Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

BERNARD M. DWORK Puiseux expansions

Groupe de travail d'analyse ultramétrique, tome 10, no 2 (1982-1983), exp. no 14, p. 1-6
http://www.numdam.org/item?id=GAU_1982-1983_10_2_A1_0
© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1982-1983, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PUINEUX EXPAFSIONS

by Bernard M. Dwork (*)

The object of this note is to discuss p-adic convergence of Puiseux expansions of algebraic functions. We shall review joint work [D-R] with ROBBA on this question and shall discuss the problem of lifting Puiseux expansions in characteristic p •

Notation.

$K=$ field of characteristic zero complete under a discrete nonarchimedean valuation with residue class field of characteristic p .
$k=r e s i d u e ~ c l a s s ~ f i e l d ~ o f ~ K ~ . ~$
$\mathcal{O}=$ ring of integers of K .
$\mathrm{R}=\mathrm{O}[\mathrm{x}], \quad \overline{\mathrm{R}}=\mathrm{k}[\mathrm{x}]$.
$E=$ completion of $K(x)$ under the Gauss norm.
$\hat{\mathrm{R}}=\hat{O}[[\mathrm{x}]], \quad \hat{\overline{\mathrm{R}}}=\mathrm{k}[[\mathrm{x}]]$.
$\hat{\mathrm{E}}=$ quotient field of completion of \hat{R} under the sup norn on $D\left(0,1^{-}\right)$.
An element $\xi \in K\left(\left(x^{1 / m}\right)\right)$ will be said to "converge" in $D\left(\bar{x}, r^{-}\right)$if for suitable $N \in \mathbb{N}, X^{\mathbb{N}} \xi\left(x^{m}\right)$ is a power series converging in $D\left(0,\left(r^{m}\right)^{-}\right)$.

A series $\xi(x)=\sum_{j=-\infty}^{\infty} A_{j_{n}} x^{j / m}$ will be said to be a Puiseux Laurent series "convergent au bord" if $\xi\left(\mathrm{x}^{\mathrm{rl}}\right)$ converges in an annulus $\Delta_{r, 1}=\{\mathrm{x} ; \mathrm{r}<|\mathrm{x}|<1\}$.

Let $f \in R[y], \bar{f}$ its inage in $\bar{R}[y]$ under the natural mapping. We say that $\xi \in K\left(\left(x^{1 / m}\right)\right)$ (resp. $k\left(\left(x^{1 / m}\right)\right)$ is a Puiseux expansion for f (resp. \bar{f}), if $f(x, \xi) \quad(r e s p . ~ \bar{f}(x, \xi))=0$.

We refer to the union of the zeros of the discriainant and the zeros of the leading coefficient as the singular locus of f.

We consider two questions :
Question I : Let ξ be a Puiseux expansion for f. Does ξ converge in $D\left(0,1^{-}\right)$? Question II : Let $\bar{\xi}$ be a Puiseux expansion for \bar{f}. Can $\bar{\xi}$ be lifted to a Puiseux expansion for f ?

[^0]We observe that liftability implies not only convergence on $D\left(0,1^{-}\right)$of the lifted expansion but also boundedness by unity.

It is clear that if $\operatorname{deg}_{y} f=n=d \operatorname{geg}_{y} \vec{f}$ and if \bar{f} has n distinct Puiseux expansions, and if the answer to II is affirmative, then the answer to I is also affirmative.

We shall have occasion to consider various conditions :
$\left(H_{1}\right)$: The valuation induced on $K(x)$ by the Gauss norm is at worst tomely ramified in the splitting field of f.
$\left(\mathrm{H}_{2}\right)$: The singular locus of f has no elenent in the punctured disk $D\left(0,1^{-}\right)-\{0\}$. $\left(H_{3}\right): \overline{\mathfrak{I}}$ and $\bar{f}_{y}\left(=\frac{\partial \bar{f}}{\partial y}\right)$ have no comron factor in $\bar{R}[y]$. $\left(H_{4}\right): \operatorname{deg}_{y} f=\operatorname{deg}_{y} \bar{f}$.

