## Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

## Robert Rumely <br> Capacity theory on algebraic curves and canonical heights

Groupe de travail d'analyse ultramétrique, tome 12, $\mathrm{n}^{\circ} 2$ (1984-1985), exp. $\mathrm{n}^{\mathrm{o}} 22$, p. 1-17<br>[http://www.numdam.org/item?id=GAU_1984-1985__12_2_A3_0](http://www.numdam.org/item?id=GAU_1984-1985__12_2_A3_0)

[^0]CAPACITY THEORY ON ALGEBRAIC CURVES AND CANONICAL HEIGHTS
by Robert RUMELY (*)

This note outlines a theory of capacity for adelic sets on algebraic curves. It was motivated by a paper of D. CAVTOR [C], where the theory was developed for ${\underset{\sim}{1}}^{1}$. Complete proofs of all assertions are given in a manuscript [R], which I hope to publish in the Springer-Verlag Lecture Notes in Mathenatics series.

The capacity is a measure of the size of a set which is defined geometrically but has arithmetic consequences. (It goes under several nanes in the literature, including "Transfinite diameter", "Tchebychev constant", and "Robbins constant", depending on the context.) The introduction to Cantor's paper contains several nice applications, which I encourage the reader to see. I have mainly been concerned with generalizations of the following theorem of Fekete and Szegö [F-S].

THEOREf. - Let $E$ be a compact set in $\underset{\sim}{C}$, stable under complex conjugation. Then,
(A) If the logarithmic capacity $r(E)$ is $<1$, there is a neighborhood $U$ of E which contains only a finite number of complete Galois orbits of algebraic integers.
(B) If $\gamma(E) \geqslant 1$, then every neighborhood of $E$ contains infinitely many complete Galois orbits of algebraic integers.

Some examples of capacities are : for a circle or disc, its radius $R$; for a line segment, $\frac{1}{4}$ of its length ; for two segments $[-b,-a] \cup[a, b], \frac{1}{2}\left(b^{2}-a^{2}\right)^{\frac{1}{2}}$; for a regular $n$-gon inscribed in a circle of radius $R$,

$$
R \cdot \frac{\Gamma(1+1 / n)}{\Gamma(1-1 / n) \Gamma(1+2 / n)}
$$

The capacity $\gamma(E)$ in the theorem should more properly be called the "logarithmic capacity of $E$ with respect to the point $\infty$ ". The general definition of capacity will be given below. Of equal significance with $Y(E)$ is the Green's function $G(z, \infty ; E)$. Recall that trisisa nonnegative function, harmonic in $\underset{\sim}{C} \backslash E$, with value 0 on $E$ and a logarithmic pole at $\infty$, such that $G(z, \infty ; E)-\log |z|$ is bounded in a neighborhood of $\infty$. The Fekete-Szegö theorem is proved by constructing monic polynomials in $Z[z]$ whose normalized logarithm (1/deg $P$ ) log $|P(z)|$ closely approximates $G(z, \infty ; E)$. The algebraic integers in the theorem are the roots of the polynomials.

[^1]The condition in the Fekete-Jzegö theorems that the umbers be algebraic integers is a restriction on their conjugates at finite primes, just as lying in a neighborhood of E is a restriction at the archimedean prime. CANTOR generalized the classical theory in several directions. First, he gave an adelic formulation, placing all the primes on an equal footing. Second, he defined the capacity of an adelic set with respect to several points, not just one, which gave the theory snooth behavior under pullbacks by rational functions. (In the classical theory over $\underset{\sim}{C}$, if $F(z)$ is a monic polynomial of degree $n$, then $\gamma\left(F^{-1}(E)\right)=\gamma(E)^{1 / n}$.) Thirdly, he formulated versions of the theory with rationality conditions : for example, in the Fekete-Szegö theorem, if $E \subset R$, then the numbers produced in part ( $B$ ) could be taken to be totally real. (This special case was originally proved by R. ROBINSON.) Thore were some errors in the proofs of the rationality, but no doubt the results are true. Cantor's definition of the capacity of a set with respect to several points was quite novel, involving the value as a natrix game of a certain symmetric matrix constructed from Green's functions.

The functoriality properties of Cantor's capacity suggested that it should be possible to extend the theory to all curves. In doing so, I have given a different approach to the original results, and found some interesting connections with Néron's canonical heights.

Notation. - Let $C$ be a smooth, geometrically connected projective curve defined over a number field $K$. If $v$ is a place of $K$, we write $K$ for the completion of $K$ at $V$. $\tilde{K}$ will be the algehraic closure of $K, \tilde{K}_{V}$ the algebraic closure of $K_{V}$, and $\hat{K}_{v}$ the completion of the algebraic closure of $K_{V} \cdot G a l(\tilde{K} / K)$ will be the usual Galois group ; $\mathrm{Gal}\left(\hat{K}_{\mathrm{v}} / \mathrm{K}_{\mathrm{v}}\right)$ the group of continuous automorphisms of $\hat{K}_{\mathrm{V}} / \mathrm{K}_{\mathrm{v}}$. If v is nonarchimedean, and lies over a rational prime p , the absolute value on $K_{v}$ associated to $v$ will be normalized so that $|p|_{v}=1 / p$; if $v$ is archiniedean, then $|x+y i|_{v}=\left(x^{2}+y^{2}\right)^{2}$. Thus, we are using the absolute normalization for our absolute values. These absolute values extend in a unique way to absolute values on the $\hat{\mathrm{K}}_{\mathrm{v}}$, which we continue to denote by $|\mathrm{x}|_{\mathrm{V}}$. For any field $F$, $\mathcal{C}(F)$ will mean the set of points of $\mathcal{C}$ rational over $F$, and $F(C)$ the field of algebraic functions on $C$ rational over $F$.

Classical theory. - In the classical theory, if $E \subset \underset{\sim}{C}$ is a cowpact set, then its capacity (with respect to the point $\infty$ ) is given by the equivalent definitions

$$
\begin{aligned}
& \gamma(E)=\lim _{n \rightarrow \infty}\left\{z_{1}, \cdots, z_{n}\right\} \in E \prod_{i \neq j}\left|z_{i}-z_{j}\right|^{1 / n(n-1)} \quad \text { (transfinite dianieter) } \\
& =\lim _{n \rightarrow \infty} \min _{P(z) \in \mathbb{C}[z]} \max _{z \in \mathbb{E}}|P(z)| \quad \text { (Tchebychev constant) } \\
& =e^{-V(E)} \text {, where (logarithmic capacity) } \\
& V(E)=\inf _{\text {prob. meas. } \nu \text { on } E}^{\int_{E} \int_{E}-\log \left|z_{1}-z_{2}\right| d \nu\left(z_{1}\right) d \nu\left(z_{2}\right)} \begin{array}{c}
\text { (equilibrium potential) }
\end{array} \\
& =\lim _{z \rightarrow \infty}(G(z, \infty ; E)-\log |z|) \quad \text { (Robbins constant). }
\end{aligned}
$$

Fore a probability neasure is a positive weasure of total nass 1 , and $G(z, \infty ; \mathbb{E})$ is the Green's function of the unbounded corponent of the corplement of $E$. If $r(E) \neq 0$, there is a unique probability weasure $\mu$ ninirizing the integral defining $V(\mathbb{B})$, and Green's function is given by

$$
G(z, \infty ; E)=V(B)+\int_{\mathbb{E}} \log |z-W| d_{i j}(w) .
$$

Throughout the following, we will inplicitly assure that $y(\mathbb{P}) \neq 0$. (This is the case, for exariple, if $E$ contains a one-dirensiozal continuura.) For non-compact sets $F$, the capacity and Green's function are defined by linits :

$$
\begin{aligned}
\gamma(F) & =\sup _{\text {colipact } \mathbb{E} \in \mathbb{F}} \gamma(\mathbb{E}) \\
G(z, \infty ; F) & =\inf _{\text {cocpact } \mathbb{E}-\mathbb{F}} G(z, \infty ; E) \cdot
\end{aligned}
$$

An irportant class of sets whose capacities are known are PL-domains (Polynowial Lemiscate donains). If $P(z) \in \mathbb{C}[z]$ is a monic polynowial of degree $n$, then the set $\mathbb{E}=\{z \in \underset{\sim}{C} ;|P(z)| \leqslant R\}$ has capacity $\gamma(\mathbb{E})=R^{1 / n}$. This is because the Green's function is $1 / n \cdot \log |P(z)|$ for $z \notin E$, and $V(\mathbb{F})$ can be read off as the residue of the Green's function at $\infty$. In particular, the capacity of a circle is its radius.

