correspondence Problem while the latter played a crucial rôle in proving the
decidability of the DOL équivalence problem [3]. Recently there has been much
research done in this direction. For example in [4] it was shown that given a
context-free language L and two homomorphisms it is decidable whether they
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350 K, CULIK II, J. KARHUMÂKI

agree on every word of L. Already several years ago it was conjectured by A.
Ehrenfeucht that for every language L there exists a finite "test set" F so that any
pair of homomorphisms agree ori L iff they agree on F. Very recently this
problem was answered positively for L over a binary alphabet [5] but remains
open in the gênerai case.

In a somewhat different direction the notion of an equality set for two
homomorphisms, i.e. the set of all words on which the „homomorphisms agree,
has been introduced in [12]. Equality sets have turned out to be a powerful tooi in
the characterization of various language classes. The reader is referred to [1,2,6]
for further details. Equality sets are also useful in some decidability proofs, in
particular the result that for elementary homomorphisms (see section 2) the
equality set is always regular [7].

This paper approaches the topic of equality sets in still another direction. We
study equality sets for the spécifie case of a binary alphabet. For this case we
attempt to fmd all the sets which can be expressed as equality sets for some
homomorphisms. This goal was not fully accomplished but we hope that our
results can be extended in such a way that they would lead to solutions of some
important problems of the kind discussed above. In particular we have in mind
the decidability of the emptiness problem for equality sets in some special cases,
for example for homomorphisms over a binary alphabet, which in other words is
the decidability of the Post's Correspondence Problem for lists of length two.

A fter some preliminaries we show that a problem which can be considered
dual io the Post's Correspondence Problem is decidable. This is shown by
reducing it to the recent deep result of Makanin [11], namely the decidability of
the existence of a solution for a System of équations over a free monoid.

Then we discuss some basic, mostly already known, properties of equality sets
for homomorphisms over a binary alphabet. The restriction to binary alphabets
ensures that every homomorphism is either elementary or periodic and
consequently every equality set is either regular (it is not known whether this is
effective) or of a very special form, namely the set of all words with a fixed ratio of
the two symbols.

Next we solve the following problem for some cases: Given a word, fmd all
possible pairs of homomorphisms which agree on this word.

Sections 6 and 7 give some partial solutions to the problem of characterizing
all the equality sets for homomorphisms over a binary alphabet. Such a
characterization is difficult but very interesting since it would probably imply the
decidability of the emptiness problem for equality sets (Post's Correspondence
Problem) in some special cases, and have other applications as discussed in
section 8.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUALITY SETS 351

We call a set of words over a binary alphabet periodicity forcing if in every pair
of distinct homomorphisms agreeing on every word from the set both the
homomorphisms must be periodic. We first investigate the singleton periodicity
forcing sets, that is periodicity forcing words. Finally, in section 7 we exhibit
many two-element periodicity forcing sets and also some two-element sets which
are not periodicity forcing. We give some results to support our conjecture that
every set containing at least three r-primitive words (words for which no prefix
has the same ratio of symbol occurrences as the whole word) is periodicity
forcing. Equivalently this would mean that every equality set for two elementary
homomorphisms over a binary alphabet is the star of a two element set.

2. PRELIMINARIES

We give here the basic définitions and some known results, which are needed
later.

The free monoid generated by a fini te alphabet E is denoted by E*. For w,
v e E*, we write u v if w is a prefix of v (not necessarily proper). The length of w in
E* is denoted \w\, specifically | e | = 0 for the empty word, E + = E * - { e } . For a
set A, \A\ dénotes the cardinality of A. For vo in E* and a in E, the number of
occurrences of a in w is denoted by #a(w). For w in { a, b } + ,
r (w)= #a (w)/ #b (w) is the ratio of w. A word w in E* is ratio primitive (r-
primitive) if r (u)^r (w) for every nonempty proper prefix u of w.

Consider two homomorphisms g and h mapping E* into A* (possibly E = A).
The equality set of g and h [12] is defmed by

E(g, h)={weX* :g(w) = h(w)

The minimal equality set of g and h [1] is defmed by

and if w = uv where M, veü*, then g{u)^h(u)}.

For a binary alphabet Z={a, b}, and distinct g, h, e (g, h) = E(g, h)nP
where P= \welL+ : w is r-primitive}. Indeed, if xeE(g, h) and x = yz where
r(y) = r(x), then also yeE(g, h). For the converse see lemma 4.1.

In this paper we study equality sets. We note that without loss of generality we
can restrict ourselves to a binary target alphabet A since any alphabet F can be
encoded over a binary alphabet A, and E (g, h) = E (gf, h') where g\ h' are the
compositions of g and h, respectively, with the encoding. On the other hand we
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352 K. CULIK II, J. KARHUMAKI

clearly cannot similarly encode the source alphabet E. Therefore results obtained
for a binary alphabet need not be valid in the gênerai case.

