Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

BERNARD DWORK
A note on the p-adic gamma function
Groupe de travail d'analyse ultramétrique, tome 9, no 3 (1981-1982), exp. no J5, p. J1-J10
http://www.numdam.org/item?id=GAU_1981-1982_9_3_A6_0

© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A NOTE ON THE p-ADIC GAMIA FUNCTION

by Bernard DwORK (*)
[Princeton University]

Let K be a universal p-adic domain, i. e. K is an algebraically closed field of characteristic zero complete under a valuation extending the p-adic valuation of \underline{Q}. This valuation is normalized by $|p|=1 / p$, and is denoted additively by ord $x=-\log |x| / \log p$. We assume $p \neq 2$. Let $U=\underline{Q} \cap \underset{\sim}{Z} p-\underset{Z}{Z}$. For r real positive, $D\left(z, r^{-}\right)$denotes the open disk $\{x ;|x-z|<r\}$. We shall use $W_{r}(Z)$ to denote the union of all disks $\left\{D\left(z, r^{-}\right)\right\}, z \in \underset{\sim}{Z}$. Clearly this union may be replaced by a finite disjoint union of some of the indicated disks. For

$$
r \geqslant 1, \quad W_{r}(Z)=D\left(0, r^{-}\right)
$$

We shall avoid the symbol $W_{r}(Z)$ with $r \geq 1$. For $s \in \mathbb{N}$, let (x) denote the polynomial $\Pi(x+i)$ the product being over $i \in[0, s-1]$ (and hence $(x)_{0}=1$). For $s \in \underset{\sim}{\mathbb{N}}$, we use $\Gamma(s+x) / \Gamma(x)$ to denote $(x)_{s}$ and $\Gamma(x-s) / \Gamma(x)$ to denote $1 /(x-s)_{s}$. Let $\pi \in K, \pi^{p-1}=(-p)$. Let $e=p^{-1}+(p-1)^{-1}, \rho=p^{-e} \quad$ (so $1>\rho>1 / p)$. A basis $\left\{u_{i}\right\}_{i \in I}$ of a Banach space will be said to be 0. N. if $\left\|\Sigma x_{i} u_{i}\right\|=\sup \left|x_{i}\right|$.

Let θ denote the function $\theta(X)=\exp \left(\pi\left(X-X^{p}\right)\right)$, which has been used [Dw 1] to give an analytic description of additive charecters of finite fields. By comparison with the function $\exp \left((\pi X)^{p^{2}} / \mathrm{p}^{2}\right)$, it is known that the Taylor expansion

$$
\begin{equation*}
\theta(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \tag{1}
\end{equation*}
$$

satisfies

$$
\begin{gather*}
\text { ord } c_{n} \geqslant n(p-1) / p^{2} \tag{2}\\
n^{-1} \lim \inf \text { ord } c_{n}=(p-1) / p^{2}
\end{gather*}
$$

$$
\begin{equation*}
\text { ord } c_{n} \geqslant \frac{n}{p-1}-2\left[\frac{n}{p^{2}}\right]-\text { ord }\left[\frac{n}{p^{2}}\right] \tag{3}
\end{equation*}
$$

We recall the Morita p-adic garma function, Γ_{p}, defined on $\underset{\sim}{Z}$ by the initial condition and functional equation

[^0](4)
\[

\left\{$$
\begin{aligned}
\Gamma_{p}(0) & =1 \\
\Gamma_{p}(1+x) / \Gamma_{p}(x) & =\left\{\begin{array}{lll}
-1 & \text { if } & |x|<1 \\
-x & \text { if } & |x|=1 .
\end{array}\right.
\end{aligned}
$$\right.
\]

The function Γ_{p} is extended to $W_{p}(\underline{Z})$ by local analyticity as will be recalled below.

The intimate reletion between σ and Γ_{p} has been examined several times ([Boy], [DN 2], [DW 3], [Ba]). The object of this note is to review this work and to examine more closely the method of BCRSKY.

For $y \in D\left(0,(p p)^{-}\right), \mu \in \underset{\sim}{Z}$, we define

$$
\begin{equation*}
h_{\mu}(y)=\pi^{-\mu} \sum_{p s+\mu \geqslant 0} c_{p s+\mu}(-\pi)^{-s} \Gamma(y+s) / \Gamma(y) \tag{5}
\end{equation*}
$$

For $x \in W_{\rho}(\underset{\sim}{Z}), i \in \underset{\sim}{Z}$, let

$$
\begin{equation*}
g_{i}(x)=-\sum_{l=0}^{\infty} c_{l} \pi^{-\ell} \Gamma(-x+\ell+i) / \Gamma(-x) . \tag{6}
\end{equation*}
$$