The equality of the various definitions of $\gamma(E)$ was proved by REKETE and SZEGÖ. Each definition of $\gamma(\mathbb{E})$ is useful in a different context. Its role as the Tchebychev constant gives functoriality under pullbacks. Its definition in terms of the neasure $\mu$ allows the construction of poly 10 ials whose logarithn approxicates the Green's function. Its expression in terns of $V(E)$ allows it to be cocputed for many sets, and was the definition which CANTOR generalized in the adelic theory.

The canonical distance. - In all definitions of capacity in the classical case, the crucial ingredient is the presence of the distance function $|x-y|$ which has a pole at $\infty$. The connection between the geouetric and arithetic sides of the theory cones frow the fact that the distance function can be used to deconpose the absolute value of a polynowial in terws of its roots.

In constructing a theory of capacity on curves, the starting point is to find siwilar functions which can be used to decompose the v-absolute value of algebraic functions on $\mathcal{C}\left(\hat{K}_{v}\right)$ for every place $v$ and every curve $C$. I call such functions "canonical distance functions", although the tern should be understood guardedly since they do not in general satisfy the triangle inequality, but only a weak version of it. For any place $v$, and any point $\zeta \in \mathcal{C}\left(\hat{K}_{v}\right)$, there is a canonical distance $\left[z_{1}, z_{2}\right]_{5}$ which is unique up to scaling by a constant, and satisfies the following properties :

10 (Positivity) For all $\left.z_{1}, z_{2} \in \mathbb{Q} \hat{K}_{v}\right) \backslash\{\zeta\}$, we have $0 \leqslant\left[z_{1}, z_{2}\right]_{\zeta}<\infty$, with $\left[z_{1}, z_{2}\right]_{\zeta}=0$ if, and only if, $z_{1}=z_{2}$.
$2^{\circ}$ (Normalization at $\zeta$ ) Let $g(z) \in \hat{K}_{v}(e)$ have a sinple zero at $\zeta$. Then there is a constant $c_{g}>0$ such that for any $z_{2} \in \mathcal{C}\left(\hat{K}_{v}\right) \backslash\{\zeta\}$,

$$
\lim _{z_{1} \rightarrow \zeta}\left[z_{1}, z_{2}\right]_{\zeta}\left|g\left(z_{1}\right)\right|_{V}=c_{g} .
$$

30 (Syminetry) $\left[z_{1}, z_{2}\right]_{\zeta}=\left[z_{2}, z_{1}\right]_{\zeta}$.
$4^{\circ}$ (Continuity) $\left[z_{1}, z_{2}\right]_{\zeta}$ is continuous as a function of two variables. If $v$ is archiredean, $\log \left[z_{1}, z_{2}\right]_{\zeta}$ is harconic in each variable separately ; if $v$ is nonarchinedean, $\log \left[z_{1}, z_{2}\right]_{\zeta}^{\zeta}$ is locally constant in each variable, provided $z_{1} \neq z_{2}$.
$5^{\circ}$ (Decomposition of functions) If $f(z) \in \hat{K}_{v}(\mathcal{C})$ has zeros and poles (with multiplicity) at $a_{1}, \ldots, a_{n}$ and $\zeta_{\mathbb{A}}, \ldots, \zeta_{n}$ respectively, then there is a constant $c_{f}$ so that for all $z \in \mathbb{C}\left(\hat{K}_{v}\right)$ where $f(z)$ is defined,

$$
|f(z)|_{v}=c_{f} \prod_{i=1}^{n}\left[z, a_{i}\right]_{\zeta_{i}}
$$

60 (Galois invariance) If $\mathscr{C}$ is defined over $K_{v}$, and $\zeta \in \mathbb{C}\left(K_{v}\right)$, then for all $\sigma \in \operatorname{Gal}\left(\widehat{k}_{v} / K_{v}\right)$,

$$
\left[\sigma_{1}, \sigma z_{2}\right]_{\zeta}=\left[z_{1}, z_{2}\right]_{\zeta}
$$

70 (Weak triangle inequality) There is a constant $H$ depending only on $C$ and $v$ such that $\left[z_{1}, z_{3}\right]_{\zeta} \leqslant \operatorname{Fi} \cdot \max \left(\left[z_{1}, z_{2}\right]_{\zeta},\left[z_{2}, z_{3}\right]_{\zeta}\right)$. If $v$ is nonarchimedean and $\mathcal{C}$ has nondegenerate reduction at $v$, then $M=1$.

Properties $2^{\circ}, 4^{\circ}$ and a weak version of $5^{\circ}$ characterize $\left[z_{1}, z_{2}\right]_{\zeta^{\prime}}$. One can show that for any $z_{2} \in \mathcal{C}\left(\hat{K}_{v}\right)$ there is a function $f(z) \in \hat{K}_{v}(\mathcal{C})$ whose only poles are at $b$ and whose zeros all lie in a prespecified ball about $z_{2}$. Furthernore, after fixing a uniformizing paraweter $g(z)$ at $\zeta$ as in property $2^{\circ}$ call such an $f(z)$ norwalized if $\lim _{z \rightarrow \zeta}\left|f(z) g(z)^{n}\right|_{V}=1$, where $n=\operatorname{deg}(f)$. Then

$$
\left[z_{1}, z_{2}\right]_{\zeta}=\operatorname{lin}_{\substack{\text { normalized } f \\ \text { zeros of } f \rightarrow z_{2}}}\left|f\left(z_{1}\right)\right|_{v}^{1 / n}
$$

The existence of the linit is a consequence of a maxinur nodulus principle for algebraic functions on curves. The symuetry cones fron Weil reciprocity.

Property $5^{\circ}$ suggests a connection with Néron's canonical local height pairing ; and in fact Néron's pairing and the canonical distance can be defined in terms of each other. Recall that Néron's pairing is a real-valued, lilinear function $\left\langle D, D^{r}\right\rangle$ on divisors of degree 0 in $C\left(\widetilde{K}_{v}\right)$ having coprine support. It has the property that if $D^{\prime}=\operatorname{div}(f)$ for some function $f(z)$, then, writing $\log _{v} x$ for the logarithn to the base $p(v)$, where $p(v)$ is the rational prine lying below $v$ (taking $p(v)=e$ if $v=\infty$ ), we have

$$
\langle D, \operatorname{div}(f)\rangle_{v}=-\log _{v}|f(D)|_{v} .
$$

It is continuous in both variabled, and thus can be regarded as extending functional evaluation to nonprincipal divisors. (It should be noted that there is sone variation in the literature concerning the norialization of Néron's pairing. Here we are requiring it to approach $+\infty$ on the diagonal, and to take rational values if $v$ is nonarchinedean). The following clean formulation for the relation between the canonical distance and Néron's pairing was shown to me by B. GROJ̃ : There is a constant $C$, depending on the choice of uniformizing paraseter $g(z)$ at $\zeta$, such that

$$
\left.\log \left[z_{1}, z_{2}\right]_{\zeta}+C=\lim _{W \rightarrow \zeta}\left(i\left(z_{1}\right)-(w),\left(z_{2}\right)-(\zeta)\right\rangle_{v}+\log _{v}|g(z)|_{v}\right)
$$

This expression allows the finer properties of Néron's pairing, given by intersection theory, to be transferred to the canonical distance.