A homomorphism h : E* -> À* is elementary [7] if there does not exist a
décomposition of h into ƒ and g9 h = gf,

so that | T | < 1E1.

A homomorphism h : E* -> À* is periodic if there is IÜ in A* such that, for each
a in E, there is an integer q such that h (a) — wq.lt is clear that for E = { a, b} every
homomorphism on E* is either elementary or periodic. A set L <ü E* is periodicity
forcing if for any distinct homomorphisms g, h on E*, the property h(w) = g(w)
for each w in L implies the periodicity of both g and h.lïL= { x } , then we say
simply that x is periodicity forcing.

For each w in E* the primitive root of w is denoted by p (w) and defined as the
shortest word u in E* such that w^un for some n ^ l . In particular, p(i/) = e If
u = s. It is well known that p (w) is unique. The following lemmas turn out to be
useful for this paper, see e.g. [10].

LEMMA 2.1: For u, f in E"1", uv = vu iff p(u) = p(u).

LEMMA 2.2: jpor w, u, M; in E*, if w<um, w<vn for some m, n ^ l , and
J | ^ | M | + | I ; | , then p(w) = p(f).

LEMMA 2.3: for u9 v in E* and w in E + , I/WÏ; — vw, then there exist p, s in E* and
^O such that u = sp, v — s(ps)k and w — ps.

LEMMA 2.4: For u, v, w in E + and m, n, p ^ 2 , if umvn = wp, then

3. DUAL POST'S CORRESPONDENCE PROBLEM

Here we show that a problem which can be considered dual to the Post's
Correspondence Problem (PCP in short) is decidable.

The problem is: Given a string w in E*, do there exist two distinct
homomorphisms h9 g : E* -+ A* for some A, such that at least one of them is
aperiodic and h(ic) = c)(w)?

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Note that if the requirement that h and g are distinct or, for wfia+ u b + , that
at least one of them is aperiodic is omitted then such homomorphisms always
exist.

We show the decidability of the dual PCP by reducing it to Makanin's result
concerning solvability of équations in free monoids.

THEOREM 3.1: The dual PCP is decidable.

Proof: Given w in X*, we construct a fmite number of Systems of équations over
a free monoid at least one of which has a solution iff there exist homomorphisms
h and g satisfying the requirements of the given instance of the dual PCP.

In view of the discussion in section 2 we may assume that \ = {0, 1} . For
S = { a 1 ) . . . , ü B } let E = { a : a e S } and E = [~à : aeH). The word^obtained
from ^ in E* by (double) barring of all symbols will be denoted £( , ) . In all
Systems of équations, the set of unknowns will be E u E u {s, t9u,v,y,z} and
the constants 0 and 1. For each fixed i, y, Je, lrgi, j , k^n, k^i and <x, P, y,
8e{0 , 1}, ot^P and y # ô we construct the following three Systems of équa-
tions over A*:

w=w; (1)

either

or

or

By [11] we can test whether at least one of these Systems has a solution. If so, then
the given instance of the dual PCP has a solution. To see this consider
homomorphisms g, h defined by g (a) — a,h (a) =~à for each a in S, and verify that
they satisfy the requirements of the dual PCP: (1) is equivalent to g(w) = h(w).
Equations (2) are equivalent to g (a J g (aL) ^g(at)g (ak) which, in turn, holds true
iff pte(ak))#p(âf(a;))9 #(afc)#£ and g{a{)ïz (lemma 2.1). Hence, g is
nonperiodic iff (2) is valid for some i and k (and a, P with a # P). Finally, (3) holds
for some j iff h and g are distinct.

vol. 14, n°4, 1980



354 K. CULIK II, J. KARHUMÀKI

If none of the Systems of équations has a solution, then, clearly, also the dual
PCP has no solution. •

Note, that it is easy to modify the above proof for the case when both g and h
are required to be aperiodic.

COROLLARY 3.2: Given we {a, fr }*, it is decidable whether there exist distinct
elementary homomorphisms g, h : [a, b }* -• A* for some A such that g (w) — h(w).

Proof: Over a binary alphabet a homomorphism is elementary iff it is
aperiodic. Hence, the resuit follows by the note above. •

Now we generalize theorem 3.1. We show that it is decidable whether there
exist two homomorphisms as in theorem 3.1 which agrée on every word from a
given regular set.

THEOREM 3.3: Given a regular set K, it is decidable whether there exist two
distinct homomorphisms g and h such that g is aperiodic and g(x) = h (x)for each x
in R.

Proof: By [4], for every regular set R there effectively exists a fmite set F (called
the test set) so that g(x) = h(x) for each x in R iff g{x) = h(x) for each x in F.
Hence, we can restrict ourselves to the case when R is fmite. For a finite R the
proof ispbtained by an easy modification of the proof of theorem 3.1, namely by
replacing équation (1) by équations x = ;x for each x in R. •

In theorem .3.3, as in therorem 3.1, both g and h can be required to be
aperiodic.
Furthermore, the theorem could clearly be extended to every language family for
languages of which there effectively exists a fmite test set. The results in [4]
strongly suggest that the context-free languages are such a family.