For $r \in[1 / p, 1], x \in W_{r}(Z)$, it is known thet $\left|(x){ }_{s}\right| \leqslant r^{[s / p]}$. This estimate together with (2) shows that aside from a possible finite set of poles at integral values of the argument if μ or i are nagative, the function h_{μ} is analytic on $D\left(0,(p \rho)^{-}\right)$and the functinn g_{i} is locally analytic of anslyticity radius ρ on $W_{p}\left(\underset{Z}{(Z)}\right.$ (i. e. $g_{i} \mid D\left(z, \rho^{-}\right)$is anclytic for each $\left.z \in \underset{\sim}{Z}\right)$. The sums g_{μ} are by no means new. In lectures and articles since 1961, they have been associated with the calculation of Gauss sums.

For $x \in W_{\rho}(\underset{\sim}{Z})$, we define $\operatorname{Rep}(-x)$ to be element $\mu \in\{0,1, \ldots, p-1\}$ such that $|x+\operatorname{Rep}(-x)|<1$. Ne then define $y \in D\left(0,\left(p_{\rho}\right)^{-}\right)$by the conditiona

$$
\begin{equation*}
x=-\mu+p y . \tag{7}
\end{equation*}
$$

is will again be explained below, with these definations, we have

$$
\begin{equation*}
\Gamma_{\mathrm{p}}(\mathrm{x})=\mathrm{h}_{\mu}(\mathrm{y}) \tag{8}
\end{equation*}
$$

This equation with $\mu=0$ was used by BOYARSKY to show that $\Gamma_{p} \mid D\left(0, p^{-}\right)$is an analytic function. The functional equation (4) then shows that Γ_{p} extends to a locally analytic function of analyticity radius ρ. Local analyticity with radius $|\mathrm{p}|$ was known previously [Mo], but the improvement to ρ had not been previously reported.

The anclyticity of Γ_{p} was subsequently studied by BiRSKY using noncohomolngical methods. By his elementary methods one can show (cf. lemma 2 below), for $0 \leqslant i \leqslant p-1$,

$$
\begin{equation*}
g_{i}(x)=\Gamma_{p}(1+x) \cdot x_{D\left(i, p^{-}\right)} \tag{9}
\end{equation*}
$$

where X_{A} denotes the characteristic function of the subset A of K.
In particular, BARSKY examined the question of whether Γ_{p} has analyticity radius greater than ρ. Indeed, one may use either (3) or (9) for this purpose. The point is that, for $r \geqslant 1$, the Banach space of bounded analytic functions on $D\left(0, r^{-}\right)$ have an O. N. basis deduced by normalization of the functions $\left\{(x)_{s}\right\}_{s \in N}$ (cf. [Am]). Applying this to equation (8), we see that if Γ_{p} were to have analyticity radius greater than ρ then

$$
\lim \inf _{s \rightarrow \infty}(p s+\mu)^{-1} \text { ord } c_{p s+\mu}>(p-1) / p^{2}
$$

which according to (2') must be false for at least one $\mu \in\{0,1, \ldots, p-1\}$.
For $r<1$, the functions $\left\{(x)_{s}\right\}_{s \in N}$ do not after normalization provide an C. N. basis for bounded analytic functions $\bar{n} \bar{n}\left(0, r^{-}\right)$. They do provide a basis [Am 1] for bounded locally analytic functions on $W_{\rho}(Z)$ with local analyticity radius p. Applying this, with $1>r>\rho$, to Barsky's formula (9) 0 , one again obtains a contradiction to (2^{\prime}). (We here fill an omission of BiRSKY, who neglected to evaluate g_{0} on $D\left(i, p^{-}\right)$for $i \neq 0 \bmod p$. In the proof of his theorem 3, he put $x=p y$, and incorrectly asserted $\left\{y \rightarrow(p y)_{s}\right\}_{s \in \mathbb{N}}$ to be a set of functions which after normalization provide an O. N. basis for the space of bounded analytic functions on $D\left(0,\left(p_{\rho}\right)^{-}\right)$.) In this note, we explain (9) i by a simplified form of Barsky's method. We then show how it may be deduced cohnmologically. Je start by giving a rapid evaluation of the magnitude of $\Gamma_{p}(x)$ since this point has failed to recieve a careful explanation (cf. [Ba], theorem 3).

