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PUISEUX EXPANSIONS

Bernard M. DWORK

Groupe d’étude d’Analyse ultramétrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
10e année, 1982/83, n° 14, 6 p. 11 avril 1983

The object of this note is to discuss p-adic convergence of Puiseux expansions
of algebraic functions. ’&#x3E;le shall review joint work [D-R] with ROBBA on this ques-
tion and shall discuss the problem of lifting Puiseux expansions in characteristic

p .

Notation.

K = field of characteristic zéro complète under a discrète nonarchimedean va-

luation with residue class field of characteristic p.

k = residue class field of K.

19 = ring of integers of K.

R = 0[x] , R = k[xJ .

E = completion of K(x) under the Gauss norme

R = 0[[x]] . R = k[[xJJ .
A A

E = quotient field of completion of R under the sup norm on DCa, y 1-) .

An élément § will be said to "converge" in D(x , r ) if for sui-

table x is a power séries converging in D(0 , (r )") .
A séries = r - A. will be said to be a Puiseux Laurent séries

"convergent au bord" if converges in an annulus 0394r,1 = (x ; r  )xj  1} .

Let f e f ils inage in under thé natural mapping. We say that

§ ~ (resp. is a Puiseux expansion for f (resp. 1), if
f(x , §) (resp. f(x ., §)) = 0 .

lle refer to the union of the zéros of the discriminant and the zéros of the lead-

ing coefficient as the singular locus of f.

We consider two questions : i

Question l : Let 03BE be a Puiseux expansion for f. Does § converge in D(0 , y 1"’)?

Question II : Let 03BE be a Puiseux expansion for f. Can § be lifted to a Pui-

seux expansion for f ?

( ) Bernard M. DWORK, Nathematical Department, Fine Hall, Princeton University,
PRINCETON, NJ 08540 (Etats-Unis).
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observe that liftability implies not only convergence on D(û ~ 1 ) of the

lifted expansion but also boundedness by unity.

It is clear that if deg 
y 
f = n = degy f and if f bas n distinct Puiseux

expansions, and if the answer to II is afiirnatiire, then the answer to 1 is also

affirmative.

We shall have occasion to consider various.conditions :

(H1): The valuation induced on K(x) by the Gauss norm is at worst 

fied in the splitting field of f.

(H2): The singular locus of f has no élément in the punctured disk D(0yl")-{.0).

(IL) . f (=~f ~y) have no common factor in 

(H4): degy f = degy f.

THEORM [ D4R j. - Ass-ume (H1), (H2), then (gestion l has an affirmative response.

For proof soe The condition (H2) is clearly necessary.

Example. - f == y3 - x(x + p) .
A Puiseux expansion x Ç= Ai satisfying l would imply

and differentiating shows that x2/(x3 + p);2/3 is analytic in D(O , 1 ) , which
is impossible.

We attributed to HIRONAKA [Dw] the statement (for f ~ Z[x , y] ).

(F J) if f is irreducible over .9.(x) , y ar,d: if the discriminant of f and of f

have the same de grées as polynomials in x, then the Puiseux expansions of f lift

to Puiseux expansions of f 0

This example demonstrates the inaccuracy of (F 1 ) .

Assune (H3). We conclude that each Puiseux expansion ~ of f has a

lifting to a Puiseux Laurent séries for f "convergent au bord".

Note. - We do not assume (H2). We do not positive response to Question

II.

Proof. - nay assume that ~ ~ K[[x]] . Let  be a lifting of ~ in 0[[x]].
Hence letting be the prime idéal of K , y
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A

i. e~ f Y (x , is an élément of 0[[x~ with at least one unit coefficient.

Choose a positive real 0 y 1 &#x3E; 0 &#x3E; j , then there exists r  1 such that

while

~

now put y ~ T) + w , so

and then put w = zf(x , y(x , ~) , so that

where

Thus on 0394
r, 1, A . J is bounded by G  1 and hence z)--&#x3E; - 1 - I. J= 2 is

a contractive Dap on the space of functions analytic and bounded by unity on

D 1. It is clear that the unique fixed point Zo thon gives a solution of (1) by
r~ 1 A A A 

setting Ti = Tt + z0 f(x , ’q)/f (x , 11) , that 11 converges on 6 land that theju . y A 

Laurent séries Lj=-o;;. Bj xJ representing Zo f(x , Í)/fy(X , 11) is bounded by
 1 , and hence

which shows that B. has zéro inage in K y i. is a lifting of Tj as asserbd.
J

COROLLARY 1. - Assume (H )~ (H2)’ (H3)’ then question II has an affirmative res-

ponse.