Finally we note that it is also easy to see that it is decidable whether there exist
two distinct periodic homomorphisms agreeing on every word of a given regular
set.
4. PROPERTIES OF EQUALITY SETS OVER BINARY ALPHABETS

From now on we will be investigating the properties of equality sets and later
on of their éléments, that is of solutions of instances of PCP. In doing this we will
restrict ourselves to homomorphisms over a binary alphabet, that is in terms of
PCP to instances of PCP with lists of length two. Henceforth we assume
£={a,Z>}.

Example 4.1: Let the homomorphisms h, g : £* -• S* be defined by

g : a-> aab, h : a-*a,

b-* a, b -> baa.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Here every element of E(g, h) must start with a and the "continuation" is
uniquely determined. So we have a single minimal "solution" aabb

g(a) g(a) g(b)g(b)

a a b a a b a a
i II H II |

h(a)h(a) h{b) h{b)

therefore E(g,h)={ aabb }*.

Example 4.2: Consider homomorphisms g, h defmed by

g : a -> aab, h : a -• a,

b -> aa, b -> baa.

Here it is easy to see that e (g, h) =0, i.e. E(#, /i)= {s}, since clearly each
potential solution would have to start with a and then to continue
deterministically as indicated

aab a a b à a a a a a b a a b ,

that is we are forced to generate the infinité word of the form

a a b b a* b4 a8 b* ... a2" b2" ...

The following fact concerning ratios is mentioned in [5].

LEMMA 4.1: Let g, h be distinct homomorphisms over a binary alphabet. Ifu,
veE(g, h), then r(u) = r(v).

The equality sets for periodic homomorphisms over a binary alphabet are
characterized by the following lemma which is easy to verify.

LEMMA 4.2: Let g and h be distinct periodic homomorphisms over a binary
alphabet with minimal periods .p and q, respectively. Then E(g, h) is of the form

{s}u{u ;€L + | r ( u ; ) = fc}, (1)

where k ^ O is a rational number or k = oo ifp = q,andE(g, h)—{s} if p^q. Every
set ofform (1) is an equality set for some periodic homomorphisms.

LEMMA 4.3: A homomorphism over a binary alphabet is elementary iffit is
injective.

vol. 14, n°4, 1980



356 K. CULIK II, J. KARHUMAIQ

Proof: It is shown in [7], Thm. 3.7, that each elementary homomorphism is
injective. Clearly, each injective homomorphism over an at least two-letter
alphabet is aperiodic and fmally, by définition, an aperiodic homomorphism
over a binary alphabet is elementary. G

LEMMA 4.4: Let g and i be homomorphisms over a binary alphabet. The equality
set E(g, h) is either regular or of the farm (1) for some rational k>0.

Proof: lïg = h, then E(g, h) = £*, a regular set. If g and h are distinct and at
least one of them is elementary then the regularity of E (g, h) was shown in [8].
Otherwise both g and h are periodic. By lemma 4.2, if E(g, h) + { s} 5 then we
have

E(g, h)= {s} u {weX+ \r(w)^k},

where /c^O is a rational number or k = oo. This last set is regular in both cases
k = Q or k= oo, which complètes the proof. Q

From the above proof and lemma 4.3 we also have the following:

LEMMA 4.5: Let gy h be distinct homomorphisms over a binary alphabet. If at
least one of them is injective, then E(g, h) is regular.

The above result does not hold for an arbitrary alphabet even if both g and h
are required to be injective, for a counterample see [9].

The following result is shown in [9].

LEMMA 4.6: Let g and h be homomorphisms over a binary alphabet, g elementary
and h periodic. Then there exists effectively a word w so that E(g, h)= {w}*.

5. HOMOMORPHISMS AGREEING O V A GIVEN WORD

In this section we consider the problem of fmding all pairs of homomorphisms
agreeing on a given word over {a, b). Obviously, this problem is more difficult
than the dual PCP and although we do not know any "practical" algorithm even
for the dual PCP we will solve this more difficult problem in some special cases.
Certainly, such solutions throw light on the theory of equality sets as a whole.

We start with:

LEMMA 5.1: The word ab e E (h, g),with\h(a)\ > \ g (a)\Jff there exist words a,
P and y such that p ^ s and

h: a ^ a p , g : a -> a, 1

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Proof: Indeed, h {ab) = g (ab) with | h (a) \ > \ g (a) | iff there exists a word 2 ̂  e
such that h(a) = g(a)z and zh(b) = g(b). Hence, the lemma follows when we
choose oi = g{a)i (3 = z and y = h(b). D

Formula (1) does not teil us very much about the equality sets, since it includes
three variables. If we require that ba is also in E(h, g) we can say much more:

THEOREVI 5.2: Theset{ab, ba}^E(h, g),with\h(a)\ > \g(a)\, iff there exist
nonnegatiie inteçjers tu t2 and f3 and icords a and p such that t2>0, a p ^ e and

h: a->oc(Potyi + S g: a->

or
h: a -> oc, gf : a - > s,

(2)

Moreover, if { ab, ba] <= E (h, g), h^g, and h or g is elementary, then
E(h,g)= { ab, ba}*.