THEOREN [D-R]. - Assume $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$, then Question I has an affirmative response. For proof see $[D-R]$. The condition $\left(H_{2}\right)$ is clearly necessary.
Example. $-f=y^{3}-x(x+p)$.
A Puiseux expansion $x^{1 / 3} \sum_{j=0}^{\infty} A_{j} x^{j / 3}$ satisfying I would inply

$$
\sum_{A_{j}} x^{j}=\left(x^{3}+p\right)^{1 / 3}
$$

and differentiating shows thet $x^{2} /\left(x^{3}+p\right)^{2 / 3}$ is analytic in $D\left(0,1^{-}\right)$, which is impossible.

Renark. - We attributed to IHIRONAKA [Dw] the statemont (for $f \in \underset{Z}{Z}[x, y]$).
(F) if f is irreducible over $Q(x)$, aritif the discriminant of f and of \bar{f} have the same degrees as polynorials in x, then the Puiseux expansions of \bar{f} lift to Puiseux expansions of f.

This example demonstrates the inaccuracy of (Fi).
LEMMA. - Asaune $\left(\mathrm{H}_{3}\right)$. We conclude that each Puiseux expansion \bar{T} of \bar{f} has a lifting to a Puiseux Laurent series for f "convergent au bord".

Note. - We do not assuue $\left(H_{2}\right)$. We do not affirn a positive response to Question II.

Proof. - We may assume that $\bar{\eta} \in K[[x]]$. Let $\hat{\eta}$ be a lifting of $\bar{\eta}$ in $O[[x]]$. Hence letting (I) be the prime ideal of K,

$$
f(x, \hat{\eta}) \in L \hat{O}[[x]] \text { while } f_{y}(x, \hat{\eta}) \equiv \bar{f}_{y}(x, \bar{\eta}) \neq 0
$$

i. e. $f_{y}(x, \hat{\eta})$ is an element of $\theta[[x]]$ with at least one unit coefficient. Choose a positive real $\theta, 1>0>|\mathrm{I}|$, then there exists $\mathrm{r}<1$ such that

$$
\left|\mathrm{f}_{\mathrm{y}}(\mathrm{x}, \hat{\eta})\right|>(|\hat{\mathrm{i}}| / \cup)^{1 / 2}, \quad v \mathrm{x} \in \Delta_{\mathrm{r}, 1}
$$

while

$$
|f(x, \hat{\pi})| \leqslant|r|, \quad V x \in D\left(0,1^{-}\right) .
$$

We now put $y=\hat{\eta}+w$, so

$$
f(x, y)=f(x, \hat{\eta})+w f_{y}(x, \hat{\eta})+\sum_{j=2}^{\infty} w^{j} / j \downarrow f^{(j)}(\hat{\eta})
$$

and then put $w=z f(x, \hat{\eta}) / f_{y}(x, \hat{\eta})$, so that

$$
\begin{equation*}
\frac{f(x, y)}{f(x, \hat{\eta})}=1+z+\sum_{j=2}^{\infty} z^{j} \frac{f^{(j)}(\hat{\eta})}{j!} \frac{f(x, \hat{i})^{j-1}}{f_{y}(x, \hat{i})^{j}}=1+z+A_{2} z^{2}+\ldots \tag{1}
\end{equation*}
$$

where

$$
A_{j}=\frac{f^{(j)}(\hat{\eta})}{j!} \frac{f(x, \hat{\tilde{n}})^{j-1}}{f_{y}(x, \hat{\eta})^{j}}, j=2,3, \ldots
$$

Thus on $\Delta_{r, 1}, A_{j}$ is bounded by $\partial<1$ and hence $z \longmapsto-1-\sum_{j=2} A_{j} z^{j}$ is a contractive map on the space of functions analytic and bounded by unity on $\Delta_{r, 1}$. It is clear that the unique fixed point z_{0} then gives a solution of (1) by setting $\eta=\hat{\eta}+z_{0} f\left(x, \hat{i}_{j}\right) / f_{y}(x, \hat{\eta})$, that η converges on $\Delta_{r, 1}$ and that the Laurent series $\sum_{j=-\infty}^{\infty} B_{j} x^{j} \quad \underset{\text { representing }}{ } z_{0} f(x, \hat{\eta}) / f_{y}(x, \hat{\eta})$ is bounded by $(\mid \text { II } \mid / 0)^{1 / 2}<1$, and hence

$$
\begin{aligned}
& \left|B_{j}\right|<1 \quad j \geqslant 0 \\
& \left|B_{j} r^{j}\right|<1 \quad j<0
\end{aligned}
$$

which shows that B_{j} has zero inage in K, i. e. r_{i} is a lifting of $\bar{\eta}$ as asserted. COROLLARY 1. - Assume $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$, then question II has an affirmative response.