LEMMif 1. $-\left|\Gamma_{p}(x)\right|=1, \quad \ddot{\nabla} x \in W_{p}(Z)$.
Proof. - We first observe thet Γ_{p} has no zem in $W_{p}(\underset{\sim}{Z})$ as if x_{0} were a zero then, by (4), $x_{0}+p^{s}$ would be a zern for each $s \in \underset{\sim}{N}$ which, by analyticity on $D\left(x_{0}, \rho^{-}\right)$, would show that Γ_{p} is zero on $D\left(x_{0}, \rho^{-}\right)$, and then, by the functional equation Γ_{p}, wnuld be zero or $D\left(0, \rho^{-}\right)$contrary to the initial condition. If now $\mathbf{x}_{1} \in W_{\rho}(\underline{Z})$ then, by (4), there exists $i\left(=\operatorname{Rep} \mathbf{x}_{1}\right) \in D\left(x_{1}, \rho^{-}\right)$such that $\left|\Gamma_{p}(i)\right|=1$. If $\left|\Gamma_{p}\left(x_{1}\right)\right| \neq 1$, then, by a well known application of the newton polygon, Γ_{p} mast have a zern in $D\left(x_{1}, P^{-}\right)$. This completes the proof of the lenma.

Note. - ilternate treatments use (2), or (3) together with either (8) or (9), to show $\left|\Gamma_{\mathrm{p}}(\mathrm{x})\right| \leqslant 1$. This is combined with the duality reletion

$$
\begin{equation*}
\Gamma_{p}(x) \Gamma_{p}(1-x)=-(-1)^{\hat{\lambda e p}(-x)} \tag{10}
\end{equation*}
$$

to complete the alternate proof.

$$
\text { LRIME 2. - For } x \in W_{p}(Z), 0 \leqslant i \leqslant p \text {, }
$$

$$
g_{i}(x)=\Gamma_{p}(1+x) \cdot x_{D\left(i, p^{-}\right)}
$$

Proof (Following BARSKY). - Ne show that, for $N \in \underset{\sim}{\mathbb{N}}$,

$$
g_{i}(N+i)= \begin{cases}0 & \text { if } N \neq 0 \bmod p \tag{11}\\ \Gamma_{p}(1+N+i) & \text { if } N \equiv 0 \quad \bmod p\end{cases}
$$

The lemma then follows from the analyticity pmperties of the functinns g_{i} (and indeed demonstrates that $\Gamma_{p} \mid \mathbb{N}$ may be extended to a locally analytic function on $W_{p}(\underset{\sim}{Z})$ satisfying (4), the appeal to Mahler's thenrem ([La], p. 82) in Lang's account of Barsky's methnd is quite superflunus).

By equation (1), replacing X by x / π,

$$
\begin{equation*}
\exp \frac{x^{p}}{p}=\exp (-x) \times \sum c_{s} x^{s} / \pi^{s} \tag{9}
\end{equation*}
$$

and so comparing cnefficients

$$
\sum_{\ell+k=N} \frac{(-1)^{\ell} \cdot c_{k}}{2!\pi^{k}}= \begin{cases}0 & \text { if } N \neq O(p) \\ 1 /\left(n!p^{n}\right) & \text { if } N=p n\end{cases}
$$

Multiplying by ($\mathrm{N}+\mathrm{i}$)! , we nbtain

$$
\sum_{l+k=N}(-1)^{2} \frac{(N+i)!}{\ell!} \frac{c_{k}}{\pi^{k}}= \begin{cases}0 & \text { if } N \neq(p), \tag{12}\\ (p n+i): /\left(n!p^{n}\right) & \text { if } N=p n\end{cases}
$$

The right side (12) is zem if $N \neq 0$, and is $(-1)^{1+N+i} \Gamma_{p}(1+N+i)$ if $N=p n$. On the nther hand with $2+\mathrm{k}=\mathrm{N}$, we compute

$$
(N+i)!/ \ell!=(-1)^{k+i}(-N-i)_{k+i}=(-1)^{N+i-\ell} \Gamma(-N-i+k+i) / \Gamma(-N-i)
$$

from which we recognize that the left side of (12) cnincides with $(-1)^{\mathbb{N}+i+1} g_{i}(N+i)$. This completes the pmof of (11) .

Notc. - BARSKY stated ([Ba] equations (16), (25)]

$$
\begin{array}{ll}
\Gamma_{p}(1+x)=g_{0}(x)+g_{1}(x)+\cdots+g_{p-1}(x), & \forall x \in W_{\rho}(z) \\
\Gamma_{p}(x)=g_{0}(x), & \forall x \in D\left(0, \rho^{-}\right)
\end{array}
$$