Proof: Obviously for any pair (h, g) of the form (2) ab, ba e E (/i, g). To prove
the converse let {ab, ba} £E{h, g). Then, by lemma 5.1

h: a-> oc'P', g: a-> a',

b^y'9 b-^P'Y',

for some words a', P' and y' with p V e . Hence, baeE(h,g) implies
Y'a'P' = P'Y'ot'. So, by lemma 2.1, either y'a'==£ or else p(p/) = p ( y / a / ) / e . In
the first case we have h(a) = g(b) = $' and h(b) = g{a) = E.In the second case there
exist integers tu t3^0 and t2>0 and words a and P, with a P ^ s , such that
p' = (pa)S y'^(pa) t 3p and a' = a(pa)r». Thus the first sentence of the theorem
follows.

To prove the second sentence of the theorem, let h and g be of the form (2) and
let h (resp. g) be elementary. Defme homomorphisms hh g( and c by

ht: a^a{ba)^ + \ gt: a^a(baY\

b^b(abf\ b-+b(ab)h+l\

and
c : a -*• a,

Then h = cht and ̂  = cgf,.. Moreover, c is elementary since h (resp. #) is elementary.
So c is injective implying £(fe, g) = E(ht, gt). Hence, the theorem follows since
clearly E(hi9 ^ ) = {afe, ba}*. D
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Corresponding to lemma 5.1 we also prove:

L E M M A 5 . 3 : The word abaeE{h, g\ with \h(a)\> \g{a)\9 iff there exist an

integer t^O and words oc, P and y such that o c P ^ e and

h: a->a(Pa)'Pa,
b -> y,

Proof: Clearly, for any pair (h, g) satisfying (3) abaeEQi, g). To prove the
c o n v e r s e let aba e E (h, g) w i th \h(a)\ > \g(a)\. T h e n h(a) = ug(a) = g(a)v for

some nonempty words u and t>. Hence, by lemma 2.3, there exist an integer t^O
and words a, P and y such that g(a)^a(fia)\ w = ap and u=Pot. Since
g(b) = vh(b)u the lemma foliows if we choose y = h(b). •

LEMMA 5.4: The w;or^ aabeE(h, g), with \h[q)\ > \g(a)\, iff there exist an

integer t^O and words oc, P and y such that a P ^ s and

h: a^(ap)'otap, g: a-»(ap)'a, j

Proof: As above it is enough to show that iïaab e E (/i, g ), with | h (a) \ > \g(a)\t

then h and ^ a r ^ of the form (4). Dénote h(a) = g(a)u. Then
ug (a) uh (b) = g(a)g (b). Let v be the word satisfying ug (a) = g{a)v which implies
that vuh {b) = g(b). By lemma 2.3, there exist an integer t ̂  0 and words a and P,
with otP^e, such that i/ = ocP> ̂ (a) = (aP)'a and i; = poc. Dénote h(b) = y. Then
^(b) = z;K/z(b)=PaocPY and h (a) = g {a)u = (aft)1 aa$. Hence the lemma
follows. •

As in lemma 5.1, formulae (3) and (4) contain three variables (and one
parameter) and hence the equality set can not be immediately determined.
Actually, as we shall see later, both {aab}* and [aab, baa}* are equality sets
determined by (3). On the other hand, we shall show (theorem 7.2) that the only
regular equality set obtained from (4) is {aba}*.

Our next result gives another example of the case when the conditions
xeE(h, g),h^g and h is elementary imply that E(h, g) = x*. Moreover, now all
the homomorphisms agreeing on a given word are obtained using only two
variables.

THEOREM 5.5: The word aabbeE(h, g), with \h{a)\ > |fif(a)|, iff there exist
nonnegative integers ti9 t, and t3 and words a and p such that a p ^ e and

h: fl-a(pa)'-a(pa)t'P, g: a->(ap)f'a,
b^p(ap)'2a(ap)t3a

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Hence, aabbeEQi, g), h^g, and h or g elementary, imply E (ft, g) = {aabb}*.

Proof: It is easy to see that the second sentence is a conséquence of the first one
{cf the proof of theorem 5.2, It is also clear that any pair (ft, g) satisfying (5) also
satisfies aabbeE (h, g).

So it remains to be shown that ifaabb e E (ft, g) and \h(a)\ > \g(a) |, then ft and
g are of the forrn (5). Dénote g(a) = â9 g(b) = b, h(a)=~â and h(b) = b. Then the
equality h(a2b2) = g(a2b2) becomes

aabb^aabb. (•)

Since \~a\ > | a | , then | b \ < \ b \ and so there exist words x and y such thatTï = âx

and b = yb. Thus, from (•) it foliows that

xaxb = ayby,

which implies that | x | = \y\ and therefore

xâ—ây,

xb = by.

