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A NOTE ON THE p-ADIC GAMMA FUNCTION

'S
by Bernard DWORK ()

[Princeton University]

Let K be a universal p-adic domain, i. e« K 1is an algebraically closed field
of characteristic zero complete under a valuation extending the p—adic valuation
of Q. This valuation is normalized by |p| = 1/p , and is denoted additively by
ord x = - log |x|/10gp « We assume p # 2 . Let U:gng_ - Z . For r real po-
sitive, D(z , r ) denotes the open disk {x ; |x - zl < r} . We shall use ‘»Ir(_g)
to denote the union of all disks {D(z, r )} , 2z € 2. Clearly this union may be

replaced by a finite disjoint union of some of the indicated disks. For
r>1, Wr(g) =D(0, r) .

We shall avoid the symbol wr(g) with r> 1. For se N, let (x)s denote the
polynomial Ti(x + i) the product being over i € [0, s - 1] (and hence (x)O =1).
For s eN, weuse I'(s+ x)/T(x) to denote (x)s and I'(x - 8)/T(x) to denote
1/(x - S)s . Let meKx, Pt o (- p) + Let e:p—1+ (p - 1)"1 , p=p °
1>p>1/p ). A basis {ui}ieI of a Banach space will be said to be 0. N. if

(so

12 %, ujl = sup |xi| .

Let © denote the function 0(x) = exp(n(X - ®)) s which has been used [Dw 1] to
give an analytic description of additive charecters of finite fields. By comparisen
with the function exp((nX)pz/p'?) , it is known that the Tzylor expansion

(1) 6(X) = Y;::O ch Xn
satisfies
(2) ord ¢ 3 n(p - 1)/p°
(2") n~! 1im inf ord c = (p - 1)/p2

n n. D -
(3) ord c > =T T 2[p2] ord [pz_, .

Je recall the Morita p-adic gamma function, Fp , defined on Z by the initial
condition and functional equation

%
(") Bernard DWORK, Department of Mathematics, Princeton University, Fine Hall,
PRINCETON, NJ 03540 (Etats-Unis).
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1]
-

Fp(O)

(4) (-1 if

Ll“p(l + x)/rp(x)

x| <1

-x if x| =1.

The function Fp is extended to Wb(g) by local analyticity as will be recalled
below.

The intimate releticon between 6 and rp has been examined several times ([ Boy],
[Dw 2], [DW 3], [Ba]). The object of this note is to review this work and to examine
more closely the method of BIR3KY.

For y e D(C, (pp)7) , p €2, we define

(5) hu(y) =t 2

ps+Ez0 Cps-i-p.(- ﬁ)-s Ty + s)/T(y) «

For x e wp(g) sy 1eZ, let

(6) g(x) == e, mlr(-x+ 4+ 1)/T(=x) .

For re[l/p, 1], x¢€ W.(2) , it is known that l(x)sl < r[s/p] . This estimate
together with (2) shows that aside from a possible finite set of poles at integral
values of the argument if |, or i are negative, the function hu is analytic on
D(0, (pp)”) and the functinn g; is locally enalytic of anelyticity radius p on
wp('?-) (i. e. gilD(z , p ) is anclytic for each 3z € Z )« The sums gp' are by no
means new. In lectures and articles since 1961, they have been associated with the
calculation of Gauss sums.

For x € W (2) , we define Rep(- x) to be element p € {C, 1, «ce , p = 1}
such that |x + Rep(- x)| <1 . We then define y € D(0O, (pp)”) by the conditiona
(7) X ==y + DYy »

As will again be explained below, with these definitions, we have

(8) Fp(x) = hp(y) .

This equation with p = O was used by BOYARSKY to show that rp|D(o , p) is an
analytic function. The functional equation (4) then shows that fp extends to a
locally enalytic function of analyticity radius p . Local analyticity with radius
Ip‘ was known previously [Mo], but the improvement to p had not been previously
reported.

The analyticity of rp was subsequently studied by BARSKY using noncohomologieal
methods. By his elementary methods one can show (cf. lemma 2 below), for Ogigp-1,
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(9)i gi(x) = Fp(l + x)'XD(i,p-)

where Xz denotes the characteristic function of the subset A of K.

