Groupe de travail D'analyse ultramétrique

BERNARD Dwork
 Nilpotent second order linear differential equations with fuchsian singularities

Groupe de travail d'analyse ultramétrique, tome 7-8 (1979-1981), exp. no 19, p. 1-7
http://www.numdam.org/item?id=GAU_1979-1981__7-8__A10_0
© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1979-1981, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FILPGTETI SECOIND ORDER LINEAR DIFFERENTIAL EQUATIONS WITH FUCHSIAN SINGULARITIES
 by Bernard DWORK (*)
 [Princeton University]

Let K be a field of characteristic $p \neq 2$ say algebraically closed. Let I be a linear differential operator
(0.0) $L=D^{2}-a D-b \in K(x)[D]$
with $D=d / d x$. Let $\left\{\gamma_{1}, \ldots, \gamma_{m}, \gamma_{\infty}=\infty\right\}=T$ be the set of singularities of L and let

$$
\begin{equation*}
f(x)=\prod_{i=1}^{m}\left(x-\gamma_{i}\right) \tag{0.1}
\end{equation*}
$$

We assume
(0.2) All the singularities of L are fuchsian.
(0.3) The exponents of L at each singularity lie in $\underset{\sim}{F}$.
(0.4) L is nilpotent but does not have two solutions in $K(x)$ linearly independent over $K\left(x^{p}\right)$.

By "nilpotent", we mean that I has a non-trivial solution in $K(x)$, and that the equation for the wronskian,
Dw = wa ,
has a non-trivial solution in $K(x)$. We may assume that the zeros and poles of w lie in T.

We use the word "exponent" to refer to a root of the indicial polynomial.
For $i=1, \ldots, m, \infty$, let e_{i}, e_{i}^{\prime} be the exponents at γ_{i}.
We choose a solution u of L in $K[x]$, unique up to factor in K, by the condition that no zero of u is of order greater than $p-1$.

We write

$$
\begin{equation*}
u=g(x) \prod_{i=1}^{m}\left(x-\gamma_{i}\right)^{\tilde{e}_{i}}, \tag{0.5}
\end{equation*}
$$

(*) Texte reçu le 2 juillet 1931.
Bernard DWORK, Fine Hall, Princeton University, PRINCETON, NJ 03544 (Etats-Unis).
where

$$
g \in \mathbb{K}[x], \quad(g, f)=1, \widetilde{e}_{i} \in[0, p-1] .
$$

We define \tilde{e}_{∞} by the condition that $\tilde{e}_{\infty} \in(0, p-1 〕$,

$$
\begin{equation*}
\widetilde{e}_{\infty} \equiv-\operatorname{deg} u \bmod p . \tag{0.6}
\end{equation*}
$$

Clearly the \tilde{e}_{i} represent exponents of L. For all $s \in \underset{\sim}{\mathbb{N}}$, we write

$$
\begin{equation*}
D^{s}=a_{s} D+b_{s} \bmod K(x)[D] I, \tag{0.7}
\end{equation*}
$$

with $a_{s}, b_{s} \in K(x)$. It is known that

$$
\mathrm{a}_{\mathrm{s}}=0=\mathrm{b}_{\mathrm{s}}, \quad \forall \mathrm{~s} \geqslant 2 \mathrm{p} .
$$

An ad hoc proof is given in $\S 4.5$ below :
Having defined $\tilde{e}_{i}(i=1, \ldots, m, \infty)$, we define $e_{i}\left(\in{\underset{\sim}{p}}^{F}\right)$ to be the class of \tilde{e}_{i}, and we define e_{i}^{\prime} to be the other exponent at γ_{i} (of course we may have $\left.e_{i}=e_{i}^{\prime}\right)$. Thus we have uniquely defined the difference, $e_{i}-e_{i}^{\prime}$, of exponents at γ_{i}. We define $t_{i} \in\{0, p-1 〕$

$$
\begin{equation*}
t_{i} \bmod p=e_{i}-e_{i}^{\prime}(i=1, \ldots, m, \infty) \tag{0.8}
\end{equation*}
$$

The object of this section is to prove the following lemma.