Now we apply lemma 2.3 to both of these equalities and conclude the existence of
words u, u, z and r and integers fe, /c'^0 such that

x = 1 ^ = 27% y = i;M — r z ,

E={uv)ku, ~b = (zrf'z.

We first assume that \u\ ^ | z | . Hence equalities uv = zr and vu = rz lead, by

theorem 5.2, to the foliowing three subcases: Either | u | = | z | o r w = r = ot and

v = z = & for some nonempty word a or

for some words a and P, with aP^s , and for integers tu t3^0 and t 2 >0.

In the first case u = z and u = r and hence

ft : a -> (uv)k uuv, g\ a-> {uv)k w,

b -> (wü)fc' u , b-y vuu (vuf.

In the second case

vol. 14,n°4, 1980
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Finally, in the third case after setting t = ti + t2-\-t3:

h: a-* a(pa)(£+1)fe+tl + ̂ a((3a)f p, g : a -> (ap)(t+1)*+tl+t>a,
b -• a(Pa) ( t + 1 ) k '+ \ b -> P(ap)(a(aP)( t+1)k '+tl a.

So in all the cases the homomorphisms are of the form (5).

In the main case | w | ^ | z | the homomorphisms h and g are obtained in ail
three subcases from above by interchanging u with z and v with r. It is
straightforward to see that these homomorphisms are still of the form (5). Hence
the proof is complete. •

As an application of theorem 5.5 one can show the following. The word a4 b4

belongs to E (h, g), with \h(a)\> \g{a)\ and h or g elementary, iff there exist
nonempty words oc and p such that p(oc)^p(p) and

h : a —> a4 p, g '• a -* a,

So the pair (h, ^) is now, in a sensé, unique. The proof of this fact is
straightforward but long, therefore we omit it hère.

It is interesting to note that the uniqueness of the pair (h, g) above is not a
conséquence of the fact that the exponents in a4 è4 are "large". This is
demonstrated in the following example with words-a4-b3 and-a4b5 .

Example 5.1: Define, for ail n, m ^ 1, homomorphisms hu gu h2 and g2 by
setting

h,: a->{amttb)n, 9±: a^a\

b -> am, b -> (bamn)m.
and

h2: a~^{anban)mnanb, g2: a^anban,
b^a^ b-*((ba2n)mnban)m.

Then

and

6. PERIODICITY FORCING WORDS

In this section we are looking for periodicity forcing words over {a, b}, i.e.
words lühaving the property: we E (h, g) implies h and g are periodic. By
theorem 3.1, it is decidable whether a given word is periodicity forcing.
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However, our proof of theorem 3.1 does not give any example of a periodicity
forcing word. Here we will show that such words really exist.

It is a simple task to show that some words which are not r-primitive are
periodicity forcing. For example the word abaabb is such since
h(abaabb) = g(abaabb) implies h(ab) = g(ab) and h(aabb) = g{aabb) which is (by
theorem 5.5 or a simple direct argument) possible only if both h and g are
periodic. It is a little more complicated to show that there also exist r-primitive
periodicity forcing words, Before pro ving this we show that there is no
periodicity forcing word shorter than five.

LEMMA 6.1: For any word w with | Ï Ü | ^ 4 there exist elementary

homomorphisms h and g such that h(w) = g(w).

Proof: By example 5.1, {albj}* is an equality set for all i, j ^ l . Further
{al baj}*, for all i, j ^ l , is the equality set of the elementary homomorphisms
defined by h {a) = a, h (b) = al ba\ g (a) = a2 and g (b) = b. The word abba is not
periodicity forcing by theorem 5.2. Hen ce the lemma folio ws. D

In the next result we characterize periodicity forcing words of lenght five.

THEOREM 6.2: A word w in {a, b}* of length 5 is periodicity forcing iff
w~abüuh or u—babaa or w is obtainedfrom these by interchanging letters or by
taking minor images or by making both the opérations.

Proof: By symmetry, and by the fact that all words containing at most one b
are in equality sets of some elementary homomorphisms we may assume that w
contains two occurrences of b. Further, by symmetry, it is enough to show that
the words abaab and babaa are periodicity forcing while the words aaabb, ababa,
abbaa and baaab are not.

The fact that aaabb is not periodicity forcing follows from example 5.1. The
same holds true for ababa, abbaa and baaab since:

a b a b a b a b a b a b a b a b a

a b a b a a a a b a b a b a b a a a a b a b a a a
I ; II 11 II II I

_ _ _ p _ _ T^T1

b b a a a o b a a a b b a a a b b
L II_JLJLJI 1
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So it remains to be shown that the words abaab and babaa are periodicity
forcing. We consider each of them separately.