Remark. - We have avoided the use of the Laplace transfnrm since it seems to obs cure the basic fact that $\exp x$ is the generating function of $1 / \Gamma(1+n)$ and that the purpose of equation (9) is to get the ralations between $\Gamma(n)$ and $\Gamma\left(\left[\frac{n}{p}\right]\right)$,
which indeed is approximately the mle of $\Gamma_{p}(n) \cdot$
In this regerd, it may be useful to examine the connectinn between the Boyarsky matrix [Dw 3] for Bessel functinns and the relatinn betweon the coefficients of the Laurent series

$$
\begin{equation*}
\exp \frac{\lambda}{2}\left(t-\frac{1}{t}\right)=\sum_{n=-\infty}^{+\infty} J_{n}(\lambda) t^{n} \tag{13}
\end{equation*}
$$

as deduced frmm

$$
\begin{equation*}
\exp \frac{\lambda^{p}}{2^{p} p}\left(t^{p}-\frac{1}{t^{p}}\right)=\exp \frac{-\lambda}{2}\left(t-\frac{1}{t}\right) \cdot F, \tag{14}
\end{equation*}
$$

where $F(\lambda, t)=\theta_{0}\left(\frac{t \lambda}{2}\right) \theta_{0}\left(-\frac{\lambda}{2 t}\right), \theta_{0}(x)=\theta(x / \pi)$. Using estimate (2) and differentiating (13), one should be able by means of equation (14) to deduce relations between $\left(J_{n}(\lambda), J_{n}^{\prime}(\lambda)\right.$ and $\left(J_{[n / p]}\left(\lambda^{p}\right), J_{[n / p]}^{\prime}\left(\lambda^{p}\right)\right)$. This is our understanding of how Barsky's method should be interpreted and generalized.

We now give a cohomological explanation of equation (9). The underlying theory has discussed elsewhere ([Bny], [Dw 2], [Dw 3]) so we shall be brief.
For $a \in U=\underset{\sim}{Q} \cap \underset{\sim}{Z}-\underset{\sim}{Z}$, let ${\underset{a}{a}}_{0}^{0}$ denote the space of all products $\left\{\boldsymbol{I}^{\mathrm{a}}{ }_{5} ; \xi \in \mathrm{L}_{0, \infty}\right\}$ where $\mathrm{L}_{0, \infty}$ is the space of Laurent series converging in an annulus $\left\{X ; \epsilon_{1}>|X|>\epsilon_{2}\right\}$, where $\epsilon_{1}, \epsilon_{2}$ are unspecified real numbers $\epsilon_{1}>1>\varepsilon_{2}$. We define a differential nperator D in Ω_{a}^{0} by the formula

$$
D\left(X^{a} \xi\right)=X^{a}\left(X \frac{d}{d X}+a+\pi X\right)_{5}
$$

The factor space $\bar{\Omega}_{a}=\Omega_{\Omega}^{0} / \Omega_{a}^{0}$ has dimension 1 with the image $\cap f X^{a}$ a.s a basis. The space Ω_{a} depends nnly upnn a mod $\underset{\sim}{Z}$ but, for $m \in \underset{\sim}{Z}$, the image of $\mathbf{x}^{\mathbb{M}+\mathrm{a}}$ need not coincide with that of $\mathbf{x}^{\text {a }}$, the relation being given by the change in basis formula

$$
\begin{equation*}
x^{2+m} \equiv \frac{\Gamma(a+m)}{\Gamma(a)}(-\pi)^{-m} X^{a} \quad \operatorname{md} \mathbb{D}_{a}^{0} \tag{15}
\end{equation*}
$$

For $\mathrm{b} \in \mathrm{U}, \mathrm{pb} \equiv \mathrm{a} \bmod \underset{\sim}{Z}$, we have the mapping α of Ω_{a}^{0} into Ω_{b}^{0} and a ne side inverse β given by

$$
\begin{aligned}
& \alpha: \mathrm{X}^{\mathrm{a}} \xi \rightarrow \mathrm{X}^{\mathrm{b}}\left(\xi \mathrm{X}^{\mathrm{a}-\mathrm{pb}} \in(\mathrm{X})\right)
\end{aligned}
$$

where Φ is the endnmorphism $r(X) \longrightarrow n\left(X^{P}\right)$ of $L_{0, \infty}$ and is the nnerided inverse defined by

$$
(\mathbb{H})(\mathrm{X})=\mathrm{p}^{-1} \Sigma_{5}(\mathrm{Y})
$$

the sum being over all Y such that $Y^{P}=X$. From α and 3 , we deduce a pair of inverse mappings between $\overline{\bar{\gamma}}_{\mathrm{a}}$ and $\overline{\bar{r}}_{\mathrm{b}}$. Let ing $\gamma_{p}(\bar{\alpha}, \mathrm{~b})$ dennte the "matrix" (it
is one by one) relative th the beses $\left\{X^{a}\right\},\left\{X^{b}\right\}$ of the mapping induced by α, it follows from the definitions and the reduction formula (15) (with a replaced by b) that

$$
\begin{equation*}
r_{p}(a, b)=\pi^{p b-a} h_{p b-a}(b) . \tag{16}
\end{equation*}
$$

