# Groupe de travail D'ANALYSE ULTRAMÉTRIQUE 

## BERNARD DWORK Differential equations which come from geometry

Groupe de travail d'analyse ultramétrique, tome 10, $\mathrm{n}^{\circ} 1$ (1982-1983), exp. $\mathrm{n}^{\circ} 9$, p. 1-6 [http://www.numdam.org/item?id=GAU_1982-1983_10_1_A5_0](http://www.numdam.org/item?id=GAU_1982-1983_10_1_A5_0)
© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1982-1983, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## DIFFERETIAL EQUATIOHS WHICH COME FROH GEOHETRY

by Bernard Dilork (*)

## 1. Introduction.

Let $k$ be an algebraj.c number field, and $L$ a differential operator in $k(x)[D]$,

$$
L=D^{n}-B_{n-1} D^{n-1}-B_{n-2} D^{n-2}-\cdots-B_{0},
$$

where each $B_{j} \in k(x), D=d / d x$. For each valuation $p$ of $k$ we dofine $r(p)$ to be the radius of the maximal disk of j-adic convergence of all the solutions of $I$ at the madic generic point $t$. This means that if $b$ lies in any residue class (with a finite nuriber of exceptions) in the algebraic closure of the p-adic completion of $k$ then the solutions of $L$ at $b$ converge in the disk $D\left(b, r(p)^{-}\right)$.

We recall the conjecture of Grothendieck [Ka 2]. For almost all waluations $p$ we may reduce the coefficients of $L$ modulo $r$ and obtain an operator $L_{\text {, }}$ with coefficients in $\bar{k}_{i j}(x), \bar{k}_{j}$ being the residue class field of $k$ at $\hat{p}$. For such $p$ we view $L_{p}$ as $\bar{k}_{p}^{j}\left(x^{p}\right)$ linear operator on $\bar{k}_{p}(x)$ and let $V_{j}$ denote the kernel.

Conjecture of Grothendieck. - If

$$
\operatorname{dim}_{\bar{k}_{p}}\left(x^{p}\right) v_{i}=n \text { for almost all valuations } i \text { of } k
$$

then all the solutions of the differential equation $i y=0$ are algebraic functions.

A weaker form of Grothendieck's conjecture, adequate for the present work, may be stated :

Conjecture $G^{\prime}$ - - If for alnost all ithere exists a residue class $C_{i}$ such that there are n-solutions $u_{1}, u_{2}, \ldots, u_{n}$ of $L$ which converge and are bounded by unity on $C_{p}$ and such that the wronskian, $\operatorname{det}\left(u_{j}^{(i)}\right.$ ), assumes only unit values on $C_{r}$ then all the solutions of $L$ are algebraic functions.

In our application we will take $C_{p}$ to be the generic p-adic residue class.
Gujded by our own results [ Ka 1 1], and those or $\mathrm{Katz}[\mathrm{Ka} 2]$, we say that L is DFG ("derived from geometry") if
(1) $r\left(i^{\prime}\right)=1$ for almost all $i$.

[^0](2) Grothendieck's conjecture is known to be true.

In particular, it is known that the hypergeonetric differential operator

$$
L=x(1-x) D^{2}+(c-(a+b+1) x) D-a b
$$

with $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Q}$ is DFG . Property 2 being known fron [Ka 2] while Property 1 may be deduced for either [Ka 1] or [Dw] or from [DR 2] (Theoren 8.6).

The object of this note is to present some evidence in support of the following conjecture :

Conjecture $D_{n}$ - Let $I$ be a DFG differential operator of order $n$, irreducible over $k(x)$ with a solution $w$ such that $w, w^{\prime}, \ldots, w^{(n-1)}$ are algebraically dependent over $k(x)$. Then all the solutions of $L$ are algebraic functions.

We prove the conjecture for the case $n=2$.
This work jis based upon correspondence with Pritz BEUKRRS who considered this question from a different point of view. The proof of $D_{2}$ in \& 3 has been simplified with the holp of H. KhTZ.