1. LBMAA.

$$
\begin{equation*}
(p-1)(m-1)=2 \operatorname{deg} g+\left(t_{1}+\cdots+t_{m}+t_{\infty}\right)+p t \tag{1.1}
\end{equation*}
$$

where $t \in \underset{\sim}{\mathbb{N}}, \quad t \geqslant 0$.
2. LHEA.

$$
\begin{equation*}
f(x)^{p-1} a_{p}=g(x)^{2} \prod_{i=1}^{m}\left(x-\gamma_{i}\right)^{t_{i}} \theta\left(x^{p}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \theta \in K[x] \\
& g \in K[x] \\
& g \text { is prime to } f \\
& g \text { has only simple zeros. }
\end{aligned}
$$

We commence our treatment with an elementary proposition.
3. PRCPOSITION. - For each $s \in \underset{\sim}{N}, a_{s} f(x)^{s-1} \in K[x]$,

$$
\begin{equation*}
\operatorname{deg} a_{s} f(x)^{s-1} \leqslant(s-1)(m-1) \tag{3.1}
\end{equation*}
$$

Proof. - By differentiating (0.7) and using L to reduce the D^{2} on the right hand side, we obtain the recursion formula

$$
\binom{a_{s+1}}{b_{s+1}}=\binom{a_{s}^{\prime}}{b_{s}^{\prime}}\left(\begin{array}{cc}
a & 1 \tag{3.2}\\
b & 0
\end{array}\right)
$$

On the other hand,

By hypothesis for $1 \leqslant i \leqslant m, \quad a_{2}=a$ (resp. $b_{2}=b$) has a pole at γ_{i} of order not greater than one (resp. two) . By induction on s and the recursion formula, we show that, for $s \geqslant 1$,
(3.4) a_{s} (resp. b_{s}) has a pole at γ_{i} of order not greater than $s-1$ (resp. s) .

This shows that $a_{s} f(x)^{s-1}$ is a polynomial.
The condition that L is fuchsian everywhere implies that we may write L in the form

$$
\begin{equation*}
L=D^{2}+\sum_{i=1}^{m} \frac{A_{i}}{x-\gamma_{i}} D+\sum_{i=1}^{m}\left(\frac{B_{i}}{x-\gamma_{i}}+\frac{C_{i}}{\left(x-\gamma_{i}\right)^{2}}\right), \tag{3.5}
\end{equation*}
$$

where $A_{i}, B_{i}, C_{i} \in K$ for $i=1,2, \ldots, m$.
The condition at infinity implies that

$$
\begin{equation*}
\sum_{i=1}^{m} B_{i}=0 \tag{3.6}
\end{equation*}
$$

Thus deg a_{2} (resp. deg b_{2}) $\leqslant-1$ (resp. - 2) and by (3.2) and induction we show that

This completes the proof of the proposition.
4. - We now commence the proofs of the lemmas. By hypothesis, the $K\left(x^{p}\right)$-space of solutions of L in $K(x)$ has dimension one but in a suitable differential extension field F, the F^{p} space of solutions of L has dimension two.

More explicitly, we choose F so as to contain, τ, a solution of

$$
\begin{equation*}
\tau^{\prime}=\omega / u^{2} \tag{4.1}
\end{equation*}
$$

and then, by a well known calculation using (0.4.1),

$$
L\left(u_{\tau}\right)=\tau L(u)+\frac{W}{u}\left(\tau^{\prime} \frac{u^{2}}{W}\right)=0,
$$

while the wronskian

$$
\left|\begin{array}{cc}
u_{\tau} & \left(u_{\tau}\right)^{\prime} \tag{4.2}\\
u & u^{\prime}
\end{array}\right|=-w
$$

which shows that u, u_{T} are linearly independent over the kernel of D in F. We now apply (0.7) and conclude that

$$
(\tau u)^{(s)}=a_{S}(\tau u)^{\prime}+b_{S}(\tau u)
$$

$$
\begin{equation*}
u^{(s)}=a_{s} u^{\prime}+b_{s} u . \tag{4.3}
\end{equation*}
$$