In particular, BARSKY examined the question of whether T has analyticity radius
greater than p . Indeed, one may use either (3) or (9)0 for this purpose. The point
is that, for r > 1, the Banach space of bounded analytic functions on D(0 , r )
have an O. N. basis deduced by normalization of the functions {(x) s}seN (cfe [Am]).
Applying this to equation (8), we see that if rp were to have analyticity radius
greater than p then

e s -1 2
lim inf_ (ps + )~ ord Chgry > (p - 1)/p

which according to (2') must be false for at least one pe {O, 1, oo , P -1} &

For r <1, the functions {(x) S} sen G0 mot after normalization provide an C. N.
basis for bounded analytic functions on D(O, r ) . They do provide a basis [Am 1]
for bounded locally analytic functions on W (2Z) with local analyticity radius p .
Applying this, with 1 > r > p , to Barsky's formula (9)0, one again obtains a con-
tradiction to (2'). (We here fill an omission of BARSKY, who neglected to evaluate
g, on D(i, p) for i #0 mdp . In the proof of his theorem 3, he put x = py ,
and incorrectly asserted {y —> (py) s} say to be a set of functions which after nor-
malization provide an O. N. basis for the space of bounded =znalytic functions on
D(0, (pp)”) .) In this note, we explain (9)i by a simplified form of Barsky's method.
We then show how it may be deduced cohnmologically. ‘Je start by giving a rapid eva-
luation of the magnitude of Fp(x) since this point has failed tc recieve a careful
explanation (cf. [Ba], theorem 3).

LEMMA 1o = |Fp(x)| =1, Vxe€ wb(g) .

Proof. - We first observe thet I‘p has no zero in wp(g) as if x, were a zero
then, by (4), x,+ p° would be a zero for each s e N which, by analyticity on
D(x0 s p ), would show that I‘p is zero on D(x0 , ¢ ) , and then, by the functional
equation ', would be zero or p(o , p-) contrary to the initial condition. If now
x, € W (Z) then, by (4), there exists i(= Rep x,) € D(x, , p ) such that
IFp(i) =1.If Il’p(xl)l # 1, then, by a well known applicatinn of the newton po-

lygon, I"p mist have a zero in D(x1 , p ) « This completes the proof of the lema.

Note. - ilternzte treatments use (2), or (3) together with eithcr (3) or (9), to
show Fp(x)i <1 . This is crmbined with the duzlity relstion

Rep(-

(10) P ()T (L-%) == (- )P0
P p

to complete the alternate proof.

LEMME 2. - For xewp(_g), 0O<i<p,
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gi(x) = Fp(l + X).XD(i,p-)

Proof (Following BARSKY). - We show that, for N € N

o~ ?

0 if N20O0 modp,
(ll) gi(N+i)=

i}

rp(l+N+i) if N=0 mdp.

The lemma then fnllows from the z2nalyticity prmperties of the functinns 85 (and
indeed demonstrates that I“pl}tl_ may be extended to 2 locally enelytic function on
Wp (2) satisfying (4), the appeal to Mahler's theorem ([La], p. 82) in Lang's account
of Barsky's method is quite superfluous).

By equation (1), replacing X by X/m,

(9) exp ;—p = exp(~ x) x 2 cg x°/ns

and so comparing coefficients

-t [0 if N£0(p)
- k _
Z.tZ,+k=N 20 TTE -

1/(ni p?) if N = pn .
Multiplying by (N + i)i{ , we obtein

¢ 0 if N%—(P)9
_1)4 (N+ i)t Tk

(12) Z“k:N ( F ;E

(pn + i)i/(nt p*) if N = pn .
. . . . R 1+N+1i .
The right side (12) is zero if N # 0, and is (- 1) Fp(l + N+ i) if DNepn.
On the nther hand with 2 + k= N, we compute

W+ )ifgt = (- D (N -9) = (- DM fCN -1+ ke 1)/r(=N = 1)