The facts and formulas above arose frow a study of the classical theory whose goal was first to put the point $\infty$ on an equal footing with the points of ${\underset{\sim}{p}}^{1}(\underset{\sim}{C})$, and then to find analogues for all $v$ and all $C$. In a nuber of cases special fortulas turned up which suggested considering $\left[z_{1}, z_{2}\right]_{\bar{b}}$ as a distance. Since these formulas also give nore insight into the nature of the canonical distance, it seens worth presenting them. In all cases, we obtain an expression of the form

$$
\left[z_{1}, z_{2}\right]_{\zeta}=\frac{\left(\left(z_{1}, z_{2}\right)\right)_{v}}{\left.\left.\left(z_{1}, \zeta\right)\right)_{v}\left(\frac{z_{2}}{}, \zeta\right)\right)_{v}}
$$

where $\left(\left(z_{1}, z_{2}\right)\right)_{v}$ is continuous, nonnegative, and bonded, with a simple zero along the diagonal.

Special formulas for the canonical distance. - The formulas are wore or less explicit, depending on the genus of $C$.

Genus 0 : The projective line.

- Archinedean case. On ${\underset{\sim}{P}}^{1}(\underline{C})$ one has the spierical chordal wetric, given for $z_{1}, z_{2} \in \underset{\sim}{C}$ by

$$
\begin{gathered}
\left\|z_{1}, z_{2}\right\|_{v}=\frac{\left|z_{1}-z_{2}\right|}{\left(1+\left|z_{1}\right|^{2}\right)^{\frac{1}{2}}\left(1+\left|z_{2}\right|^{2}\right)^{\frac{1}{2}}} \\
\left\|z_{1}, \infty\right\|_{v}=\frac{1}{\left(1+\left|z_{1}\right|^{2}\right)^{\frac{1}{3}}}
\end{gathered}
$$

Note that $\left\|z_{1}, z_{2}\right\|_{v}$ is invariant when both $z_{1}$ and $z_{2}$ are inverted, and is uniforuly bounded above by 1 . When the plane is identified with a sphere of diameter 1 by stereographic projection, it is the length of the chord from $z_{1}$ to $z_{2}$. For notational compatibility with curves of higher genus, write $\left(\left(z_{1}, z_{2}\right)\right)_{v}=\left\|z_{1}, z_{2}\right\|_{v}$. Then

$$
\left[z_{1}, z_{2}\right]_{\zeta}=\frac{\left(\left(z_{1}, z_{2}\right)\right)_{v}}{\left(\frac{\left.z_{1}, \zeta\right)_{V}\left(\left(z_{2}, \zeta\right)_{V}\right.}{l}\right.} .
$$

Observe that $\left[z_{1}, z_{2}\right]_{\infty}=\left|z_{1}-z_{2}\right|$, while $\left[z_{1}, z_{2}\right]_{\zeta}=\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|$ for $\zeta \neq \infty$, where $f(z) \Rightarrow\left(1+|\zeta|^{2}\right) \frac{1}{2} /(z-\zeta)$. We euphasize that $\left[z_{1}, z_{2}\right]_{\zeta}$ is only deterined up to scaling by a constant $c(\zeta)$ for each $\zeta$.

- Nonarchinedean case. For finite prines the appropriate analogue of the chordal Letric is the p-adic spherical distance, given for $z_{1}, z_{2} \in \hat{K}_{v}$ by

$$
\begin{gathered}
\left\|z_{1}, z_{2}\right\|_{v}=\frac{\left|z_{1}-z_{2}\right|_{v}}{\max \left(1,\left|z_{1}\right|_{v}\right) \max \left(1,\left|z_{2}\right|_{v}\right)} \\
\left\|z_{1}, \infty i\right\|_{v}=\frac{1}{\max \left(1,\left|z_{1}\right|_{v}\right)}
\end{gathered}
$$

and again putting $\left.{ }^{\prime}\left(z_{1}, z_{2}\right)\right)_{v}=\left\|z_{1}, z_{2}\right\|_{v}$, we have

$$
\left[z_{1}, z_{2}\right]_{\zeta}=\frac{\left(\left(z_{1}, z_{2}\right)\right)_{v}}{\left.\left(\left(z_{1}, \zeta\right)\right)_{v}\left(z_{2}, \zeta\right)\right)_{V}}
$$

From these expressions properties $1^{\circ}-7^{\circ}$ follow easily.
All curves, good reduction. - If $\mathcal{C} / K$ is any curve, then for $v$ of $K$ where C has nondegenerate reduction with respect to the given enbedding in ${\underset{\sim}{P}}^{n}$, there is an analogue of the fortula above, with $\left(\left(z_{1}, z_{2}\right)\right)_{v}$ given by the v-adic spherical netric on ${\underset{\sim}{P}}^{n}$. This is defined as follows : fix a systeu of affine coordinates on ${\underset{\sim}{P}}^{n}\left(\hat{K}_{v}\right)$. Then, for $z_{1}, z_{2} \in{\underset{\sim}{P}}^{n}\left(\hat{K}_{v}\right)$, if there is sone affine patch in which both $z_{1}$ and $z_{2}$ have integral coordinates,

$$
\left\|z_{1}, z_{2}\right\|_{v}=\max _{i}\left|z_{1 i}-z_{2 i}\right|_{v}
$$

(using the coordinates in that patch). Otherwise $\left\|z_{1}, z_{2}\right\|_{v}=1$. It is easy to check that $\left\|z_{1}, z_{2}\right\|_{v}$ is invariant under a change of coordinates in $\operatorname{PGL}\left(n+1, \hat{\theta}_{v}\right)$, where $\hat{O}_{V}$ is the ring of integers in $\hat{K}_{v}$.

## Genus 1 : Elliptic curves.

- Archinedean case. We use the fact that an elliptic curve over $\underset{\sim}{C}$ is isomorphic to a corplex torus $C /\left[\omega_{1}, \omega_{2}\right]$. NiN has given an explicit formula for the local height pairing in terns of the Weierstrass o-function, and by modifying things slightly we get the canonical distance. Let

$$
\sigma(u)=u \prod_{0 \neq \omega \in L}(1-u / \omega)^{u / \omega+(u / \omega)^{2}}
$$

be the $v$-function for the lattice $L=\left[\omega_{1}, \omega_{2}\right]$. Write $\eta_{1}$ for the period of $\zeta(u)=d / d u(\log \sigma(u))$ under $\omega_{1}$, and $\eta_{2}$ for the period of $\zeta(u)$ under $\omega_{2}$, so that by the Legendre relation, $\eta_{2} \omega_{1}-\eta_{1} \omega_{2}=\gamma_{i}$. Given $u \in \underset{\sim}{C}$, we can uniquely decolpose $u=\omega_{1} u_{1}+\omega_{2} u_{2}$ with $u_{1}, u_{2} \in \mathbb{R}$. Define $\eta(u)=\eta_{1} u_{1}+\eta_{2} u_{2}$, and let

$$
\underset{\sim}{k}(u)=e^{\left.-\frac{1}{2} u u^{\prime} \right\rvert\,(u)} \sigma(u)
$$

Then $\underset{\sim}{k}\left(u+\omega_{1}\right)=-e^{-\pi i u_{2}} \underset{\sim}{k}(u)$, and $\underset{\sim}{k}\left(u+\omega_{2}\right)=-e^{-\pi i u_{1}} \underset{\sim}{k}(u)$, so that $|\mathrm{k}(\mathrm{u})|$ is periodic (cf. LANG [L]). Let $u_{1}$ and $u_{2}$ correspond to $z_{1}$ and $z_{2}$ under the isoworphist $C /\left[\omega_{1}, \omega_{2}\right] \approx d(C)$. Defining $\left(\left(z_{1}, z_{2}\right)\right)_{v}=\left|\underset{\sim}{k}\left(u_{1}-u_{2}\right)\right|$, we have

$$
\left[z_{1}, z_{2}\right]_{\zeta}=\frac{\left(\left(z_{1}, z_{2}\right)\right)_{V}}{\left.\left(z_{1}, \zeta\right)\right)_{v}\left(\left(z_{2}, \zeta\right)_{V}\right.}
$$