Eliminating b_{s}, we obtain

$$
\begin{equation*}
a_{s}=\sum_{\substack{i+j=s \\ i \geqslant 1}} \frac{\tau^{\prime(i-1)}}{\tau^{\prime}} \frac{u^{(j)}}{u}\binom{s}{i}, \tag{4.4}
\end{equation*}
$$

a formula involving u and τ^{\prime} but not τ. We observe that this formula is independent of the characteristic.
(4.5) Rstreark. - Since u and τ^{\prime} lie in $K(x)$ they are annihilated by D^{p}. For $s \geqslant 2 p$ either $i-1$ or j on the right side of (4.4) exceeds $p-1$ which shows again that $a_{s}=0$ for $s \geqslant 2 p$.

In particular, for $s=p$, the above formula gives

$$
\begin{equation*}
a_{p}=\left(u^{2} / w\right) D^{p-1}\left(w / u^{2}\right) \tag{4.5}
\end{equation*}
$$

Now $a_{p} \div 0$ as otherwise $\frac{w}{u^{2}}$ would lie in the kermel of D^{p-1} in $K(x)$, i. e.,

$$
\frac{w}{u^{2}} \in K\left(x^{p}\right)+K\left(x^{p}\right) x+\cdots+K\left(x^{p}\right) x^{p-2}
$$

winich would show that (4.1) has a solution τ in $K(x)$ contrary to hypothesis concerning the dimensionality of the kernel of L in $K(x)$ (as $K\left(x^{p}\right)$ space). By the same argument since $1, x, \ldots, x^{p-1}$ is basis of $K(x)$ as $K\left(x^{p}\right)$ space, we conclude that D^{p-1} maps $K(x)$ into $K\left(x^{p}\right)$. Hence

$$
\begin{equation*}
a_{p} \in \frac{u^{2}}{w} k\left(x^{p}\right) \tag{4.7}
\end{equation*}
$$

Putiing

$$
Q_{p}=a_{p} f(x)^{p-1}
$$

we have

$$
\begin{equation*}
Q_{p} \in \frac{u^{2}}{w} \frac{1}{f(x)} K\left(x^{p}\right) \tag{4.3}
\end{equation*}
$$

We have defined g as the factor of u prime to $f(x)$. If x_{0} is a zero of g then the indicial polynomial of L at x_{0} has $0,1(\bmod p)$ as zeros and by definition u has no zero of order greater than $p-1$. This shows that the zeros of g are simple.
5. - We continue our proof of the lemmas. We will show

$$
\begin{equation*}
\frac{u^{2}}{w} \frac{1}{f(x)} \in g(x)^{2} \prod_{i=1}^{m}\left(x-\gamma_{i}\right)^{t_{i}} k\left(x^{p}\right) \tag{5.1}
\end{equation*}
$$

With this in mind, we use (3.5) to deduce

$$
e_{i}+e_{i}^{\prime}=1-A_{i}, \quad i=1, \ldots, m
$$

$$
\begin{equation*}
e_{\infty}+e_{\infty}^{\prime}=\sum_{i=1}^{m} A_{i}-1 \tag{5.2}
\end{equation*}
$$

while

$$
w \in \prod_{i=1}^{m}\left(x-\gamma_{i}\right)^{-\bar{A}_{i}} K\left(x^{p}\right)
$$

where \bar{A}_{i} is a representative in N of $A_{i}(1 \leqslant i \leqslant m)$. Thus the order of γ_{i} as zero of the left side of (5.1) is congruent $\bmod p$ to $2 e_{i}+A_{i}-1=\theta_{i}-\theta_{i}^{\prime} \equiv t_{i}$.

