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CAHIERS DE TOPOLOGIE ET 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES
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REPRESENTATION OF METRIC JETS
by Elisabeth BURR ONI and Jacques PENON

We dedicate this article to Francis Borceux

Abstract

Guided by the heuristic example of the tangential T fa of a map /  diffe

rentiable at a which can be canonically represented by the unique continuous 

affine map it contains, we extend, in this article, into a specific metric context, 

this property of representation of a metric jet. This yields a lot of relevant 

examples of such representations.

L’application affine continue qui est tangente, en un point a fixé, ï£j une 

application /  différentiable en ce point, peut être très naturellement consi

dérée comme un représentant de la tangentielle Tfa de /  en a. Cet exemple 

sera notre guide heuristique pour trouver un context métrique spécifique dans 

lequel cette propriété de représentation d’un jet métrique soit possible. Au 

passage, on fournit de nombreux exemples pertinents de telles représentations.

Key words : differential calculus, Gateaux differentials, fractal maps, jets, metric 

spaces, categories

AMS classification : 58C25, 58C20, 28A80, 58A20, 54E35, 18D20

INTRODUCTION

This article is the sequel of a paper published in TAC [6] ; most of the 

proofs of the statements given here can be found in the second chapter 

of a paper published in arXiv [5].

We recall that maps f,g  : M  — > M f (where M ,M ' are metric 

spaces) are tangent at a (not isolated in M), what we denote /  )>-<a g, if 

/(a) = g(a) and limâ x̂ a = 0 ; a metric jet (in short, a jet)

is an equivalence class for this relation >^a, restricted to the set of the
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BURRONI & PENON - REPRESENTATION OF METRIC JETS

maps which are locally lipschitzian at a (in short, LLa). We say that a 

map /  is tangentiable at a (in short, Tanga) if it possesses a tangent at 

a which is LLa ; then the jet composed of all the LLa maps which are 

tangent to /  at a is called the tangential of /  at a and denoted T/0.

LL and Jet are the cartesian categories whose objects are pointed 

metric spaces (for both) and morphisms (M, a) — > (M ',a'), the LLa 

maps /  verifying f(a) = a' (for LL), and the jets tp whose elements are 

forequoted maps which are tangent altogeter at a (for Jet). We denote 

q : LL— > Jet the canonical surjection which associates its tangential 

Tfa to a LLa map /  : (M, a) — > (M', a').

This paper takes up and develops two previous talks ([2] and [3]). 

Here, we propose a frame in which each jet can be canonically represen

ted by one of its elements. This frame is the algebraico-metric structure 

of “E-contracting” metric space (equipped with a “central point” denoted 

cj) ; the morphisms between such spaces, called “E-homogeneous” maps, 

have a fundamental “E-uniqueness property” : two E-homogeneous maps 

which are tangent at cj are equal.

Carrying on the analogy with the classical differential calculus, we 

are interested (in the E-contracting metric world) in maps /  which are 

tangentiable at u and whose tangential T/w possesses a E-homogeneous 

element which can represent i t ; such a map is said “E-contactable” at 

u), the unique E-homogeneous LLw element tangent to it at uj being its 

“E-contact” at uj. In many respects, the properties of “E-contactibility” 

are similar to those of differentiability, as, for instance, the search of 

extrema for a map taking its values in M (section 5).

We will mainly be interested in two special cases, in the normed 
vector space (in short n.v.s.), which will provide many examples. The 

first one with E = M+ (section 3), brings back the “old” interesting 

notion of maps which are differentiable in the sense of Gateaux [7]. The 

second one (section 4) immerses ourselves in the fractal universe. We 

finally notice that the notion of contactibility does not entirely exhaust 

the one of tangentiability, since there exist maps which are tangentiable 

(at a central point) and not contactable (at this point).

For general definitions in category theory (for instance cartesian or 

enriched categories), see [1].

-183 -



BURRONI & PENON - REPRESENTATION OF METRIC JETS

Acknowledgements : It is a talk about Ehresmann’s jets, given by Francis 

Borceux at the conference organised in Amiens in 2002 in honour of 

Andrée and Charles Ehresmann which has initiated our work. Since 

at that epoch we where interested, in our teaching, in what could be 

described uniquely with metric tools ... hence the idea of the metric 

jets!

1 Valued monoids, contracting spaces

Our aim, in this section, is to define the algebraico-metric notion of 

contracting spaces and prove they possess the above mentionned uni

queness property.

Definition 1.1 a valued monoid E is a monoid (its law of composi

tion is denoted here multiplicatively) equipped with a particular element 

denoted 0, and with a monoid homomorphism v : E — > R+ (where 

R+ = [0, +oc[/, called the valuation of E, verifying the two conditions :

(1) Vi £ E (v(t) = 0 •<=>■ t - 0),

(2)3t&H  (0 < v ( i)< l) .

Thanks to (1), we have that 0 is an absorbing element in E.

Examples 1.2

1) R and its multiplicative submonoids R+ and [0,1] are valued 

monoids, where 0 is their absorbing element (their valuation being the 

absolute value).

2) If r is a real number verifying 0 < r < 1, we denote NJ. the 

additive monoid NJ. = N U {oo}, where oo is its absorbing element, and 

whose valuation vr : N'r — > R+ is given by vT(n) = r” if n G N and 

vr(oo) - 0.