-
from which we recognize that the left side of (12) cnincides with (—1)1\'4':”1
This completes the pmof of (11) .

gi(N-u»i).
Notc. =~ BARSKY stated ([Ba] equations (16), (25)2
Fp(l + X) = go(x) + gl(x) + eee + gp_l(x) , Vx ewp(g)

rp(x) = go(x) , ¥ xe D0, p7)

Remark. - We have avonided the use of the Laplace transfrrm since it seems to obs-
cure the basic fact that exp x is the generating function of 1/T(1 + n) and that
the purpose of equation (9) is to get the relations between TI'(n) and 1"([%]) ,
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which indeed is approximately the role of I‘p(n) .
In this regard, it may be useful to examine the connectinn between the Boyarsky

matrix [Dw 3] for Bessel functions and the relatinn bstwecn the coefficients ~f the
_Laurent series

. A 1 _ o n
(13) exp 5t =) = 2___J ()¢
as deduced from
P
A 1 -
(14) exp ——(tP = L) = exp _21(t-l).F,
213 p 'tp t

where F(A, t) =0 ( ) 9 ( ) , so(x) = 8(x/m) . Using estimate (2) and diffe-
rentiating (13), one scould be able by means of equation (14) to deduce relations
between (Jn()\) , J;l(.x) and (J[n/p]()\p) , Jin/p](,\p)). This is our understanding
of how Barsky's method should be interpreted and generalized.

e now give a cohomnlogical explanation of equation (9). The underlying theory has
discussed elsewhere ([ Boy], [Dw 2], [Dw 3]) so we shall be brief.

For a U= Q N Z - E s let ;22 denote the space of all prnducts
{1 E; € €L } where LO » 1s the space of Leurent series converging in an
annulus {X ; el |Z| > ¢ } , where € 62
We define a differential operator D in Q by the frrmla

are unspecified real numbers €l>1>€2~

a _ gase a
D(X g)_X(Xﬁ-r a+ nX)g .

The factor space ﬁa = Q?/mg has dimension 1 with the image of X% as a basis.
The space (O depends only upon a mod Z but, for me€ 2, the image of I™? need
not coincide with that of X% , the relation being given by the change in basis for-
mila

e+m _ [(a + m) -m & 0
1 X - .
( 5) —1(—)— ( ) mod ma
For beU, pb=a mnd %2, we have the mapping « of Qg into Cg d a one

side inverse B given by

o Z2g —> X° 5 (ex* PP (X))

o 1

3: X im Xpb-a m —> Xb T

where ¢ is the endomrrphism 7(X) —> 1(XP) of L and + is the nne-sided

inverse defined by
(42) () = p~" £ (V)

the sum being over all Y such that Y -x « From « and 3, we deduce a pair of

inverse mappings between ;-)a end ::"b . Let.ing yp(; , b) denote the "matrix" (it
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is one by one) relative tn the bases {X7} , {Xb} of the mapping induced by « , it

fnllows from the definitions and the reduction formula (15) (with a replaced by b)
that

(16) (e, B = nPP-a (v) .

hpb-a
A similar celculation for the matrix of the inverse mapping induced by 38 gives
-1 _ ) s -s-t _
(17) (Yp(a ’ b)) =~ 0 (- 1) cs( ) I (a + S + t)/I‘(a) ’
where t = pb - a .

Furthermore using (15) as a change in basis formula, we obtain, for m, ne 2,

: - Y(a+ m I(b) n-m
(18) Yp(a +m, b+ n) = yp(a , b) ey (b ¥ nf(- m)
We now explain the connectinn with Fp « Up tno this point, I‘p is a function of
two variables a, b € U, restricted by the conditirn pb - a=1t € Z . We obtain
a function I‘B nf one variable a , by insisting thet t = Rep(- a) € {0,1,...,p-1}.
8 -1
We then define (b= (a+ Rep(- a)) p ),

(19) r3(a) = Yp(a , b) pRep(-a)

(The factor ﬂ—Rep(—a) serves to make FB defined over 933' instead of over

Qp(n) .) Using (12) and the definitinn, we check that FB satisfies the same func-
tional equation as Fp