- Nonarchinedean case, bad reduction. The canonical distance is invariant under base extension, so we can assume in this case that $C$ is a Tate curve. Then there is sone $q \in \hat{K}_{v}^{*}$ with $|q|_{V}<1$ such that $C\left(\hat{K}_{v}\right)$ is isonorphic to $\hat{K}_{V}^{*} /(q)$. As MANIN [H] has pointed out, one can express Néron's local height pairing in teras of p-adic theta-functions ; sinilarly, we get the canonical distance. The basic thetafunction is

$$
\theta(u)=\prod_{n \geqslant 0}\left(1-q^{n} / u\right) \prod_{n<0}\left(1-q^{-n} u\right) \text { for } u \in \hat{K}_{v}^{*} .
$$

Put $v q(u)=\operatorname{ord}_{v}(u) / \operatorname{ord}_{v}(q)$, and define the "nollifier"

$$
\delta(u)=|u|_{v}^{\frac{1}{z}}\left(v q(u)^{2}+v q(u)\right)
$$

Then $\underset{( }{k}(u)=\delta(u) \cdot|\theta(u)|_{v}$ is a real-valued function such that for all $u$, $\underset{\sim}{k}(q u)=\underset{\sim}{k}\left(u^{-1}\right)=\underset{\sim}{k}(u)$, as follows fror the functional equations of the theta-function. It is well known that algebraic functions on a Tate curve can be expressed in terms of $\theta(u)$, and a short calculation shows that if we put $\left(\left(z_{1}, z_{2}\right)\right)_{v}=\underline{k}\left(u_{1} u_{i}^{-1}\right)$, then we have the fauiliar formula

$$
\left[z_{1}, z_{2}\right]_{\zeta}=\frac{\left.\prime\left(z_{1}, z_{2}\right)\right)_{v}}{\left(\left(z_{1}, \zeta\right)\right)_{v}\left(\left(z_{2}, \zeta\right)\right)_{v}}
$$

## Genus $g \geqslant 2$.

- Archinedean case. Although the formulas are not as explicit as in the previous cases, their theoretical significance is clearer. It turns out that (i, $\left.\left.z_{1}, z_{2}\right)\right)_{v}$ is a cultiple of the Arakelov-Green's function $G\left(z_{1}, z_{2}\right)$. ARAKELOV introduced his functions in order to extend Néron's pairing fron divisors of degree 0 to divisors of arbitrary degree in the archinedean case, in a way nodeled on intersection theory (see ARAKELOV [Ar]). Such an extension is not uniquc ; an Arakelov-Green's function is deterined by giving a voluwe form, or Lore generaily a Leasure $d u$, normalized so that $C(C)$ has total mass 1 . Then, there is a unique nonnegative
real-valued function $G(z, w)$ on $C(\underline{C})$ such that
(a) $G(z, w)$ is snooth and positive off the diagonal, with a sinple zero along the diagonal ;
(b) $(1 / 4 \pi i)(\partial / \partial z)(\partial / \partial \bar{z}) \quad \log G(z, w) d z M d \bar{z}=d u-\delta_{W}$ for every $w ;$
(c) $\int_{\mathcal{C}} \operatorname{le}_{\mathcal{C}}(\mathbb{C}) \quad \log G(z, w) d u(z)=0$ for each $w$.

Condition (c) is sinply a convenient normalization ; the crucial properties are (a) and (b), which ensure that $\log \left(G\left(z, w_{1}\right) / G\left(z, w_{2}\right)\right)$ is harmonic for $z \neq w_{1}, w_{2}$, with logarithric singularities of opposite signs at those points. Green's identities show that $G(z, w)$ is sywnetric. For any choice of an Arakelov-Green's function, we can put $\left(\left(z_{1}, z_{2}\right)\right)_{v}=G\left(z_{1}, z_{2}\right)$ and get a farily of distance functions $\left[z_{1}, z_{2}\right]_{\zeta} b_{5}$ the usual formula. For curves of genus 0 and 1 above, we have chosen $\left(\left(z_{1}, z_{2}\right)\right)_{v}$ to correspond to the constant positive curvature and flat Letrics, respectively.

It should be noted that GROSS [ $\mathrm{Gr}_{-} \mathrm{Z}$ ] has given a formula for the Arakelov-Green's function of a curve of genus $\geqslant 2$ with the constant negative curvature netric. His forlula uses the uniforcization of the curve by the upper half-plane, and expresses $G(z, w)$ as the residue at $s=1$ of a Poincaré series formed fror Legendre functions of the second kind.

- Nonarchinedean case. Here the construction of functions $\left(\left(z_{1}, z_{2}\right)\right)_{v}$ which deconpose the canonical distance depends on intersection theory. If $I_{w} / K_{v}$ is a finite extension, put $\mathcal{C}_{W}=\mathcal{C} x_{K_{V}} \operatorname{spec}\left(L_{w}\right)$. Let $C_{W}$ be the Lininal regular nodel of $C_{W}$, and $R\left(C_{W}\right)$ the dual graph to the special fibre of $C_{w}$. After a finite extension of the base, $C$ has seci-stable reduction, and hence the graphs $R\left(C_{w}\right)$ all have the sane topology for large $L_{w}$. One can forn a "reduction graph" $R(C)$, which is essentially the direct lilit of the $R\left(C_{W}\right)$ together with a retric on the edges, in such a way that the cosponents of the special fibres of the $C_{W}$ correspond to a dense set of points on $R(C)$.

The final result is as follows. There is a deconposition

$$
-\log _{v}[x, y]_{\zeta}=i_{v}(x, y)_{\zeta}+j_{v}(x, y)_{\zeta},
$$

in which $i_{v}(x, y)$ and $j_{v}(x, y)_{\zeta}$ take rational values. Furthermore,

$$
i_{v}(x, y)_{\zeta}=1_{v}(x, y)-i_{v}(x, \zeta)-i_{v}(y, \zeta)
$$

and

$$
j_{v}(x, y)_{\zeta}=j_{v}(x, y)-j_{v}(x, \zeta)-j_{v}(y, \zeta)
$$

Here $i_{v}(x, y)$ is a purely "local" terr : it is 0 unless both $x$ and $y$ reduce to the same nonsingular point on the special fibre of some $C_{W}$, and then it is $i_{v}(x, y)=-\log _{v}\left|g_{y}(x)\right|_{v}$ for an appropriate local uniformizer $g_{y}(x)$ at $y$. On the other hand, $j_{v}(x, y)$ is not unique, but is specified by giving a
wasure of total nass 1 on $R(e)$ : As a function of $x$ and $y$, it depends only on the special fibre to which $x$ and $y$ reduce. Thus, it and $j_{V}(x, y){ }_{\zeta}$ can be regarded as functions on $R(C)$. For any two points $\bar{y}, \bar{\zeta}$ of $R(C), j_{v}(\bar{x}, \bar{y}) \bar{\zeta}$ is a piecewise linear function of $\bar{x} \in R(C)$ taking its Laxinum at $\bar{y}$ and its minimum at $\bar{\zeta}$. It obeys a mean-value property like that of harmonic functions.