## 2. Inhowogencous relations.

Let $\mathcal{L}$ be a differential field of characteristic zero with $D=d / d x$ as differential operator. Let $n \geqslant 2, ~ I \in E[D]$.

$$
L=D^{n}-\sum_{i=0}^{n-1} B_{i} D^{i}, \quad B_{i} \in \mathscr{L}, \quad 0 \leqslant i<n .
$$

We generalize a result stated by SIEGEL [5] (page 60) for the case $n=2$.
2.2. LJimla. - Let $\hat{\mathcal{E}}$ be a differential extension $\hat{f}$ ield of $\mathcal{L}$ with algebraically closed field of constants $G$ and let $K$ be the kernel of $L$ in $\mathcal{L}$. He assume

## 2.2 .1

$$
\operatorname{dim}_{C} K \geqslant 2
$$

2.2.2. -There exists a non-trivial w $\boldsymbol{\epsilon} K$ such that $w$, $w^{\prime}, \ldots, w^{(n-1)}$ are algebraically depondent over $\mathcal{L}$.
We assert the existence of non-trivial $u \in K$ such that $u, u^{\prime}, \ldots, u^{(n-1)}$ satisfies a non-trivial homogenenus relation over the composition $C \mathcal{E}$ in $\mathcal{E}$ of $C$ with $\mathcal{L}$ •

Proof. -. We may assure that w satisfies no non-trivial homoceneous relation over $\mathcal{L}$ and that $w_{1}, w_{2}$ span over $C$ a two dinensional subspace, $K_{2}$, of $K$. We will find $u \in K_{2}$ satisfying the concliasion of the lema.

For $Q \in \mathcal{L}\left[y_{0}, \ldots, y_{n-1}\right]$, a polynonial in $n$ variables with coefficients in $\mathfrak{E}$, we define
2.3

$$
Q^{*}=Q_{x}+Q_{y_{0}} y_{1}+\cdots+Q_{y_{n-2}} y_{n-1}+Q_{y_{n-1}} \sum_{i=0}^{n-1} B_{i} y_{i} .
$$

Thus for $w \in K$,
2.4

$$
\frac{d}{d x} Q\left(v, v^{\prime}, \ldots, v^{(n-1)}\right)=a^{*}\left(v, v^{\prime}, \ldots, v^{(n-1)}\right)
$$

Let $\approx$ be the ideal of all $P \in \mathbb{E}\left[y_{0}, \ldots, y_{n-1}\right]$ such that

$$
P\left(w, w^{1}, \ldots, w^{(n-1)}\right)=0 .
$$

By hypothesis $a \neq\{0\}$. iet $P$ be a non trivial elenent of a which is mininial in the sense that the difference between the degrees of the different homogeneous parts is as small as possible. Explicitly if $P_{j}$ is the homogencous part of $P$ of degree $j$ then

$$
P=P_{a}+P_{a+1}+\cdots+p_{b}
$$

where $P_{a}$ and $P_{b}$ are non-trivial with $b-a$ minimal. By hypothesis $P$ cannot be a foria and so $b \neq a$. Fquation 2.4 shows that $P^{*} \in \mathfrak{d}$ and hence

$$
\mathfrak{u} \ni P_{a} P^{*}-P_{a}^{*} P=\sum_{i=a+1}\left(P_{a} P_{i}^{*} \cdots p_{a}^{*} p_{i}\right)
$$

Since $Q \mapsto Q^{*}$ is a degree preserving naping of forms, the mininality of $b-a$ shows that $P_{a} P_{i}^{*}-P_{a}^{*} P_{i}=0$ for $i=a+1, \ldots, b$ and so in particular 2.5

$$
P_{a} P_{b}^{*}-P_{a}^{*} P_{b}=0
$$

We miay assume that $P_{b}(v)\left(=^{d e f} P_{b}\left(v, v^{\prime}, \ldots, v^{(n-1)}\right) \neq 0\right.$ for each nontrivial $v \in K_{2}$ and so from 2.5 we obtain

$$
\frac{d}{d x}\left(F_{a}(v) / F_{b}(v)\right)=0
$$

Thus for $\left(\lambda_{1}, \lambda_{2}\right) \in C^{2}-(0,0)$ we conclude that

$$
P_{a}\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right)=f\left(\lambda_{1}, \lambda_{2}\right) P_{b}\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right)
$$