COROLLARY 2. - hssume $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right)$, then question II has an affirnative response.

Proof. - Assumptions $\left(\mathrm{H}_{3}\right),\left(\mathrm{H}_{4}\right)$ imply $\left(\mathrm{H}_{1}\right)$ and hence the first corollary inplies the second. The theoreri shows that f has a full set of Puiseux expansions converging in $D\left(0,1^{-}\right)$. If $\bar{\xi}$ is a Puiseux expansion of \bar{f} then by the lemma $\bar{\xi}$ has a Laurent series lifting, ξ, "convergent au bord". This 5 must coincide with one of the previously mentioned solutions and so converges in $D\left(0,1^{-}\right)$.

We now disprove :
$\left(\mathrm{F}_{2}\right)$ Assumptions $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ inply question $I I$ has an affirmative solution.
To construct a counter-example, it seens useful to consider a polynomial not satisfying $\left(H_{1}\right)$. For this reason, we consider $y^{p+1}+x y+p$ which over E has factors $f_{1} \equiv y^{P}+x \bmod p$, and f_{2} of degree 1 in y. It is more convenient to write $y=p z$ and so consider

$$
p^{p} z^{p+1}+x z+1=f(z)
$$

Mod p, we have the solution $z=-x^{-1}$ which clearly cannot lift to a Puiseux expansion at $x=0$ in characteristic zero since in that characteristic $x=0$ is not a singularity. Trivially $\left(\mathrm{H}_{3}\right)$ is satisfied. To check (H_{2}), we must compute the discriminant. We recall that for $y^{N}+A_{y}+B=g(y)$, the discriminant is

$$
(-1)^{(N+1)}\left[(-1)^{N} N^{N} B^{N-1}-(N-1)^{N-1} A^{N}\right]
$$

Thus, for $z^{p+1}+\left(x / p^{p}\right) z+\left(1 / p^{p}\right)$, the discriminant is
$\pm\left[(-1)^{p+1}(p+1)^{p+1}\left(\frac{1}{p^{p}}\right)^{p}-p^{p}\left(\frac{x}{p^{p}}\right)^{p+1}\right]= \pm p^{-p^{2}}\left[(-1)^{p+1}(p+1)^{p+1}-x^{p+1}\right]$,
i. e. the zeros are outside of $D\left(0,1^{-}\right)$.

We now discuss in detail a well known example.
(E)

$$
f(y)=y^{p}-y-\frac{1}{x}
$$

Here the discriminant is given by our previous formula to be

$$
(-1)^{p(p+3) / 2}\left[p^{p}\left(-\frac{1}{x}\right)^{p-1}-(p-1)^{p-1}\right]
$$

Hence the singular locus consists of

$$
\left\{p^{p /(p-1)} \frac{\omega}{1-p^{2}}\right\}_{\omega=\omega}
$$

a set of p points.
(E 1) There are no Puiseux expansions at $x=0$ in characteristic p.
Proof. - If p is the prine above $x=0$, then ord $y=-1 / p$.
Hence a Puiseux expansion, if it exists, rust be of the form (1.1) $y=A_{-1} z^{-1}+A_{0}+A_{1} z+\ldots, z=x^{1 / p}$, with all A_{j} in $\underset{\sim}{f} p$, but then

$$
y=y^{p}-\frac{1}{x}=\sum_{j=-1} A_{j}^{p} z^{p j}-\frac{1}{x} \in k((x))
$$

a contradiction as is well known [Ch], (p. 64).
(E 2) No Ptiseux expansion at zero in characteristic zero converges for
$|x| \geqslant|p|^{p / p-1}=r_{0}$.
Proof. - A Puiseux expansion convergent for $x \in D\left(0, r^{-}\right)-\{0\}$ means that we obtain an eleuent of $K((z))$ with $z=x^{1 / p}$ which converges for $0<|x|<r$. For $r \leqslant 1$, we then have point wise

$$
\left|y^{p}-y\right|=|x|^{-1}>1 \text {, and so }\left|y^{p}\right|>|y|>1 .
$$

Thus $|y|=|x|^{-1 / p}$ point wise, and so if $r>r_{0}$, thien y^{p-1} will assume the value $1 / p$ at suitable values of x such that $|x|=r_{0}$.