A. similar calculation for the matrix of the inverse mapping induced by B gives

$$
\begin{equation*}
\left(\gamma_{p}(a, b)\right)^{-1}=\sum_{s=0}(-1)^{s} c_{s}(-\pi)^{-s-t} \Gamma(a+s+t) / \Gamma(a), \tag{17}
\end{equation*}
$$

where $\mathrm{t}=\mathrm{pb}-\mathrm{a}$.
Furthermore using (15) as a change in basis formula, we obtain, for $m, n \in \underset{\sim}{Z}$,

$$
\begin{equation*}
\gamma_{p}(a+m, b+n)=\gamma_{p}(a, b) \frac{\gamma(a+m)}{\Gamma(a)} \frac{\Gamma(b)}{\gamma(b+n)}(-\pi)^{n-m} . \tag{18}
\end{equation*}
$$

We now explain the connectinn with Γ_{p}. Up to this point, Γ_{p} is a function of two variables $a, b \in U$, restricted by the conditinn $p b-a=t \in \underset{\sim}{Z}$. We obtain a function Γ^{B} of one variable a, by insisting that $t=\operatorname{Rep}(-a) \in\{0,1, \ldots, p-1\}$. We then define $\left(b=(a+\operatorname{Rep}(-a)) p^{-1}\right)$,

$$
\begin{equation*}
\Gamma^{B}(a)=\gamma_{p}(a, b) \pi^{-\operatorname{Rep}(-a)} \tag{19}
\end{equation*}
$$

(The factor $\pi^{-R e p(-a)}$ serves to make Γ^{B} defined over Q_{-p} instead of over $\left.Q_{p}(\pi).\right)$ Using (13) and the definitinn, we check that Γ^{B} satisfies the same functional equation as Γ_{p}
(20)

$$
\frac{\Gamma^{B}(a+1)}{\Gamma^{B}(a)}=\left\{\begin{array}{lll}
-1 & \text { if } & |a|<1 \\
-a & \text { if } & |a|=1
\end{array}\right.
$$

Frmm equation (16), we deduce

$$
\begin{equation*}
\Gamma^{B}(a)=h_{\operatorname{Rep}(-a)}(b), \tag{21}
\end{equation*}
$$

and so Γ^{B} may be extended anclytically on $W_{\rho}(Z)$ satisfying the initial onndition and functional equation of Γ_{p} as given by equation (4). Thus $\Gamma^{B}=\Gamma_{p}$. We now deduce from (17) that, fnr $a \in U$,

$$
\begin{equation*}
\frac{1}{\Gamma_{p}(a)}=\pi^{r e p(-a)} / Y_{p}(a, b)=(-1)^{t} \sum_{s=0}^{\infty} c_{s}(a){ }_{s+t} \pi^{-s}, \tag{22}
\end{equation*}
$$

where $t=\operatorname{Rep}(-a)$. Replacing a by $-a$, t by $\operatorname{Rep}(a)$, and using (10) in the form
(23)

$$
\Gamma_{p}(-a) \Gamma_{p}(1+a)=-(-1)^{\operatorname{Rep} a},
$$

we deduce

$$
\begin{equation*}
\Gamma_{p}(1+a)=g_{R e p(a)}(a) \tag{24}
\end{equation*}
$$

This gives a cohomolngical explanation $\cap f(9){ }_{i}$ for $x \in D\left(i, \rho^{-}\right)$. The assertion
that $g_{i}(a)=0$ for $a \notin D\left(i, p^{-}\right)$reduces to the assertion that, for $a \neq 0$ mod p, we have

$$
\begin{equation*}
X^{2} / \theta(X) \in D X^{a} L_{0, \infty} \tag{25}
\end{equation*}
$$

Since fnrmally $D=(\exp \pi X)^{-1} \circ X \frac{d}{d X} \circ \exp \pi X$, it suffices th show that

$$
X^{a} \exp \pi X^{p} \in X \frac{d}{d X}\left(X^{a} \exp \pi X L_{0, \infty}\right)
$$

or, equivalently, that

$$
\begin{equation*}
X^{a} \exp \pi X^{p}=X \frac{d}{d \dot{I}}\left(X^{a} \exp \pi X^{p} \xi\right) \tag{26}
\end{equation*}
$$

has a solution 5 in $\mathrm{L}_{\mathrm{O}, \infty}$. The solution is

$$
\begin{equation*}
\xi=\xi^{-1} \sum_{j=0}^{\infty}(-\pi)^{j} x^{p j} /\left(\frac{a}{p}+1\right)_{j} \tag{27}
\end{equation*}
$$

which clearly lies in $\mathrm{L}_{0, \infty} \cdot$
This completes our cohomolngical treatment of lemma 2.
The emphasis in our construction of the Bnyarsky function, I^{B} (cf. (19)) has been its characterization by means of the functional equation (20) which is deduced from the change of basis formulae. BARSKY's point of view was to characterize the g_{i} be evaluation at a sufficient number $n f$ elements of $\underset{\sim}{Z}$. We now show how this cen b done cohomologically, i. e. by a scientifically acceptable form of manipulation of integral formulae.