-1 if |a| <1,

(20) rBa+ 1) :
r(e) -a if |o| =1.
From equation (16), we deduce
(21) r%(a) = hp_ (3 (®)

and so TP may be extended snalytically on W (2) sstisfying the initial condition
and functional equation of I‘p as given by equation (4). Thus 1"8 = Fp . We now
deduce from (17) that, for a €U,

(22) I“_%E- = ﬁrep(_a)/YIJ(a , ) = (= 1) 0 %@y T
p

where t = Rep(- a) . Replacing a by - a, t by Rep(a) , and using (10) in the
form

(23) ro(-a) {1+ a) == (- fer e
we deduce
(24) l"p(l + a) = gRep(a)(a) .

This gives & cohomological explanation of (9)i for x ¢D(i, p ) . The assertion
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that gi(a) =0 for a¢ D(i, p ) reduces to the assertion that, for a # 0
mod p 4, we have

(25) x%/6(x) e x* L, _ .

Since formally D = (exp )~ e x % o exp X , it suffices tn show that

a p d /va
X% exp nX® e X Ex(x exp X Lo’w) ,

or, equivalently, that

(26) X2 exp nf = X %(Xa exp mxP g)
has a solution € in L0 «» * The solution is
’
-~ ® _ ) gPI/ (2
(27) g=s 3o mMIxV/CEe ),
which clearly lies in L0 -
’

This completes our cohomclngical treatment of lemma 2.

The emphasis in our construction of the Bnyarsky function, rB (cf. (19)) has
been its characterization by means of the functional equation (20) which is deduced
from the change of basis formulae. BARSKY's point of view was to characterize the
8 be evaluation at a sufficlent number nf elements of 2 . We now show how this een b

done cohomologically, i. e. by a scientifically acceptable form of manipulation of
integral formulae.

We first recognize g; as a formal Mellin transform. Let
0o(X) = o(x/m) = exp(x + )
For a € U, we have formally by equation (6) )
- gi(— a) = (JO X yita eo(x) d—;)/JO e X x® ax/x .
More precisely, for a e U, gi(- a) is specified by the condition

(28) - gi(— a) x* e X dx/x = eo(x) X xita dx/x mod d(e X x* E.G’w)

where io,m is the image of LO o under the substitution X —> X/mm . This is just
a rearrangement of our cohomolngical trecatment of and is based upon

x®! g% ax/X = ax® ¢ * dX/X . Since, gi(- a) is defined for a € N we may use
equation (28) for this calculation provided we are dealing with a one dimensional

" space znd provided v € N implies that

- (29) i o ar/x = 2 X ayx .
The formila
[
(30) r(n) =J4 X e&* ax/x ,
r,m
in particular, ‘!O e-x dx = 1 reminds us that we mist not consider d(e‘x) to be
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v t ~(o)
e’ dt , the Hankel formula 2mi/T(v) =J__ o, does not

help here as o,=Vvo ., .) With this hint, we lst Lo° denots the space of power

series in X which lie in L , and we work with the factor space
b

C, =
L X ax/a@xL_ %) .

exact. (Leiting o, = -

Putting u)n(X) = e.‘X e dX/X , we have

= V
Ay = Wnyp o0 nzli,
and so
(31) w =T(n) o mod d(XL e .

Equation (28) now takes the form (n> 1) ,

il

+P
. X
(32) - g3(- n) w,, o exp(X + —b-) .
The left side is - gi(— n) I'(n) w,(x) . The right side is 0 exp(XP/p) aX/X
which, for i+ n # 0 mod p, we show tn be of the form d(g exp -p.-) with geXL_
(cf. equatinn (26)). We now restrict our attention to the case n = pm - i

(m>1 s 0<ic< p) . The right side ~f (32) may be written, letting - 2z = Xp/p ’
(- 1)m pm--l m

as 2™ 72 az/z = (- 1)™ ™! r(w) w (2) « Thus,
(33) - g (i = pw) Tlpm = 1) 0, (&) = (= D™ P r(m) w (s .
We observe that 6,(%) = eF? | and so
(34) 0 (@) = (2) = A, -1) &5,
and the point is that eo(x) -1cX 'i,w « Thus
g; (1 - P r(1131(nm; (- p™

On the other hand, by (10)

1 _ . i+l  (p@ = i = 1)1} m+ 1
— =T (pm~i)(- )M = \ERZ 2 = 207 ()P
rp(l + 1 - pm) o) (m- 1)1 pm-l

This shows that equation (11) may be verified by celculation of Mellin transforms.
We note that hu‘ is also a Mellin transform. Wc leave the details tn the reader.