A renark on the triangle inequality. - The constant $M$ in the weak triangle inequality (property $7^{\circ}$ of the canonical distance) is definitely sometines greater than 1. For a Tate curve isomorphic to $\hat{K}_{V}^{*} /(q), \mathbb{M}=|q|_{V}^{-1 / 16}$. Thus, $M$ can be arbitrarily large. In the Archinedean case, numerical col putations for elliptic curves $C /[\tau, 1]$ yield lower bounds for an $\bar{M}$ such that

$$
\left[z_{1}, z_{3}\right]_{5} \leqslant \bar{M}\left(\left[z_{1}, z_{2}\right]_{5}+\left[z_{2}, z_{3}\right]_{5}\right)
$$

Sone values are in the fuliowing table.

| $\tau$ | $\bar{M} \geqslant$ |
| :---: | :---: |
| $.5+.866 i$ | 1.000 |
| $0+1.0 i$ | 1.007 |
| $-.2+2.1 i$ | 1.167 |
| $.3+3.0 i$ | 1.486 |
| $.5+3.5 i$ | 1.725 |

Construction of local Green's functions. - Given the canonical distance, for each place $v$ and set $F_{v} \subset \mathcal{O}\left(\hat{k}_{v}\right)$, one can define the capacity and construct Green's functions following the classical pattern.
For a compact set $E_{V}$, and a point $\zeta \in \mathcal{C}\left(\hat{K}_{v}\right)$ not in $E_{v}$, let

$$
\begin{aligned}
& V_{\zeta}\left(E_{v}\right)=\inf _{\text {prob. neas. } \nu \text { on } E_{v}} \int_{E_{v}} \int_{E_{v}}-\log _{V}\left[z_{1}, z_{2}\right]_{\zeta} d \nu\left(z_{1}\right) d \nu\left(z_{2}\right) \\
& \gamma_{\zeta}\left(E_{v}\right)=e^{-V_{\zeta}\left(B_{v}\right)} .
\end{aligned}
$$

If $V_{\zeta}\left(E_{v}\right) \neq \infty$, there is a unique ceasure $\mu_{\zeta}$, the "equilibrium distribution", for which the inf is achieved. Define the Green's function by

$$
G\left(z, \zeta ; E_{v}\right)=V_{\zeta}\left(E_{v}\right)+\int \log _{v}[z, w]_{\zeta} d_{\zeta}(w) .
$$

We understand this to wean $\infty$ if $V_{\zeta}\left(E_{v}\right)=\infty$, and $z, \zeta$ are not in $E_{v}$. Define $G\left(z, \zeta ; E_{V}\right)=0$ if either $z$ or $\zeta$ belongs to $E_{V}$. (Note that $V_{\zeta}\left(E_{V}\right)$ and $\gamma_{\zeta}\left(E_{V}\right)$ depend on the normalization chosen for the canonical distance $[z, w]_{\zeta}$, but $G\left(z, \zeta ; E_{v}\right)$ and $\mu_{\zeta}$ do not.) It can be shown that if $E_{v 1} \subset E_{v 2}$, then for all $z, \zeta$ the inequality $G\left(z, \zeta ; E_{v 1}\right) \geqslant G\left(z, \zeta ; E_{v 2}\right)$ holds. For an arbitrary set $F_{v}$, put

$$
G\left(z, \zeta ; F_{v}\right)=\inf _{\substack{E_{v} \subset F_{v} \\=\text { conpact }}} G\left(z, \zeta ; E_{v}\right)
$$

At this point there is a complication, sinilar to the one in defining a measurable set in Lebesgue's theory. Above we have defined the capacity $\gamma_{\zeta}\left(\mathrm{E}_{\mathrm{V}}\right)$ for a corpact set. Another class of sets for which the capacity can be defined naturally are $P L_{V}$-dorains : sets $U_{V}=\left\{z \in C\left(\hat{K}_{V}\right) ;|f(z)|_{V} \leqslant R_{V}\right\}$ where $f(z)$ is an algebraic function on $C$ whose only poles are at $\zeta$, and $R_{v}$ belongs to the value group of $\hat{K}_{V}^{*}$. If $f(z)$ has degree $n$, and is norualized so $\lim _{z \rightarrow S}|f(z)|_{V} /[z, w]_{\zeta}^{n}=1$, then it is natural to require that $\gamma_{\zeta}\left(U_{v}\right)=R_{v}^{1 / n}$. Furtherwore, for $z \notin U_{V}$, one wants $G\left(z, \zeta ; U_{V}\right)=(1 / n) \log _{V}\left(|f(z)|_{V} / R_{V}\right)$. The sets for which the formulas for compact sets and $P L_{\text {-donains are conpatible will be called capacitable. For an ar- }}$ bitrary set $F_{V}$, let the "inner" and "outer" capacities of $F_{v}$ be

$$
\begin{aligned}
& \underline{Y}_{\zeta}\left(F_{V}\right)=\sup _{E_{T} C F_{V}}^{E_{V}=\operatorname{compact}} Y_{\zeta}\left(E_{V}\right) \\
& \bar{\gamma}_{\zeta}\left(F_{V}\right)=\inf _{\substack{U_{V} F_{V} \\
U_{V} \\
P L_{S}-\text { donain }}} \quad \gamma_{\zeta}\left(U_{V}\right)
\end{aligned}
$$

$F_{V}$ is capacitable if for all $\zeta$ in the conplenent of $F_{v}, \underline{Y}_{\zeta}\left(F_{V}\right)=\bar{\gamma}_{\zeta}\left(F_{V}\right)$. (In a manuscript of this paper, I called such sets aduissible.) An RI-donain (Rational Lemiscate douain) is a set of the form $\left\{z \in \mathcal{C}\left(\hat{K}_{V}\right) ;|f(z)|_{V} \leqslant R_{V}\right\}$ for sone $f(z) \in \hat{K}_{V}(C)$. Finite unions of conpact sets and RI-donains are capacitable. An exariple of a non-capacitable set is a set containing one point in infinitely many residue classes (mod $v$ ) of $C\left(\hat{K}_{v}\right)$. If $F_{v}$ is capacitable,

$$
G\left(z, \zeta ; F_{V}\right)=\sup _{U_{V}=P L_{V} \zeta_{V}^{- \text {donain }}} G\left(z, \zeta ; U_{V}\right) .
$$

However, the collection of capacitable sets is not closed under intersection.
The Green's function of $F_{V}$ has the following properties :
10 (Positivity) $G\left(z_{1}, z_{2} ; F_{v}\right) \geqslant 0$; and if $z_{1}$ or $z_{2} \in F_{v}$, then $G\left(z_{1}, z_{2} ; F_{v}\right)=0$.
$2^{\circ}$ (Symuetry) $G\left(z_{1}, z_{2} ; F_{v}\right)=G\left(z_{2}, z_{1} ; F_{v}\right)$.
$3^{\circ}$ (Transitivity) If $F_{V}$ is capacitable, and if $G\left(z_{1}, z_{2} ; F_{V}\right)$ and $G\left(z_{2}, z_{3} ; F_{v}\right)$ are both $>0$, then $G\left(z_{1}, z_{3} ; F_{v}\right)>0$.
$4^{\circ}$ (Galois statility) For all $\sigma \in \operatorname{Gal}\left(\hat{K}_{v} / K_{V}\right)$,

$$
G\left(\sigma z_{1}, \sigma z_{2} ; \sigma F_{v}\right)=G\left(z_{1}, z_{2} ; F_{v}\right) .
$$

50 (Approximability) For any RL-domain $U_{V}$ contained in the complement of $F_{V}$, any $\epsilon>0$, and any $\zeta$, there is an algebraic function $f(z) \in \hat{K}_{V}(\mathcal{C})$ whose only poles are at $\zeta$, such that for all $z \in U_{V}, z \neq \zeta$,

$$
\left.\left|G\left(z, \zeta ; F_{v}\right)-(1 / n) \log _{v}\right| f(z)\right|_{v} \mid<\epsilon \quad(n=\operatorname{deg} f)
$$

60 (Continuity) $G\left(z_{1}, z_{2} ; F_{v}\right)$ is continuous as a function of two variables for $z_{1} \neq z_{2}$ in the conplenent of $F_{V}$. If $v$ is archinedean, it is harmonic in each variable separately.

The ideas behind the proofs. - In the archimedean case, the developuent of capacity theory on Riemann surfaces is done by following the proofs in TSUJI's book [Ts] which are all coordinate-free. Once one has the canonical distance, there is nothing new. The nain fact used is the naximur nodulus orinciple for harmonic functions.