where $f\left(\lambda_{1}, \lambda_{2}\right) \in C$. Letting $\left\{w_{\alpha}\right\}_{\text {ceI }}$ be a basis of $\hat{\mathscr{L}}$ over $C$, we nay write

$$
\begin{aligned}
& P_{a}\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right)=\sum_{\alpha \in I} w_{\alpha} P_{a, \alpha}\left(\lambda_{1}, \lambda_{2}\right) \\
& P_{b}\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right)=\sum_{\alpha \in I} w_{\alpha} P_{b, \alpha}\left(\lambda_{1}, \lambda_{2}\right)
\end{aligned}
$$

where $P_{a, \alpha}\left(r \operatorname{esp} . P_{b, u}\right)$ is a form in $d\left[\lambda_{1}, \lambda_{2}\right]$ of degree a (resp. b) it being nonderstood that the zero form has all degrees. We write 2.7 in the form

$$
\sum_{\alpha \in I} W_{\alpha}\left(P_{a, \alpha}\left(\lambda_{1}, \lambda_{2}\right)-f\left(\lambda_{1}, \lambda_{2}\right) P_{b, \alpha}\left(\lambda_{1}, \lambda_{2}\right)\right)=0
$$

for all $\left(\lambda_{1}, \lambda_{2}\right) \in C^{2}-(0,0)$ and so
2.8

$$
P_{a, a}\left(\lambda_{1}, \lambda_{2}\right)-f\left(\lambda_{1}, \lambda_{2}\right) P_{b, a}\left(\lambda_{1}, \lambda_{2}\right)=0
$$

for all $\left(\lambda_{1}, \lambda_{2}\right) \in C^{2}-(0,0)$. We choose $\alpha$ such that $P_{b, \alpha}$ is not the trivial form and conclude

$$
\left.\frac{p_{2}\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right)}{p_{b}\left(\lambda_{1} w_{1}+\lambda_{2}\right.} \frac{p_{2}}{w_{2}}\right)=\frac{p_{a, \alpha}\left(\lambda_{1}, \lambda_{2}\right)}{P_{b, \alpha}\left(\lambda_{1}, \lambda_{2}\right)}
$$

for all $\left(\lambda_{1}, \lambda_{2}\right) \in C^{2}$ such that

$$
P_{b, \alpha}\left(\Lambda_{1}, \Lambda_{2}\right) \neq 0
$$

Under this condition we have
$2.9 P_{a}\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right) P_{b, \alpha}\left(\lambda_{1}, \lambda_{2}\right)-P_{b}\left(\lambda_{1} w_{1}+\lambda_{2} w_{2}\right) P_{a, u}\left(\lambda_{1}, \lambda_{2}\right)=0$
which shows that the left side must be identically zero as element of $\hat{\mathscr{L}}\left[\lambda_{1}, \lambda_{2}\right]$. Dividing $P_{b, \alpha}$ and $P_{a, 0}$ by their greatest conton divisor we ray assume them to be relatively prime forms in $C\left[\lambda_{1}, \lambda_{2}\right]$. Since $b>a$, and $C$ is algebraically closed we nay choose $\left(\lambda_{1}, \lambda_{2}\right)$ in $C^{2}$ such that

$$
P_{b, \alpha}\left(\lambda_{1}, \lambda_{2}\right)=0, P_{a, \alpha}\left(\lambda_{1}, \lambda_{2}\right) \neq 0
$$

Then putting $u=\lambda_{1} w_{1}+\lambda_{2} w_{2} \in K_{2}$, we see frov 2.9 that $P_{b}(u)=0$. This contradiction conpletes the proof.

## 3. Proof of Conjecture $D_{2}$ •

THEOREM. - Let $\mathrm{L} \in \mathrm{k}(\mathrm{x})[\mathrm{D}]$ be a second order DFG differential operator irreducible over $k(x)$ with non-trivial solution $w$ such that $w$, w' are algebraically dependent over $k(x)$. Then all the solutions of ${ }^{`} L$ are algebraic functions.