Since $d y / d x\left(p y^{p-1}-1\right)=-1 / x^{2}$, and since

$$
d y / d x=(d y / d z) /(d x / d z)=\left(1 / p z^{p-1}\right) d y / d z
$$

is analytic as function of z for $x \in D\left(0, r^{-}\right)-\{0\}$, we obtain a contradiction if $r>r_{0}$. The same analysis shows that convergence for $|x|=r_{0}$ is also inpossible.
(E 3) There are p distinct Puiseux expansions at infinity in characteristic p. Proof. - Let $\bar{y}_{0}=-\frac{1}{z}-\left(\frac{1}{z}\right)^{p}-\left(\frac{1}{z}\right)^{p^{2}}-\ldots$, then $\bar{y}_{0}^{p}-\bar{y}_{0}=1 / z$.

The p solutions are $\left\{\bar{y}_{0}+a\right\}_{0 \leqslant a<p}$.
(E 4) The p distincts puiseux expansions at infinity (in characteristic zero) converge and are bounded by unity for $|z|>1$, but do not converge for $|z|=1$.

Proof. - At $x=\infty$ condition (H_{2}) is satisfied. The global conditions (H_{3}), (H_{4}) are also satisfied. Hence by the corollary the Puiseux expansions in characteristic p may be lifted. These then are $\left\{y_{a}\right\}_{a=0,1, \ldots, p-1}$ where $y_{a}(\bmod p)=a+\bar{y}_{0}$.

This shows that $y_{a} \in z_{p}[[1 / z]]$, but if we write

$$
y_{a}=\sum_{j=0}^{\infty} B_{j} \frac{1}{z^{j}},
$$

$\left|B_{j}\right|=1$ for an infinite set of j. This shows that the domain of convergence is precisely $|z|>1$.

This concludes our discussion of the example.
Generalizations.
1°. Let $f \in \hat{R}[y]$. The theores and the lema generalize replacing $\left(H_{2}\right)$ by H_{2}^{\prime}, $\left(\mathrm{H}_{3}\right)$ by (H_{3}^{\prime}) as indicated below.
$\left(H_{2}^{\prime}\right):$ The valuation induced on the quotient field of $\theta[[x]]$ by the Gauss norm is at worst tanely ramified in the splitting field of f
$\left(H_{3}^{\prime}\right): \bar{f}$ and \bar{f}_{y} have no comrion factor in $\hat{R}[y]$.
2°. Let G be an $n \times n$ matrix with coefficients in the quotient field of \hat{R}. We assume that the differential equation $d y / d x=G y$ has no singularity in $D\left(0,1^{-}\right)$except for a regular singularity at $x=0$ with rational exponents. We assume that at the generic point t (in the sense of ROBBA [Ro 1]) the equetion has n independent solutions bounded and analytic on $D\left(t, 1^{-}\right)$. We conclude that the solution matrix at the origin is of the form $D x^{H}$ where $I f$ is a constant diagonal matrix and D is a bounded matrix converging on $D\left(0,1^{-}\right)$.

The proof is onitted since it is so close to that of [D-R]. The key point is that the argunont of ROBBA [Ro 2] shows that the hypothesis of boundedness on the generic disk implies the semi-simplicity of H.

REFERENCES

[$D-R$] Difork ($\mathrm{B.}_{\mathrm{C}}$). - On natural radii of p-adic convergence, Trans. Amer. math. Soc., t. 256, 1979, p. 199-213.
[DW] DWORK (B.). - Arithretic theory of differential equations, Symposia Mathenatica, vol. 24, p. 225-243. - Rona, Istituto nazionale di Alta Matematica; London, Acaderuic Press, 1981.
[Ch] CHEVALIEY (C.). - Introduction to the theory of algebraic functions of one variable. - New York, Anerican watheuatical Society, 1951 (Mathematical Surveys, 6).
[Ro 1] ROBBA (P.). - Index of p-adic differential operators, II, Pacific J. of Hath., t. 96, 1982, p. 393-418.
[Ro 2] ROBBA (P.). - Solutions bornées des systènes différentiels linéaires, Groupe d'étude d'Analyse ultranétrique, 30 année, $1975 / 76$, no 5, 16 p.

[^0]: ${ }^{*}$) Bernard M. DWORK, Mathenatical Department, Fine Hall, Princeton University, PRINCETON, NJ 08540 (États-Unis).