I . abaab: A s s u m e t h a t abaabeE(h, g) w i t h \h(a)\ > \g(a)\. D e f i n e g(x) — x

and h(x)—~x for a l lxeja , b}*. Let c = ab. Then we have cac = cac. Moreover

\c\-\^\ = \g(ab)\-\h(ab)\>0.

Hence, by lemma 5.3,

for some words oc, p and y and some integer t^O. Since PayaP-<a(pa)( it follows
that p (a) = p (P) and hence also p (y) = p (a). So p (a) = p (b) = p (â) = p (b) proving
that abaab is periodicity forcing.

II. babaa: Assuming that babaaeE(h, g) with | h (a) \ > \ g (a) | and using the
above notations we now have ccâ=cc a where c = ba. So, by lemma 5.4, we get

c =bâ = (a|

l-paocpy,

for some words a, p and y and some integer t ̂  0. Since, b a is a suffix of a word in
{ poc}* and PocaPy is a suffix of ba Poe = a p., and hence p(oc) = p(P). From this
point onwards the proof continues as in case I. •

At this point we want to summarize what kinds of not periodicity forcing
words are known to us. Let us call such a word as a solution referring to PCP. By
example 5.1, any nonempty word in a*b*is a solution. In a+ b+ a+ ail solutions
known to us are as follows: any word of the form ai baj (cf. the proof of lemma
6.1), the words abbaa and aabba (cf. the proof of theorem 6.2) and the words
ba2i+1 b, for i ̂  1 (cf. the proof of theorem 6.2). The only other solutions known
to us are those pointed out by the référée of this paper, namely the solutions of
the form (ab)1 a for z^2 (cf. again the proof of theorem 6.2).

As regards to periodicity forcing words we want to mention the foliowing. In
theorem 6.2 there are examples of r-primitive periodicity forcing words. Besides
these we know that any r-primitive word in (a3 a* b3 b*)2 is periodicity forcing.
However the proof of this is tedious because of the many cases needed to be
considered, and hence we omit it.
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7. PERIODICITY FORCING SETS

In this section we consider periodicity forcing sets. We start with:

THEOREM 7.1: Each of the following sets is periodicity forcing

{ ab,ax), where x^ b and ax is r-primitive,

{aab, ax}, where x^ab and ax is r-primitive.

Proof: By lemma 4.1 each subset containing two words u and v such that
r(u)^r(v) is periodicity forcing. We shall therefore suppose that in the frrst
case r(ab) = r (ax) and in the second case r (aab) = r (ax). In particular x ̂  e in
both cases. We consider these separately.

l . { a b , a x } \ L e t { a b , a x } < ^ E ( h , g) w i t h \ h ( a ) \ > \ g ( a ) \ . T h e n , b y
lemma 5.1, there exist words a and p such that

h : a->ap, g : a->oc,

6-Y, 6-^PY

If a = £ then # is periodic and hence, by lemma 4.6, also h must be periodic.
Consequently a ^ £ . Let ax — albz for some word z and Ï ^ O . Since ax is
r-primitive Ï > 1 . For Ï ^ 2 we write

ocP(aP)1"1 yu^aa1"1 $yv,

for some words u and u. Now we have two cases.

First, if |oc| + |PI ^ l a ' " 1 1 , i. e. | p | g | a l ' " 2 | , then by lemma 2.2 we have
p(aP) = p(oc)#£ and therefore p(a) = p(P).

Secondly, if | a 1 " 2 | < | p | we write P = a'~2z, z ^ e , and we conclude that
aP^zotp. Hence, ap = a'"1 z = zocf~1 showing that p(z) = p(a). So also in this
case p (oc) = p (P) and therefore £(/i ,^) = {ab}*,a contradiction. Hence the proof
of case I is complete.

II. { aab, ax }: Let again { aab ax } g E (h, g) with | h (a) | > | g (a) |. Then, by
lemma 5.4, there exist words oc, P and y and an integer t^O such that

h: a^> (ocP)' aap, g : a-^> (aP)r a,

b -> y, b

Since ax is r-primitive it is either of the form ax = abu for some word u or of the
form ax = aaalbv for some word v and some integer i ^ 1. If ax=-abu, then for
some tt> and z:

(apy aapy w = (aP)f apaap z.
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Hence, p(a) = p(P) and E(h, g) = {aab }*, a contradiction. If ax = aaa1 bz, then
for some w' and z' :

Hence, also in this case p (ot) = p (P), which complètes the proof of case II. •

We also prove:

THEOREM 7.2: Each of the following sets is periodicity forcing

{aabb, x], wherep(x)^aabb,

{ aba , x }, where p (x) # ab& .

Proof: The first assertion is an immédiate conséquence of theorem 5.5. To
prove the second claim let us assume that { aba, x}ç^E(h, g), with
\h(a)\ > | g (a) |. Now lemma 5.3 gives gênerai expressions for h and # and using
these and the arguments of the proof of theorem 7.1 it is straightforward to see
that { aba, aay}, for any y, is periodicity forcing.