Proof. - By 82 there exists a non-trivial solution $u$ of $L$ such that $u$, $u^{\prime}$ satisfy a honogeneous relation over $C(x)$ where $C$ is a constant field extension of $k$ -

Hence $u t u=\eta$ is an algebraic function. Thus $\eta$ is a solution of the Riccati equation associated with $L$. Since $L$ is irreductible over $k(x)$, it is also irreducible over $C(x)$ and hence $\eta \notin C(x)$. Thus there exists a distinct conjugate $\eta_{2}$ of $\eta=\Pi_{1}$ over $C(x)$ which is again a solution of the Riccati equation of $\mathcal{L}$. We extend each valuation, of $k$ to $C$ and by [D-R 1 ] for almost all $p$ the branches of $\eta$ at the generic point $t$, are analytic in $D\left(t_{i}, 1^{-}\right)$. Let $u_{i}$ denote a solution at $t_{r}$ of the equation

$$
\begin{aligned}
& u_{i}^{\prime}=u_{i} i \\
& i=1,2 \\
& u_{i}\left(t_{i}\right)=1
\end{aligned}
$$

$\eta_{1}, \eta_{2}$ being two distinct branches of ? at $t_{p}$. Since $u_{i}$ is a solution at $t_{p}$ of $L$, we know (since $L$ is DFG) that (excluding a finite set of $p$ ) $u_{i}$ converges in $D\left(t_{i}, 1^{-}\right)$and by the corresponding property of $u_{i}^{!} / u_{i}=n_{i}$, we conclude that $u_{i}$ is never zero on this disk, and hence for $x$ in this disk we have

$$
\left|u_{i}(x)\right|=\left|u_{i}\left(t_{i}\right)\right|=1 .
$$

On the other hand the wronskian, $u_{1} u_{2}^{\prime}-u_{1} u_{2}^{\prime}=u_{1} u_{2}\left(\eta_{2}-\eta_{1}\right)$ assumes only unit values on this disk for almost all; since $\eta_{2}-\eta_{1}$ is a branch at $t_{i}$ of an algebraic function defined over $C(x)$. This shows that $L$ satisfies the hypothesis of Conjecture $G^{\prime}$ and since $L$ is DFG, we conclude that all solutions of L are algebraic function. This completes the proof.

## 4. Homogeneous solutions.

In 32 , we showed that under certain conditions we may be sure that a homagenous relation is satisfied by some solution of 2.1. We now examine this relation more closely.
4.1. LiliA. - Let $L, \mathcal{L}$ be as in $\S 2$. Let $F$ be a homogeneous irreducible form in $\mathcal{L}\left[y_{0}, \ldots, y_{n-1}\right]$ and $W$ an element in the kernel $K$ of $L$ in a differendial extension field $\mathcal{L}$ such that
.4 .1 .1

$$
F\left(w, W^{2}, \ldots, W^{(n-1)}\right)=0,
$$

4.1.2.- (w, w' , ... , $\mathrm{w}^{(\mathrm{n}-1)}$ ) is projectively algebraically independent over then there exists $\xi$ in some extension of $\hat{\mathscr{L}}$ such that $\xi / \xi \in \mathcal{L}$ and such that

$$
\frac{d}{d x}\left(5^{-1} F\left(v, \ldots, v^{(n-1)}\right)=0 \text { for each } v \in K .\right.
$$

Proof. - We eliminate $y_{n-1}$ between $F$ and $F^{*}$ (cf. 2.3) and obtain

$$
R\left(y_{0}, y_{1}, \ldots, y_{n-2}\right)=A\left(y_{0}, \ldots, y_{n-1}\right) F(y)+B\left(y_{0}, \ldots, y_{n-1}\right) F^{*}(y)
$$

where $R, A, B \in \mathbb{R}[y]$, and are indeed homogeneous forms. Specializing

$$
\left(y_{0}, \ldots, y_{n-1}\right) \mapsto\left(w, w^{1}, \ldots, w^{(n-1)}\right)
$$