We first recognize g_{i} as a formal Nelin transform. Let

$$
\theta_{0}(X)=\theta(X / \pi)=\exp \left(X+\frac{X^{p}}{p}\right)
$$

For $a \in U$, we have formally by equation (6)

$$
-g_{i}(-a)=\left(\int_{0}^{\infty} e^{-x} x^{i+a} \theta_{0}(x) \frac{d x}{\dot{x}}\right) / \int_{0}^{\infty} e^{-x} x^{a} d x / x
$$

More precisely, for $a \in U, g_{i}(-a)$ is specified by the condition

$$
\begin{equation*}
-g_{i}(-a) x^{a} e^{-x} d x / x \equiv \theta_{0}(x) e^{-x} x^{i+a} d x / x \text { mad } d\left(e^{-x} x^{a} \hat{L}_{C, \infty}\right) \tag{28}
\end{equation*}
$$

where $\hat{L}_{0, \infty}$ is the image of $\hat{L}_{0, \infty}$ urder the substitution $X \rightarrow X / \pi$. This is just a rearrangement of our cohnmolngical treatment of g and is based upon $X^{a+1} e^{-X} d X / X \equiv a X^{a} e^{-x} d X / X$. Since, $g_{i}(-a)$ is defined for $a \in \mathbb{N}$ we may use equation (28) for this calculation provided we are dealing with a one dimensional space and provided $\nu \in \mathbb{N}$ implies that

$$
\begin{equation*}
\nu X^{\nu} e^{-X} d X / X \equiv X^{\nu+1} e^{-X} d X / X \tag{29}
\end{equation*}
$$

The formula

$$
\begin{equation*}
\Gamma(n)=\int_{0}^{\infty} x^{n} e^{-x} d x^{\prime} x \tag{30}
\end{equation*}
$$

in particular, $\int_{0}^{\infty} e^{-x} d x=1$ reminds us that we must not consider $d\left(e^{-x}\right)$ to be
exact. (Leiting $\sigma_{\nu}=t^{-\nu} e^{t} d t$, the Hankel formula $2 \pi i / \Gamma(\nu)=\int_{-\infty}^{\left(\sigma^{+}\right)} \sigma_{\nu}$ does not help here as $\sigma_{\nu}=v \sigma_{\nu+1}$ •) With this hint, we let \hat{L}_{∞} denot $=$ the space of power series in X which lie in $L_{C, \infty}$, and we work with the factor space

$$
\hat{L}_{\infty} e^{-X} d X / d\left(X \hat{L}_{\infty} e^{-X}\right)
$$

Putting $w_{n}(X)=e^{-X} x^{n} d X / X$, we have

$$
n \omega_{n} \equiv \omega_{n+1}, \quad \forall n \geqslant 1,
$$

and so

$$
\begin{equation*}
\omega_{n} \equiv \Gamma(n) \omega_{i} \quad \bmod d\left(X \hat{L}_{\infty} e^{-x}\right) \tag{31}
\end{equation*}
$$

Equation (28) now takes the form ($n>1$),

$$
\begin{equation*}
-g_{i}(-n) \equiv \omega_{i+n} \exp \left(x+\frac{x^{p}}{p}\right) . \tag{32}
\end{equation*}
$$

The left side is $-g_{i}(-n) \Gamma(n) \omega_{1}(x)$. The right side is $X^{i+n} \exp ^{p}\left(x^{p} / p\right) d X / X$ which, for $i+n \neq 0 \bmod p$, we show t, be $\cap f$ the form $d\left(\xi \exp \frac{X^{p}}{p}\right)$ with $\xi \in X \hat{L}_{\infty}$ (cf. equation (26)). We nnw restrict nur attention to the case $n=p m-i$ ($\mathrm{m}>1,0<i<\mathrm{p}$). The right side $\cap \mathrm{f}$ (32) may be written, letting $-\mathrm{z}=\mathrm{X}^{\mathrm{p}} / \mathrm{p}$, as $(-1)^{m} p^{m-1} z^{m} e^{-z} d z / z \equiv(-1)^{m} p^{m-1} \Gamma(m) \omega_{1}(z)$. Thus,

$$
\begin{equation*}
-g_{i}(i-p m) \Gamma(p m-i) \omega_{1}(X) \equiv(-1)^{m} p^{m-1} \Gamma(m) \omega_{1}(\mathrm{~s}) . \tag{33}
\end{equation*}
$$