This together with our discussion of g, the factor of u prime to f, concludes the demnstration of (5.1).

We now estimate the degree of the left side of (5.1). By hypothesis deg $u=-\tilde{e}_{\infty} \equiv-e_{\infty}$ and so

$$
\operatorname{deg} \frac{u^{2}}{w f(x)} \equiv-2 e_{\infty}-m+\sum_{i=1}^{m} A_{i} .
$$

By (5.2) this is the same as $-m+1-t_{\infty}$. Thus from (5.1),

$$
\begin{equation*}
m+2 \operatorname{deg} g+t_{\infty}+\sum_{i=1}^{m} t_{i} \equiv 1 \bmod p \tag{5.4}
\end{equation*}
$$

By (4.8), (5.1), we obtain (2.1) with $\theta \in K(x)$. We assert that θ is a poly.. nomial. Indeed Q_{p} is a polynomial and $Q_{p} / \theta\left(x^{p}\right)$ is, by (2.1), a polynomial with zeros of order bounded by $p-1$. Thus θ must be a polynomial. This completcis the proof of Lemma 2. We continue with the proof of Lemma 1. By proposition 3,

$$
\begin{equation*}
(p-1)(m-1) \geqslant \text { degree } Q_{p}=2 \text { degree } g+\sum_{i=1}^{m} t_{i}+p \operatorname{deg} \theta \tag{5.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\rho=(p-1)(m-1)-2 \text { degree } g-\sum_{i=1}^{m} t_{i} \tag{5.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\rho \geqslant p \text { degree } \theta \geqslant 0 \tag{5.7}
\end{equation*}
$$

On the other hand, by (5.4) and (5.6),

$$
\rho \equiv t_{\infty} \bmod p .
$$

Lnà hence, by (5.7),

$$
\rho=t_{\infty}+p t
$$

for some $t \geqslant 0$. Substitution in (5.6) completes the proof of Lemma 1.
6. Remark. - We view the sum of the t_{i} as the analogue of the sum of the angles of the image of the upper half plane under a ratio of solutions of L if K were say the reals and the γ_{i} were all real.
7. - In general we are given L but not u and so there are two choices of t_{i} for each i. Thus in applying Lemma 1 there are 2^{m+1} choices for $\left(t_{1}, \ldots, t_{m}, t_{c \infty}\right)$ and t is not known.

COROLARY. - If $m=2$ then under hypotheses (0.2)-(0.4), we have $t=0$, and
there is just one possible choice for t_{0}, t_{1}, t_{∞}. Equation (1.1) tekes the form

$$
p-1=2 \operatorname{deg} g+t_{0}+t_{1}+t_{\infty}
$$

Pronf. - It is clear from (1.1) that $t=0$. Since $p \neq 2$, it follows that

$$
t_{0}+t_{1}+t_{\infty} \equiv 0 \bmod 2
$$

(7.1)

$$
p-1 \geqslant t_{0}+t_{1}+t_{\infty} .
$$

Now each t_{i} is fixed by L up to the transformation

$$
t_{i} \rightarrow p-t_{i}
$$

The condition of parity shows that such a transformation, if applied at all, must be applied to two of the t_{i}, say to t_{0}, t_{1} and we wnuld then have

$$
\begin{equation*}
p-1 \geqslant p-t_{0}+p-t_{1}+t_{\infty} \tag{7.2}
\end{equation*}
$$

This is inconsistent with (7.1) as the sum would give

$$
p-1 \geqslant 2 p+2 t_{\infty} \geqslant 2 p .
$$

Remark. - The degree of g is at most $\frac{p-1}{2}$ and this occurs precisely, when $t_{0}=t_{1}=t_{\infty}=0$, for example in the case of the differential operatnr associated to the hypergeometric function $F(1 / 2,1 / 2,1 ; x)$.