we find that $R\left(w, \ldots, w^{(n-2)}\right)=0$ and so $R$ is identically zero.
Thus as polynomial in $y_{n-1}$ with coefficients in the field $\mathcal{L}\left(y_{0}, y_{1}, \ldots, y_{n-2}\right)$ the polynomials $F, F^{*}$ have a nontrivial common factor $h\left(y_{n-1}\right)$ which shows that
$F$ does not lie in $\mathcal{L}\left(y_{0}, y_{1}, \ldots, y_{n-2}\right)$. Since $F$ is irreducible in $\left[y_{0}, \ldots, y_{n-1}\right]$, it is also irreducible in $\mathcal{E}\left(y_{0}, \ldots, y_{n-2}\right)\left[y_{n-1}\right]$, and so $h=F$. We conclude that $F^{*}=T F$ with $T \in \mathbb{C}\left[Y_{0}, \ldots, y_{n-1}\right]^{n-2}$, but $F^{*}$, if not zero, is a form of the same degree as $F$ and so $T \in \mathcal{L}$. We choose $\xi$ in a suitable extension field such that $\xi / \xi \in T$. Thus if $v \in K$ we have

$$
\xi^{2} \frac{d}{d x}\left(\xi^{-1} F(v)\right)=\xi F^{*}(v)-\xi^{\prime} F(v)=0
$$

as asserted.
4.2. Application of Lemna 4.1. - Let now $L$ be DFG with coefficients in $k(x)$, and let $\mathcal{L}$ be a constant field extension of $k(x)$, say $\mathcal{L}=C(x), C \supset k$. Under the hypothesis of Lerma 4.1, $F \in C(x)\left[y_{0}, \ldots, y_{n-1}\right]$ and so $\xi^{1 / s} \in C(x)$. If $\mathbb{P}\left(\mathrm{v}, \ldots, \mathrm{v}^{(\mathrm{n}-1)}\right)=0$ for all $\mathrm{v} \in \mathbb{K}$, then we nay put $\xi=1$. Otherwise for each prime $;$ of $k$, we may choose a power series solution $v$ of $\mathrm{Lr}=0$ which i.s anelytic at $t_{v}$, the $;$ generic point, such that $f\left(v, \ldots, v^{(n-1)} \neq 0\right.$. Honce there exists a branch of $\xi$ at $t$, such that $\xi / \mathbb{F}\left(v, \ldots, v^{(n-1)}\right)$ is a non-zero constarit. This shows that for aimost all $;$, the branch of $\xi$ at $t_{p}$ (i.e., the solution at $t_{j}$ of $\xi^{\prime} / \Sigma=T$ ) converces in $D\left(t_{,}, 1^{-}\right)$. This holds regardless of how we extend the valuation $\therefore$ to $C$ and hence we conclude, since the Grothendieck's conjecture is know in the first order casc, that 5 is the radical of on element of $C(x)$. Thus replacing $F$ by a power, we obtain $F \in C(x)\left[y_{0}, \ldots, y_{n-1}\right]$ such that

$$
F\left(v, v^{\prime}, \ldots, v^{(n-1)}\right)=\text { constant }
$$

for each $v \in \mathbb{K}$. We believe that it is possible to replace $F$ by form with coefficients in $k(x)$.

## REFERENCES

[ $\left.D_{W}\right] \quad D H O R K$ ( $B_{0}$.). - Lectures on p-adic differential equations. - New York, Heidelberg, Berlin, Springer-Verlag, 1982 (Grundlehren der mathenatischen Wissenschaften, 253).
[D-R 1] DHORK (B.) and ROBBA (P.). - On natural radii of p-adic convergence, Trans. Amer. math. Soc., t. 256, 1979, p. 199-233.
[D-R 2] DNORK (B.) and ROBBA (P.). - Effective p-adic bounds for solutions of homogeneous linear differential equations, Irans. Aner math. Soc., t. 259, 1980, p. 559-577.
[Ka 1] KATZ (N.). - Travaux de Dwork, Séninaire Bourbaki, 1971/72, exposé 409, p. 167-200. - Berlin, springer-Verlag, 1973 (Lecture Notes in Mathematics, 319).
[Ka 2] KATZ (N.). - Algebraic solutions of differential equations, Invent. Math., Berlin, t. 18, 1972, p. 1-118.
[s] SIEGEL (C. L.). - Transcendental numbers. - Princeton, Princeton University Press, 1949 (Annals of Hatheratics Studies, 16).


[^0]:    ( ) Bernard M. DYORK, Nathe atical Departnent, Fine Hall, Prjnceton university, PRINCEION, NJ 08540 (Etats-Unis).