We observe that $\theta_{0}(x)=e^{x-z}$, and so

$$
\begin{equation*}
\omega_{1}(X)-\omega_{1}(z)=d\left(\left(\theta_{0}(X)-1\right) e^{-x}\right), \tag{34}
\end{equation*}
$$

and the point is that $\theta_{0}(X)-1 \subset X \hat{L}_{\infty}$. Thus

$$
\frac{1}{g_{i}(i-p m)}=\frac{\Gamma(p m-i)}{\Gamma(m)}(-p)^{m-1}
$$

On the other hand, by (10)

$$
\frac{1}{\Gamma_{p}(1+i-p m)}=\Gamma_{p}(p m-i)(-1)^{i+1}=\frac{\left(\mathrm{p}^{m}-i-1\right)!}{(m-1)!p^{m-1}(-1)^{p m+1}}
$$

This shows that equation (11) may be verified by celculation of Kellin transformis.
We note that h_{μ} is also a Mellin transform. We leave the details to the reader.
We are reminded by Yvette $M I C E[A m 2]$ that contrary to our inpression when writing 21.4.10 in [Dw 2], most of the results enncerning radii of convergence may be deduced directly from the original formulae of MORITA [Mo] and DIAMOND [Di]. They showed that, for $x \in p \underset{\sim}{Z}$, we have
where

$$
\begin{equation*}
\log \Gamma_{p}(x)=\sum b_{s} x^{s} \tag{35}
\end{equation*}
$$

$$
\mathrm{b}_{1}=\lim _{k \rightarrow \infty} \mathrm{p}^{-k} \mathrm{p}_{\substack{k \\
\sum_{\begin{subarray}{c}{k} }}^{\mathrm{k}}(\exists, \mathrm{p})=1}\end{subarray}} \operatorname{lng} a
$$

$$
b_{s}=(-1)^{s} s^{-1} L_{p}\left(s, w^{1-s}\right) \quad(s \geqslant 2)
$$

Here ω denotes the Teichriililer character and L_{p} the Kubota-Lenpoldt L-function. Using elementary properties of L_{p} and of Bernou:li numbers, one finds, for $s \geqslant 2$,

$$
-\mathrm{L}_{\mathrm{p}}\left(\mathrm{~s}, w^{1-\mathrm{s}}\right)=\lim _{\ell \rightarrow \infty}\left(1-\mathrm{p}^{\mathrm{n}-1}\right) \mathrm{B}_{\mathrm{n}} / \mathrm{n},
$$

where $n=1-s+(p-1) p^{2}$. In fact, nne shows that, $a_{1} \in \underset{\sim}{\underset{p}{Z}}$,

As noted by AMICE, this is sufficient to show that $f(x) \stackrel{d e f}{=} \exp \sum b_{s} x^{s}$ is analytic for ord $x>\hat{\rho}=\frac{1}{p}+\frac{1}{p-1}$. Since $\Gamma_{p}(x) \equiv 1$ mad p, for $x \in p \underset{\sim}{Z}$, it follows that f is analytic for ord $x>\rho$, and cnincides with Γ_{p} on $p \underset{\sim}{Z}$. This shows that Γ_{p} fay be extended to a function analytic on the disk ord $x>\rho$. This gives the cnrrect lnwer bound for the radius $n f$ analyticity. It is nnt clear that the upper bound may be verified in this way. Of course, a secnnd pronf nf lemma 1 may be immediately deduced.

It is well known that, for fixed a mod $p-1$, the mappings $s \rightarrow L_{p}\left(s, w^{a}\right)$ is analytic (or meromorphic) on the disk $D\left(0,|p / \pi|^{-}\right)$. One may be tempted to use this property to deduce the ancilytic continuation of the right side of (35) into the region $d\left(x, z_{p}^{*}\right)>|p / \pi|$. It is however better to use the fact that fnr x close to zem $\operatorname{lng} \Gamma_{p}(x)$ cnincides with Diamnd's ${\underset{p}{p}}_{*}^{*}(x)$. Briefly, for $x \in \underset{p}{Z}$ [Di], with $\ell(\mathrm{x})=\mathrm{x} \log \mathrm{x}-\mathrm{x}$,

$$
\begin{equation*}
G_{p}(x)=\lim _{k \rightarrow \infty} p^{-k} \sum_{f=0}^{p^{k}-1} 2(x+n) \tag{36}
\end{equation*}
$$

and for $\mathrm{x} \notin \underset{\mathrm{p}}{\mathrm{z}}$

$$
\mathrm{G}_{\mathrm{p}}^{*}(\mathrm{x})=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{p}^{-\mathrm{k}} \mathrm{p}_{\mathrm{n}=0}^{\mathrm{k}} \bar{\Sigma}_{0}^{1}, \mathrm{p} \not \mathrm{fn}_{\mathrm{n}}^{2}(\mathrm{x}+\mathrm{n}) .
$$