We are reminded by Yvette AMICE [Am 2] that contrary to our impressinn when
writing 21.4.10 in [Dw 2], most af the results concerning radii of cnnvergence may be

deduced directly from the original formulae of MORITA {Mo] and DIAMOND [Di]. They
~ showed that, for x ep Z , we have

(35) log Fp(x) - st x>

b

where
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= (- 1%t L (s, 7% (sz2) .

Here w denotes the Teichmiiiler character and Lp the Kubota-Lenpoldt L~function.
Using elementary properties of Lp and of Bernoulli numbers, one finds, for s > 2,

”
- L (s w )_llm (1- l)B/n
p ’ ’

where n=1«-s8+ (p - 1) p‘a « In fact, one shows that, a; egp R

a =0 if s =0 mod 2
(36) sa, €2 if s#1 mod(p - 1)

Ips(s - a| =1 if s=1 md(p - 1).

As noted by AMICE this is sufficient tn show that f(x) def exp st x° is ena-
’

lytic for 0rdx>p=—}l)+

p_l.Since Fp(x)El md p , for xe p Z, it
follows that f is enalytic for ord x> p , and coincides with I‘p on p Z . This
- shows that Fp hay be extended to a function analytic on the disk ord x> p . This
. gives the correct lower bound for the radius nf analyticity. It is not clear that

the upper bound may be verified in this way. Of cnurse, a secnnd proof nf lemma 1
may be immediately deduced.

It is well known that, for fixed a mod p - 1, the mappings s —> L (s, W) is
analytic (or meromorphic) on the disk D(O , |p/m|”) . One may be tempted to use this
property to deduce the analytic continuation of the right side of (35) into the re-
gion d(x , _@;) > |p/m| « It is however bett?r to use the fact that forr x close to
zero log Fp(x) cnincides with Diamond's G;)(x) « Briefly, for x € gp [Di], with
2(x) = xlogx=-x,

(36) 6, (x) = lim__ p EIPL LGy )

St
and for x¢ 2
~p

k
s+ . ..k p =l
Gp(X) = hmk_.co nzﬁ’pxn u(X + n)

Diamond's version of the Gauss multiplicetion formula gives, for r>1,

r
(37) 6 (x) = 2 3 cp(——"p; %
and hence, for x¢ g; s, we have
(38) G =6 (x) - 6 &) = ;18};)(81““ ) .

p
Thus if d(x , g;) > |p|* by Diemond's stirling formls for G, , we have

(3) ) - 2,(x) =37, B &7 (s + )7 pT B e )

s=1 "s p a=l,pfa
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where Bs denotes the s-th Bernoulli number, and

T
(40) ‘?'r = $§§’Xa {(‘x—p'-;;j - %) log(Xp; a) - xp-; a}
log being the Iwasawa logarithm. These formulas reduce all questions of snalyticity
of G: to question concerning L, . The analytic continusation of '%i G* has been
discussed by KOBLITZ [Ko], but his results and crnjectures do not go beyond these
earlier results of DIAMOND. In particular, it follows from equation (39) that, if
o e Z; , then x > G;'(x) - G;Qxx) *is an analytic function (in the sense of
KRASNER, naturally) on the set K - Z% .

We obaerve that for the analysis of Fp(x) for x e D(0, 17) along the lines of
equation (35), it is better to use equation (39) with r = 1, recognize that the
right side is bounded by |p| for |x| <1, and so reduce the analysis of rp(xj
to that of exp zl(x) for x close to zero. This procedure should again establish
p as the precise radius of analyticity of Fp .
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