In the nonarchinedean case, the goals of the theory are the sane, but the nethods are somewhat different. The riwary difficulty is relating local behavior of functions to global behavior, and this is done by using the rigidity of algebraic functions. There are four nain tools, two local and two global.
$1^{\circ}$ Local parauetrizability of $C\left(\hat{K}_{v}\right)$ by power series. - Supnose $\mathcal{C}$ is evibedded in ${\underset{\sim}{P}}^{n}$, and let $\left\|z_{1}, z_{2}\right\|_{v}$ be the v-adic distance on $\mathcal{C}\left(\hat{K}_{v}\right)$ induced from $\underline{P}^{n}\left(\hat{K}_{V}\right)$. There is a $\hat{o}>0$ such that for any point $z_{0} \in \mathcal{C}\left(\hat{K}_{V}\right)$, the ball

$$
B\left(z_{0}, \delta\right)=\left\{z \in C\left(\hat{K}_{v}\right) ;\left\|z, z_{0}\right\|_{v} \leqslant \delta\right\}
$$

can be parasetrized by convergent power series. This is well known, and is proved by using Hensel's lemia to refine approxinate paranetrizations. The uniformity comes by using a lema of weil from the theory of heights to show that the v-adic singularness of $C\left(\hat{K}_{v}\right)$ is bounded.
$2^{\circ}$ The "Jacobian construction principle" for functions. - Let a $\neq \zeta$ be two arbitrary points of $C\left(\hat{K}_{V}\right)$, and let $U_{v}$ be a neighborhood of a . Then, there is a function $f(z) \in \hat{K}_{V}(\mathbb{C})$, all of whose zeros lie in $U_{V}$ and whose only poles are at $\zeta$. This circuruvents the difficulty that for genus $g \geq 1$, not every divisor is principal. It is proved by $\mu$ sing the fact that the Abel nap

$$
e\left(\hat{K}_{T}\right)^{g} \rightarrow g\left(\hat{K}_{\nabla}\right)
$$

is open for the v-adic topology except on a set of codinension 1 . (This is well known for the Zariski topology, and it follows for the v-topology by the inplicit function theoreli for power series.) One takes the inage of the divisor (a) - ( 5 ) in the Jacobian. By choosing $n$ appropriately, one can arrange that $n[(a)-(\zeta)]$ be arbitrarily near the origin of $\mathcal{F}\left(\hat{K}_{v}\right)$. Then wiggling a few of the copies of (a) within $U_{v}$ gives a principal divisor.
$3^{\circ}$ The naxinuri nodulus principle. - Actually two naxinun nodulus principles are used : a local one for power series, which is well known ; and a flobal one for algebraic functions over RL-domains. It is as follows. if $g(z) \in \hat{K}_{V}(\mathbb{C})$ is nonconstant, put

$$
\begin{aligned}
D & =\left\{z \in \mathbb{C}\left(\hat{K}_{v}\right) ; \quad|g(z)|_{V} \leqslant 1\right\} \\
\partial D & =\left\{z \in \mathbb{C}\left(\hat{K}_{v}\right) ; \quad|g(z)|_{V}=1\right\}
\end{aligned}
$$

Then, if $f(z) \in \hat{K}_{V}(\mathcal{C})$ has no poles in $D,|f(z)|_{V}$ achieves its maximum value for $z \in D$ at a point of $\partial D$.

This is proved by considering the equation relating $f(z)$ and $g(z)$ (which exists because $\mathcal{C}$ has dinension 1 ), exaxi"ing its Newton polygon for a fixed $z$, and reducing to the case of ${\underset{\sim}{P}}^{1}$. On ${\underset{\sim}{P}}^{1}$ it is due to CATTOR, who used the factorization of $|f(z)|_{v}$ in terms of its zeros and joles, and a deconposition theoren showing that an RI-domain is a finite union of "punctured discs".
$4^{\circ}$ The intersection theory fomula for Néron's pairing (see GROSS [Gr]). - This gives an expression for the canonical distance which lets one generalize Cantor's decoriposition theoren for RL-domains to arbitrary curves. One of its consequences is that finite intersections and unions of RL-douains are again RL-donains. The intersection formula is rainly used in studying the canonical distance on curves with bad reduction. A weak version of the theory can be established without it, restricting to compact sets at places where $C$ has bad reduction. We will not discuss it further here.

In developing the theory, the general technique is to reduce questions about functions on $C$ to questions on balls around their zeros, by the naximum modulus principle. On the balls, algebraic functions can be expanded in power series, and so controlled. Compact sets play a key role, because they can be covered with a finite union of paranetrizable balls, and such sets are RL-donains.

In his original theory for ${\underset{\sim}{P}}^{1}$, CANTOR used a different approach. He took the capacities and Green's functions of RL-dowains as basic, rather than those of compact sets. He could do so because his decouposition theorer for RL-doLains (proved using the global coordina se syster on ${\underset{\sim}{P}}^{1}$ ) allowed him to construct RL-domains in profusion. On arbitrary curves, at least at the start, one does not know enough about RL-domains to get anywhere. The key idea is to replace the global existence problen with a local one, which can be solved using the Jacobian construction principle. Using capacity theory for conpact sets, one gradually gains more and nore global information, until finally it can be seen that Cantor's approach would have succeeded after all. However, the capacities of both conpact sets and RI-dimains are ilportant, for it turns out that inner capacity is the correct notion for proving one half of the Fekete-Szegö theorem, and outer capacity for the other.

Definition of the global adelic capacity. - Once one has the local Green's functions, Cantor's formalisu for the extended global capacity goes through unchanged.

In the previous sections, we have stated local capacity theory for sets in $\mathcal{C}\left(\hat{K}_{v}\right)$, but we could equally well have done so for sets in $\mathcal{C}\left(\tilde{K}_{v}\right)$. There are no differences. For the global theory it is convenient to restrict to that case.

It is useful to introduce a crude adelization of $\tilde{K}$ relative to $K$. For each place $v$ of $K$, fix an eLbedding of $\tilde{K}$ into $\tilde{K}_{v}$, and let $\tilde{\Theta}_{v}$ be the ring of integers of $\tilde{K}_{V}$. Define $\widetilde{K}_{A}$ to be the restricted direct product of the $\tilde{K}_{V}$ rela-
tive to the $\tilde{e}_{V}$, where the product is taken over the places of $K . \tilde{K}$ erbeds naturally in $\tilde{\mathrm{K}}_{\mathrm{A}}$ "on the diagonal". We will be dealing with sets of the forn $\Pi_{V} E_{V} \subset C\left(\tilde{K}_{A}\right)$ in which each $E_{V}$ is stable under $\operatorname{Gal}\left(\tilde{K}_{V} / K_{V}\right)$, so the choices of the exibeddings will not Latter.

Suppose $x_{0}=\left\{x_{1}, \ldots, x_{r}\right\} \subset \mathcal{C}(\tilde{K})$ is a finite set of mlobal algebraic points on $C$, stable under. $\operatorname{Gal}(\tilde{K} / K)$. For each place $v$ of $K$, let a set $E_{V} \subset C\left(\tilde{K}_{v}\right)$ be given. We assurie :
(a) Each $E_{V}$ is capacitable, disjoint fron $\mathscr{X}$, and stable under $G a l\left(\tilde{K}_{V} / K_{v}\right)$;
(b) All but finitely Lany $\mathbb{E}_{\mathrm{v}}$ are "trivial with respect to $x$ " in the following sense : $v$ is a place such that $\mathcal{C} こ{\underset{\sim}{p}}^{n}$ has nondegenerate reduction, $x_{1}, \cdots, x_{r}$ reduce to distinct points (Lod $V$ ), and $E_{v}$ is the set of points on $C\left(\tilde{K}_{v}\right)$ which do not reduce to the sane point as one of the $x_{i}$. Equivalently, if $\| \%$, $w \|_{v}$ is the v-adic spherical wetric on ${\underset{\sim}{P}}^{n}\left(\tilde{K}_{V}\right)$, then

$$
g_{v}=e\left(\tilde{K}_{v}\right) \backslash U_{i=1}^{r}\left\{z \in C\left(\tilde{K}_{v}\right) ;\left\|z, x_{i}\right\|_{v}<1\right\} .
$$

Given such a collection, write $\underset{\sim}{E}=\underset{K}{E}=\prod_{V} E_{V}$. We are going to define the capacity $\gamma(\underset{\sim}{E}, \mathscr{X})$ of $\underset{\sim}{E}$ with respect to $\mathscr{X}$.