Diamond's version of the Gauss multiplication formula gives, for $r \geqslant 1$,

$$
\begin{equation*}
G_{p}(x)=\sum_{\tilde{i}=0}^{-p^{r}-1} G_{p}\left(\frac{x+a}{p^{r}}\right), \tag{37}
\end{equation*}
$$

and hence, for $x \notin \underset{-p}{\underset{\sim}{z}}$, we have

$$
\begin{equation*}
G_{p}^{*}(x)=G_{p}(x)-G_{p}\left(\frac{x}{p}\right)=\sum_{z=1, p}^{p^{r}} \chi_{a} G_{p}\left(\frac{x+a}{p r}\right) . \tag{38}
\end{equation*}
$$

Thus if $d\left(x, \underset{-p}{Z_{p}^{*}}\right)>|p|^{r}$ by Diamon's Stirling formula for G_{p}, we have
where B_{s} denotes the $s-t h$ Bernoulli number, and

$$
\begin{equation*}
z_{r}=p_{a=1}^{r} \sum_{p / a}^{-1}\left\{\left(\frac{x+a}{p r}-\frac{1}{2}\right) \log \left(\frac{x+a}{p^{r}}\right)-\frac{x+a}{p}\right\} \tag{40}
\end{equation*}
$$

log being the Iwasawa logarithm. These formulae reduce all questions of analyticity of G_{p}^{*} to question concerning ℓ_{r}. The analytic onntinuation of $\frac{d}{d x} G_{p}^{*}$ has been discussed by KOBLITZ [Ko], but his results and onnjectures dn not go beyond these earlier results of DIARIOND. In particular, it follows from equation (39) that, if $\alpha \in{\underset{\sim}{p}}_{*}^{*}$, then $x \longmapsto G_{p}^{*}(x)-G_{p}^{*}(\alpha x)$ is an analytic function (in the sense of KRASNER, naturally) on the set $K-\underset{\sim}{Z^{*}}$.

We observe that for the analymis of $\Gamma_{p}(x)$ for $x \in D\left(0,1^{-}\right)$along the lines of equation (35), it is better to use equation (39) with $r=1$, recognize that the right side is brunded by $|p|$ for $|x|<1$, and so reduce the analysis of $\Gamma_{p}(x)$ to that of $\exp \lambda_{1}(x)$ for x close to zero. This procedure should again establish ρ as the precise radius of analyticity of Γ_{p}.

REFIEREMGES

[Am 1] AMICE (Y.). - Interpolation p-adique, Bull. Soc. math. Franoe, t. 92, 1964, p. 117-180
[Am 2] $\operatorname{MiICE}\left(Y_{0}\right)$ - Fonction Γ p-adiques associée à un caractère de Dirichlet, Grmupe d'étude d'inalyse ultramétrique, $7 e$ et be années, 1979m1981, no 17, 11 p.
[Ba] BARSKY (D.). - On Mnrita's p-adic gamma function, Math. Pmc. Camb. phil. Soc., t. 89, fasc. 1, 1981, p. 23-27.
[Boy] BOYARSKY (M.). - p-adic gamma function and Dwork cohomingy, Trans. fmer. math. Snc., t. 257, 1930, p. 359-369.
[Di] DIiMOND (J.). - The p-adic log gamma functinn and p-adic Euler constants, Trans. Amer. math. Snc., t. 233, 1977, p. 321-337.
[Dw 1] DWORK (B.). - Zeta function of a hypersurface. - Paris, Presses universitaire: de France, 1962 (Institut des hautes Etudes scientifiques. Publicatinns mathématiques, 12, p. 5-68).
[Dw 2] DWORK (B.). - Lectures on p-adic differ ntial equatinns. - Berlin, SpringerVerlag (Grundlahren, 253) (to appear).
[Dw 3] DWORK (B.). - On the Bnyarsky principle, imer. J. of Math. (tn appear).
[Ko] KOBLITZ (iv.). - Interpolation of the p-adic log gamma function and Euler constants using the Bernnulli measure, Trans. fmer. math. Snc., t. 242, 1978, p. 261-269.
[La] LANG (S.). - Cyclntnmic fields, II. - Eerlin, Heidelberg, New Ynrk, SpringerVerleg, 1980 (Graduate Texts in Mat ematics, 69).
[Mo] MORITf. (Y.). - A p-adic analngue of the [-functinn, J. of Fac. of Sc., Univ Tokyo, sectinn 1, t. 22, 1975, p. 255-266.

[^0]: (*) Bernard DiORK, Department of lathematics, Princeton University, Fine Hall, PRINCETON, NJ 03540 (Etats-Unis).