COROLLARY 2. - Assume (H2)’ (H~), (H4)’ then question II has an affirmative res-

ponse.

Proof. - Assumptions (H3)’ (H4) imply (H ) and hence the first corollary implies
the second. The theorem shows that f has a full set of Puiseux expansions con-

verging in 1-). If 03BE is a Puiseux expansion of T then by the lemma 03BE
has a Laurent séries lifting, § , ~convergent au bord". This § must coïncide

with one of the previousiy mentioned solutions and so converges in D(0 y 1 ) .
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We now disprove :

(F2) Assumptions (H2)’ (H)) question II has an affirmative solution.

To construct a counter-example, it seems useful to consider a polynomial not

satisfying (H ). For this reason, we consider Y ~~’ + xy + p which over E has

factors f =yP + x mod p , and f ~ of degree 1 in y. It is more convenient

to write y = pz and so consider

Mod P , we have the solution z = - x which clearly cannot lift to a Puiseux

expansion at x = 0 in characteristic zéro since in that characteristic x = 0 is

not a singularity. Trivially (.H ) is satisfied. To check (l~)~ we nust compute the

discriminant. We recall that for + A 
y 

+ B = g(y) , the discriuinant is

Thus, 9 for + z + ~~~pp~ ’ the discriuinant is

i. e. the zéros are outside of D(0 , 9 1 ) .

We now discuss in détail a well known example.

~. Rare the discriminant is given by our previous formula to be

Hence the singular locus consists of

a set of p points.

(E l) There are no Puiseux expansions at x = 0 in characteristic p.

Proof. - If p is the prime above x = 0 , then ord, y = - 

Hence a Puiseux expansion, if it exists, must be of the forn

but then
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a contradiction as is well known [Ch], (p. 64).

(E 2) No Puiseux expansion at zéro in characteristic zéro converges for

t~t Î ~tp)~~ =r, -
Proof. - A Puiseux expansion convergent for x ~ D(0 y r ) - {.0) means that we

obtain an element of K((z)) with z == which converges for 0  jxj  r .

For r ~ 1 ~ we then hâve point wise

Thus y) = point wise, and ao if r &#x3E; 
r0 , then wrill assume the

value l/p at suitable values of x such that Ixl = rO .
Since 1) = - 1/x~ y and since

is a nalytic as function of z for x E r~~ - ~0~ , ~ we obtain a contradiction

if r &#x3E; r~ . The sane analysis shows that convergence for r~ is also im-

possible.

(E 3) There are p distinct Puiseux expansions at infinity in characteristic p .

The p solutions are {y0 
+ a}0ap .

(E 4) The p distincts Puiseux expansions at infinity (in characteristic zero)
converge and are beunded by unity &#x3E; 1 , but do not converge for |z| = 1 .

Proof . - At x = ~ condition (H2) is satisfied. The global conditions { 2 
" ’ 

"

are satisfied. Hence b,v the corollary the Puiseux expansions in characteristic

p may be lifted. These then are {y} r, where y p) -- a + y .
a a=ü3lp . ~ .,p-~ 

’ 

a 
" 

4

This shows that Z p C ~ ~./~z~~ 9 but if we write

=1 for an infinité set of j . This shows that the demain of convergence is

precisely )z) &#x3E; 1 .

This concludes our discussion of the example.

Generali zati ons .

1°. Let f e R[yJ . The theorem and the lemma generalize replacing (H2) by H2 ’
(H3) by as indicated below.

(H2) : The valuation induced on the quotient field of by the Gauss norm

is at worst tauely ramified in the splitting field of f
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~ ~ 2014 -. 
~

(IU) : f and f have no common factor in 

2°. Let G be an n x n natrix with coefficients in the quotient field of R.

We assume that the differential équation dy/dx = Gy has no singularity in

D(0 , 1 ) except for a regular singularity at x = 0 with rational exponents. We

assune that at the generic point t (in the sensé of ROBBA l])the équation
has n indépendant solutions bounded and analytic on D(t , y 1-) . We conclude that
the solution matrix at the origin is of the form D x where II is a constant

diagonal matrix and D is a bounded matrix converging on D(0 , 1-) .

The proof is onitted since it is so close to that of [ D-R], The key point is that
the argument of ROBBA [Ro 2] shows that the hypothesis of boundedness on the gene-
ric disk implies the semi-simplicity of H.
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