If $L / K$ is a finite extension, there is a natural way to associate an adelic set $\underset{\sim}{E} \subset \mathcal{C}\left(\tilde{L}_{A}\right)$ to $\mathbb{H}_{K}$. Namely, for each place $w$ of $K$ lying over $v$ of $K$, fi:an isonorphisn of $\tilde{L}_{W}$ with $\tilde{K}_{V}$, and put $E_{W}=E_{V}$. The capacity will be defined so as to be invariant under base extension. Hence, without loss, we can suppose that each of the $x_{i} \in \mathscr{X}$ is rational over $K$.
For each point $x_{i}$, choose a function $g_{i}(z)$ on $\mathcal{C}$, rational over $K$ and having a sinple zero at $x_{i}$. (It is really only the choice of a global tangent veotor that uatters, not the uniformizing paraneter.)

Now, for each $v$, define a "local Green's watrix" $\Gamma_{v}$, which will be an $r$ by $r$ symetric natrix with nonnegative entries off the diagonal, given by

$$
\Gamma_{v, i j}= \begin{cases}G\left(x_{i}, x_{j} ; E_{v}\right) & \text { if } i \neq j \\ v_{x_{i}}\left(E_{v}\right)=\operatorname{lin}_{z-x_{i}} G\left(z, x_{i} ; E_{v}\right)+\log _{v}\left|g_{i}(z)\right|_{v} & \text { if } i=j .\end{cases}
$$

All but finitely many of the $\mathrm{l}_{\mathrm{v}}$ are the zero uatrix. Let $\mathrm{N}_{\mathrm{v}}=\left[\mathrm{K}_{\mathrm{v}}: \mathrm{Q}_{\mathrm{p}}(\mathrm{v})\right]$ and $\mathbb{N}=[K: Q]$ be the local and global degrees, respectively, where $p(v)$ is the rational prine below $v$.

The "global Green's matrix" $\Gamma=\Gamma(\underset{\sim}{E}, \mathfrak{X})$ will be

$$
\Gamma=\sum_{V}\left(N_{V} / N\right) \Gamma_{V} \log (p(v))
$$

where if $v=\infty$ we understand $p(v)=e$. By the product formula, $I$ is independent of the choice of $g_{i}(z)$ 's. It is again a synnetric $r \times r$ real catrix with nonnegative off-diagonal entries. We let $V(\underset{\sim}{E}, X)$ be the value of $F$ as a matrix
gane, defined by

$$
V\left(\underset{\sim}{E}, \mathscr{X}_{0}\right)=\operatorname{nax}_{x \in \rho} \min _{y \in P} t_{x \Gamma y} .
$$

Here $\rho$ is the set of r-elecent real probability vectors : vectors with nonnegative entries adding up to 1 . Finally, the global capacity is

$$
Y(E, X)=e^{-V(\underline{E}, \mathscr{X})}
$$

The rost unusual thing in the definjtion is the value of $\Gamma$ as a natrix ganie. First, it should be noted that the formula is forced if pullbacks are to work pro. perly. However, it would be hard to anticipate the generalization fron the capacity with respect to one point, and doing so is one of Cantor's uain achievecents. Second, nost definitions in the subject depend upon the equivalence of two extrer:al properties, for exar.ple the principle "minimizing is the sane as equalizing" for the magnitucie of oscillations of Tchebycher polynowials. $V(\underset{\sim}{E}, \mathfrak{X})$ is a quantity of that type. If $V(\underset{\sim}{E}, \mathscr{X})<0$, therc is a unique probability vector $w$ such that all the entries of $\Gamma \mathrm{W}$ are equal ; and their value in that case is exactly $V\left(\underset{\sim}{\mathbb{E}}, \mathscr{x}^{\prime}\right)$. Nonetheless, the true neaning of the global capacity rerains nysterious.

Functoriality properties of the global capacity. - $\gamma(\underset{\sim}{\mathcal{E}}, \mathscr{X})$ has nice functoriality properties. Fron the weights which go into the definition of the Green's natrix, it is invariant under base change. That is, if $L / K$ is a finite extension, then $\gamma\left({\underset{\sim}{E}}_{z}, \mathscr{X}\right)=\gamma\left({\underset{E}{E}}_{K}, \mathscr{X}\right)$. Furtherwore, it behaves swoothly under pullbacks. Suppose $F: C_{1} \rightarrow C_{2}$ is a nonconstant rational nap between two curves defined over $K$. Let $\underset{\sim}{E}$ and $\mathscr{X}$ be given on $C_{2}$, and let $F$ have degree $m$. Then

$$
\gamma\left(F^{-1}(\underset{\sim}{E}), F^{-1}(x)\right)=\gamma\left(\underset{\sim}{E}, x^{1 / n} .\right.
$$

Lastly, if $\underset{\sim}{E}=\prod_{V} E_{V}$ and $\underset{\sim}{F}=\prod_{V} F_{V}$ are two adelic sets in ( $\tilde{K}_{A}$ ) whose capacities with respect to $\mathscr{X}$ are defined, and if for cach $v, E_{V} \subset F_{V}$, then $\gamma(\underset{\sim}{E}, \mathscr{X}) \leqslant \gamma(\underset{\sim}{F}, \mathscr{X})$. Monotonicity in the variable $\mathscr{X}$ is an open question ; sone care is needed even to formulate what it should Lean, since $\gamma(\underset{\sim}{E}, \mathfrak{X})$ has only been defined if alnost all of the $E_{V}$ are "trivial with respect to $\mathscr{X}$ ".

In the case of ${\underset{\sim}{P}}^{1}$, CANTOR proved a "separation inequality". Suppose $\underset{\sim}{E}$ and $\mathscr{x}$ are such that $x_{0}$ can be partitioned into two sets $x_{1}$ and $x_{2}$ such that for every $v$, and any $x_{1} \in \mathscr{X}_{1}, x_{2} \in \mathscr{X}_{2}$, we have $G\left(x_{1}, x_{2} ; E_{v}\right)=0$. This means that for every $v, \mathscr{X}_{1}$ and $\mathscr{X}_{2}$ are contained in different "components" of the complenent of $E_{V}$. CANTOR showed that (under a slight extension of the definition of capacity above)

$$
\gamma\left(\underset{\sim}{E}, x_{1}\right) \cdot \gamma\left(E_{i}, x_{2}\right) \geqslant 1
$$

It renains open whether this is true for curves of higher genus.
The nain theorem. - The following generalization of the Fekete-szegö theoreni holds.