So it remains two cases: either x = abbu for some uorx = bv for some v. Let us
assume first that x = abbu. For each word z we defme so-called balance B (z) of z
by setting B(z)= \h (z)\ - \g(z)\. Let B{a) = n. Then clearly B (M= - 2 n and
JB(x) = 0. Obviously lor any word z B(z) is the multiple ofn. So the
r-primitiveness of x and the fact B(abb)<0 guarantees that B(w)<0 for all
proper préfixes of x different from a. Hence x has a suffix aa, i. e. x = iï aa for
some u'. But, by the beginning of this proof and by symmetry {aba, u'aa} is
periodicity forcing.

Finally, { aba, bv} is periodicity forcing for all v because of exactly the same
reasons as { aba, abbu}. D

Our next aim is to characterize periodicity forcing sets included in
a* fe* u fo* a*. We start with:

Example IA: Defme, for z^ 1, homomorphisms h and g by

h : a-> a{bal, g : a-> a,

b -> (ba 2 i y- l b, b -> (ba21')1'"1 bfl£(&a2iy "x fe-

it is straightforward to see that

For instance, if i = 2 we have

I II II I
a a b a a a a b a a b a a a a b

I II I i . 1
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and

[ ir ii i

. b a a a a b a a b a a a a b a a
| J

The above example provides the only examples (besides {a, b}*) known to
the authors when a regular equality set over a binary alphabet has two or more
generators. These equality sets are also maximal in the sense that any set
{a1 b, ba\ x }* where x $ {a1 b, bal}+ is not an equality set, or even included in a
regular equality set different from {a, &}*, as we will next show.

THEOREM7.3: Let i ^ l . If the set [tfb, bal}<=,E (h, g), h^g, and h is

elementarythenE(h, g) — {albi bal}*.Consequently,{alb, ba\ x} isperiodicity
forcing for alliai and x $ { alb9 bal} +.

Proof: The case ï = l is covered by theorem 5.2. So consider i ^ 2 . By
lemma 4.6, g must be elementary, hence, we may assume that \h(a)\ > | g (a) |.
Again let h(x)~x and g(x) = x for xe{a, b}*. By theorem 5.2, or its obvious
interprétation, there exist words p and 5 and integers n, /??^0 and f ^ l such
that

p, b=(ps)m+tp.

If n+£^2, then by lemma 3.2, p(ö) = p(ps). Hence also p(p) = p(s)
contradicting the nonperiodicity of h.

So we conclude that n = 0 and t=l. If I*?'11 ^l/2|~â | , then clearly
p(a) = p(â) and hence p(s) = p(p), a contradiction. Thus there exist words M, V
and w such that

and

From this last equality we conclude, by lemma 3.3, that

t>=pa,
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for some words a and (3 and some integer /c^O. It is easily seen that

So the homomorphisms fc and g are of the form

h : a-*g, g : a-> r, 1 «.

h-*(ps)mP, b ^ ( p 5 ) m + 1 p j

where p and s are arbitrary words of the form (2), g^sps, rl = s and ra^O.

From now on it is straightforward to see (cf. the proof of theorem 5.2) that
E(h,g) = {aib,bai}*. •

It is interesting to note that the proof of the above theorem gives a
characterization of all pairs of homomorphisms having the equality set
{alb, ba1}*, i ^2 . All such pairs are obtained from (2) and (3) by ûxing the
constants k and m and choosing words a and P such that p(oc)#p(P). In
particular, example 7.1 is obtained with fc = 0, w = 0, a = a and P = b, that is

[h (aW^sps^a1 (ba2i)i-lbai^(aibai)i and [g {a)Y = a\

thus

h (a) = aibai, g (a) = a, h {b) = p = (ba2 J-'b

a n d

g {b) = psp = (ba2 J-1 ba1 (ba2 y-1 b.

Hence the homomorphisms in example 7.1 are in a sensé minimal. More
precisely, if we derine the size of the pair (h, g) of homomorphisms to be
max { \h(a)\, \g(a)\ \ a e Z }, then the smallest pair needed to define the
language { a5 b, ba5 }*, for example, as an equality language is of size 95.

In contrast to example 7.1 we now show:

LEMMA lA:Leti,j,mandnbenaturalnumberssatisfyingin =£landjm^l. Then
the set [albj, bman) is periodicity forcing.

Proof: Assume that [alb\ bman}^E(hi g) with \h(a)\ > \g(a)\. Let i^n,
then by lemma 4.1 j^m. We first consider the case when ï , ; ^ 3 . Again let
h(x) = Ë and g(x)^x for all xe{a, &}*. We have two subcases.

(i) | a l | ^ \~a| (or symmetrically \bj\ ^ |b\ ). Then there exist words p and s

and integer t ̂  1 such that~â= (psfp and a = ps. But ais also a suffix ofa showing

that p ( p) = p (s) and hence p (ö) = p (ö).
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This gives us the equality

for some k ̂ 2 . Also since 7^2, p (£>) = p (a) = p (b) by lemma 3.4, so both # and /Ï
are periodic.