PHEOREH. - Suppose $C$ is a smooth, geonetrically connected curve over a number field $K$. Let $\mathscr{X}$ be a finite (nonerpty) Galois-stable set of points of $C(\tilde{K})$; let $\underset{\sim}{E}=\prod_{V} E_{V} \subset \mathcal{C}\left(\tilde{K}_{A}\right)$ be an adelic set such that each $E_{V}$ is closed, capacitable and stable under $G a l\left(\tilde{K}_{V} / K_{V}\right)$, with all but finitely many of the $E v$ trivial with respect to $\mathscr{X}$. Then
(A) If $\gamma\left(\mathbb{E}, X_{0}\right)<1$, there is a neighborhood of $\underset{\sim}{\mathbb{E}} \underset{A}{ } C\left(\tilde{K}_{A}\right)$ which contains only a finite number of complete Galois orbits of points of $C(\tilde{K})$.
(B) If $\gamma\left(\underset{\sim}{E}, x_{0}\right)>1$, then every neighborhood of $\underset{\sim}{E}$ in $C\left(\widetilde{K}_{A}\right)$ contains infinitely many complete Galois orbits of noints in $C(\tilde{K})$.
 borated by ROBINSON and CANTOR during the $1960^{\prime}$ s and 1970's. The goal is to find a function $f(z)$ in $K(C)$ whose poles are supyorted on $X$ and whose zeros are all near $\underset{\sim}{E}$. If $\gamma(E, \mathscr{X})<1$, one constructs a function such that $|f(z)|_{V} \leqslant 1$ on $E_{V}$ for all $v$, and $|f(z)|_{V}<1$ on $E_{V}$ for archinedean $v$. Then the neighborhood $U=\prod_{V} U_{V}$, where $U_{V}=\left\{z \in \mathcal{C}\left(\tilde{K}_{V}\right) ;|f(z)|_{V}<1\right\}$ for archinedean $v$ (resp. $\leqslant 1$ for nonarchimedean $v$ ), meets the needs of the theorec because any algebraic point whose conjugates are contained in $\underset{\sim}{U}$ wust be a root of $f(z)$. If $Y\left(E, X_{0}\right)>1$, then $\underset{\sim}{U}$ is given, and one constructs a function $f(z)$ such that

$$
\left\{z \in \mathbb{C}\left(\tilde{K}_{V}\right) ;|f(z)|_{V} \geqslant 1\right\} \in E_{V} \text { for all } v
$$

The conjugate sets of points on $\mathcal{C}(\tilde{K})$ belonging to $\mathbb{U}$, clained by the theorem, are the roots of $f(z)^{\mathrm{Li}}-1=0$ for $\mathrm{m}=1,2,3, \ldots$

The capacity $y\left(E, \mathscr{x}_{0}\right)$ and the Green's matrix $\Gamma$ deteruine the relative orders $y_{i}$ of the poles of $f(z)$ at the points in $\mathscr{X}$. When $\gamma(E, \mathscr{X})>1$ (so $V(E, \mathscr{X})<0$ ), the orders are proportional to the conponents of the distinguished probability vector $w$ mentioned earlier. The proofs in the two cases are sorewhat different, but both have a local and a global part. The local part consists of finding, for each $v$, a function $f_{v}(z) \in \tilde{K}_{V}(C)$ for which $(1 / \operatorname{deg} f) \log _{V}|f(z)|_{v}$ closely approxinates $\sum_{X_{\mathcal{L}} \in \mathscr{X}} G\left(z, x_{i} ; E_{v}\right) w_{i}$ outside $E_{V}$. This uses the crucial property of Green's functions and the canonical distance, that they be approxinatable by algebraic functions. The global part of the proof consists of "patching" the local functions $f_{v}(z)$ into a single global function $f(z)$ which looks rather like $f_{v}(z)$ at each $v$.

In his paper [C], CAIY'OR also gave other applications of capacity, including a generalized version of the rationality criterion of Polya-Carlson-Dwork-Bertrandias. I have not atterpted to carry these over on algebraic curves, but I would not expect any difficulties in doing so.

Heights. - As has been seen, the canonical local distances are connected with Néron's local heights. We wish to offer here an interpretation of the Green's functions themselves as heights.

Consider the case $\mathcal{C}={\underset{\sim}{P}}^{1}$, with $X=\{\infty\}$. For each place $v$ of $K$, let $E_{V}=D(0,1)=\left\{z \in \tilde{K}_{V} ;|z|_{V} \leqslant 1\right\}$, the closed unit disc, which we identify as a subset of ${\underset{\sim}{P}}^{1}$ using the standard affine coordinates. The Green's function of $\mathrm{E}_{\mathrm{v}}$ is given by

$$
\begin{aligned}
G\left(z, \infty, F_{v}\right) & = \begin{cases}0 & \text { if } z \in E_{v} \\
\log _{v}|z|_{v} & \text { if } z \notin E_{v}\end{cases} \\
& =\max \left(0, \log _{v}|z|_{v}\right) .
\end{aligned}
$$

Now for a nuriber $0 \neq x \in K$,

$$
h(n)=\sum_{V}\left(N_{v} / N\right) \max \left(0, \log |n|_{V}\right)=\sum_{V}\left(N_{V} / N\right) G\left(n, \infty ; E_{v}\right) \log p(v)
$$

is none other than the absolute logarithuic height of $n$.
This suggests that given an algebraic curve $\mathcal{C} / K$ and $\underset{\sim}{E}$ and $X$ as before, together with a vector of weights $w$ for the points in $\mathscr{X}$, we should regard

$$
h_{\underline{E}, x_{0}}(n)=\sum_{x_{i} \in \mathscr{E}} w_{i}\left[\sum_{v}\left(N_{v} / \mathbb{N}\right) G\left(x, x_{i} ; E_{v}\right) \log p(v)\right]
$$

as a kind of height for a point $x \in \mathcal{C}(K)$. Evidently these heights are "absolute" since they do not depend on the ground field over which we consider $\mathcal{C}$ (identifying the heights obtained frow ${\underset{\sim}{~ E}}^{[ }$and $\mathbb{F}_{\mathrm{K}}$, given a finite extension $\mathrm{L} / \mathrm{K}$ ). Hence they can be considered as functions on $\mathcal{C}(\tilde{K})$.

On this view, the Fekete-Szegö theoreiu has the following meaning. If $\gamma(E, x)<1$, then the weights $w_{i}$ can be chosen so that there are oniy a finite nuriber of points in $C(\tilde{K})$ with ${\underset{E}{E}, X_{x}}^{(x)}<\epsilon$, for some $\epsilon>0$. If $\gamma(\underset{\sim}{E}, x)>1$, then for every choice of weights and every $\epsilon>0$, there are infinitely rany points with $h_{\mathrm{E}, \mathscr{X}^{\prime}(n)<\epsilon \text {. This should be conpared with the classical fact that the roots of }}$ unity are the points for which $h(n)=0$, for the naive height on ${\underset{\sim}{P}}^{1}$.

## REFERENCES

[Ar] ARAKPLOV (S.). - Intersection theorv for divisors on an arithrietic surface [in Russian], Izvest. Akad. Nauk SSSR, Serija mat., t. 38, 1974, p. 11791192.
[C] CANTOR (D.). - On an extension of the definition of transfinite diacieter and soLe applications, J. für reine und angew. Math., t. 316, 1980, p. 160 207.
[F-S] FEKETE (M.) and SZEGÖ (G.). - On algebraic equations with integral coefficients whose roots belong to a given point set, Hath. Z., t. 63, 1955/56, p. 158-172.
[Gr] GROOS (B.). - Local heights on curves (to appear).
[Gr-Z] GROSS (B.) and ZAGIER (D.). - The Green's function for curves uniformized by the upper half plane (to appear).
[Kan] KAiJI (E.). - Weil heights, Néron pairings and v-netrics on curves (to appear):
[L] LANG (S.). - Elliptic curves, diophantine analysis. - Berlin, SpringerVerlag, 1978 (Grundlehren der ratheLatischen Wissenschaften, 231).
[iM] MANIN (Yu.). - The refined structure of the Néron-Tate height [in Russian] Mat. Sbornik, t. 83, 1970, p. 331-348 ; [in English] Math. USSR-Sbornik, t. 12, 1970, p. 325-342.
[N] NÉRON (A.). - Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Miath., Series 2, t. 82, 1965, p. 249-331.
[R] RUNELY (R.). - Capacity theory on algebraic curves (nanuscript).
[Ts] TSUJI (M.). - Potential theory in wodern function theory. - Tokyo, New York, Maruzen Corp., 1959 ; reprinted and edition : New York, Chelsea, 1975.


[^0]:    © Groupe de travail d'analyse ultramétrique
    (Secrétariat mathématique, Paris), 1984-1985, tous droits réservés.
    L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]:    (*) Robert RUMELY, Department of Matheuatics, University of Georgia, ATHENS, GA 30602 (Etats-Unis).