(ii) \al\ ^ fÜ | and | P | ^ |~fc|. LetiUöx' and 7> = ;yP.

Then we have

Since j — 1, i — 1 §: 2 we conclude, by lemma 3.2, that there exist words q and r
and natural numbers kx and k2 such that p(gr) = <?r and

Hence al qrqr is a prefix of a word in (r#)* which implies that al e {rq)* r [recall
that p(rq) = rq]. Symmetrically, aneq(rq)*. These together guarantee that
P(r)=p(q)> Thus, also p(6) = p(a) = p(ö) = p(b).

So, there remain the cases where either i ory^2. Since albj and bm an has a
fixed ratio and i^n,j^m, it is sufficient to consider the sets X1 = {atb2,b2a*},
t^2, and X2 = {a2rb2, ba1}, t ^ l . To see that Xi is periodicity forcing let
X1^E(h9 g), with [fc(a)| > |#(a)|. Using the earlier notation of thisj>roof let
^ = Pz and b2 = zb2. Then zb2ât = b2âtz implying that p(z) = p(b2<?). So
£>2~â'ep (z)2 p(z)*, which means that

Pï ï t = p(zy,
for some 1^2. Hence, by lemma 2.4, p (&) = p(5) = p(z). So both /i and ^ are
periodic.

To see that also X2 = {a2t, b2, ba2t) is periodicity forcing, assume that
X2 ^ E (h, g) with h elementary. We define a homomorphism h' : a -> [/Î (a)]f,
b ->• /ï(b). Clearly /i' is also elementary. Moreover, since X2^E (/z, ^), { a2 b2,
b2a2}c=zE (h\ g) contradicting theorem 7.2. So the proof of lemma 7.4 is
complete. •

LEMMA 7.5: Any tvoo element set in a+ b+ is periodicity forcing.
Proof: The proof can be carried out, for example, by employing the ideas of

the proof of lemma 7.4. Moreover, theorem 7.1 is also useful. We omit
the details. G

Now we are ready for:

THEOREM 7.6: The subset X ofa+ b+ u b+ a+ is periodicity forcing iff\X\^2
and X is not oftheform {^b.ba^J^l {or symmetrically of the farm { ab\ bla},
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Proof: By examples 6.1 and 7.1 if | X \ = 1 or X is of the form {al b, ba1}, for
some i ̂  1, X is not periodicity forcing. The converse follows from lemmas 7.4,
and 7.5. Q

We want to conclude this section by mentioning the following generalization
of theorem 7.1. One can show that any two element set in a + fe* a* is periodicity
forcing. In other words, for any pair of homomorphisms (h, g)9 h^g,
h elementary,

\e(h,g)na+b*a*\^l9 (4)
and hen ce

The proof we know for the above fact is tedious, and since the result itself is not so
important, although it supports our conjecture {cf. section 8) we omit it.

8. OPEN PROBLEMS

Throughout this section only homomorphisms over a binary alphabet are
considered. In section 7 it has been shown that { al b, ba1 }* is an equality set for
each i ^ 1. No other regular equality set (^ { a, b }*) freely generated by at least
two words is known to us. Without claiming that no such set exists we make a
somewhat weaker conjecture in this direction: Every regular equality set for
homomorphisms over a binary alphabet is of the form F* where F is of
the cardinality at most two. Lemma 4.6, theorems 7 .1 ,7 .2 ,7 .3 and 7.6 give
considérable support to this conjecture. Further évidence is given in the
discussion following theorem 7.6.

Actually, (4) in section 7 indicates that an even somewhat stronger statement
than our conjecture would hold, namely that any two r-primitive éléments of a
regular equality set must start with distinct symbols. Hence, over a binary
alphabet there could be at most two. That also would mean that any pair (g,h)
where g is elementary, would have the "unique continuation property" i. e.
there would not exist two minimal solutions with common proper préfixes.

In conclusion, we want to mention two results which would follow from the
affirmative answer to our conjecture. A. Ehrenfeucht has conjectured that for
every language L (over any alphabet) there exists a fmite "test set" F <= L, that is
a set F such that every pair of homomorphisms agree word by word on L iff they
agree on F. This has been shown to hold in the case of a binary alphabet in [5]. It
is easy to see.that our conjecture would imply a considerably simpler proof and
also sharpen the result given in [5], namely it would imply that the test set could
be always chosen (noneffectivelty) to be of the cardinality at most three.
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The DOL séquence équivalence problem is decidable [3]. In [13] it is
conjectured that the équivalence can be determined after eonsidering no more
than first 2 n words in both séquences, where n is the cardinality of the alphabet.
It is not hard to show that our conjecture would imply this for n = 2.

Finally, although our conjecture does not imply the decidability of the Post's
Correspondence Problem for lists of length two, it together with results of this
paper supports the belief that this problem is decidable.
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