Definition 1.3

1) A morphism of valued monoids a : E — > E' is a 

monoid homomorphism verifying : Vi € E (v(a(t)) = v(t)).

- 18 4 -
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2) A valued submonoid o/E' is a valued monoid E verifying E C E' 

such that the canonical injection j  : E ^  E' is a morphism of valued 

monoids.

Remark 1.4

A valuation v : E — > R+ is itself a morphism of valued monoids.

Definition 1.5 E being a valued monoid, a E-contracting metric space 

(in short a E-contracting space) is a metric space M pointed by u (said 

to be central,), equipped with an external operation E x M  — > M  : 

(t,x) h-> t'k x which, in addition of the usual properties :

(%) Vx G M (1 *x = x),

(2) Vi, t! G E Vx G M (f ★ (t'kx) = (i'.t) ★ x), 

verifies also the following conditions :

(3) 0*cj = uj,

(4) Vi G E Vx,y G M  (d(t'kx,t*y) — v(t)d(x,y))

The central point of E-contracting spaces will usually be denoted u j .

Remark 1.6 A E-contracting space M  verifies the following proper

ties : (1) Vi G E = (2) Vx G M (0*x = w).

Examples 1.7

1) Let E  be a n.v.s.; fixing a point a G E, the pointed n.v.s. (E , a) 

is denoted Ea. We make this Ea a R-contracting space (with central 

point a), setting, for t G R and x £ E, t*x = a + t(x — a). This external 

operation on Ea is said to be “standard”.

2) When E is a valued monoid whose valuation v : E — > R+ is 

injective, then E becomes itself a E-contracting space setting u = 0 

and, for s,t G E, t * s = t.s and d(s,t) = \v(t) — v(s)|.

3) If M, M f are E-contacting spaces, then so is M  x M'.

4) Let a : E — > E' be a morphism of valued monoids; then every 

E'-contracting space can be canonically equipped with a structure of 

E-contracting space, the new E-operation being : (i,x) ^  <r(t) *x.
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Remarks 1.8

1) If E is a valued monoid, every R+-contracting space M  has also 

a “canonical” structure of E-contracting space (its external operation 

being : (t,x) i-> v(t) * x for every t € E and x €. M ). In particular, a 

pointed n.v.s. Ea has also a canonical structure of S-contracting space, 

its external operation being, for t € E and x £ E. t*x = a + v(t)(x — a).

2) We notice that we have two structures of R-contr acting space 

on Ea : the standard one of 1.7, and the above canonical one, whose 

external operation is t * x = a + |i|(rc — a).

3) In a E-contracting space M  /  {a;}, u is never isolated in M. 

Definition 1.9

A E-contracting space is revertible if, for every t € E verifying t ^  0,

the map t * (—) : M  — > M is bijective. In this case, we set t ★ x = 
(t * (—))_1(x) fo rx € M .

Remark 1.10

If a : E — > E' is a morphism of valued monoids and M  a rever

tible E'-contracting space, then M  is a revertible E-contracting space.

Examples and counter-examples 1.11

1) The pointed n.v.s. Ea is a revertible R+(or R)-contracting space

for the standard structure; with t * x = t~l * x = a + t_1(x — a) for 

every t € E (t ^  0) and x € E. Actually, for each valued monoid E, 

Ea is a revertible E-contracting space for the canonical structure; with

t * x = t~l * x = a + v(t)~l (x — a) for every i 6 S (f /  0) and x € E.

2) [0,1] and NJ. are E-contracting spaces with, respectively, E = 

[0,1], u} — 0, and E = NJ., ui = oc. But none of them is revertible.

Definition 1.12 Let E be a valued monoid.

1) A map h : M  — > M' is E-homogeneous if M, M' are T,-contracting 

spaces and h verifies : Vi € E Vr € M  (h(t *x) = t*  h(x)).

2) M' being a E-contracting space and M a metric subspace of M ', 
then M is a E-contracting subspace of M' if u € M  and t * x E M

- 1 8 6 -
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for all t E E and x E M ; then the canonical injection M ^  M' is 

E-homogeneous.

Remarks 1.13

1 ) A E-homogeneous map h : M  — > M' verifies h(u) = u;.

2) Let a : E — > E' be a morphism of valued monoids, M  and M' 

two E'-contracting spaces. Then, every E'-homogeneous map M  — > M f 

is E-homogeneous; the inverse is true when a is surjective.

Proposition 1.14 For every E-homogeneous map h : M  — > M ', we 

have the equivalence : h k-lipschitzian h k-LLu

Proof : r >  0 being such that h\B(w,r) is fc-lipschitzian, we choose 

t E E such that 0 < v(t) < 1; then, for each E M , there exists 

n E N verifying tn tn * y E B(u, r). □

Theorem 1.15 (of E-uniqueness)

Let hi, /¿2 • M  — > M ' be two E-homogeneous maps verifying hi /¿2 ; 

then hi — h2 -

Proof: Let us take t E E verifying 0 < v(t) < 1 and fix x E M. We 

can assume that x ^  oj. Let us set xn = tn'kx for each n E N. Then, we 

have xn y£ u and limnxn = cj, so that we can write : =
d(hi(tn*x),h2(tn*x)) _ d(tn'khi(x),tn*h2(x)) _ v(tn)d(hi(x),fi2(x)) _ d(hi(x),h,2(x))

d{tn^x,tn-kuj) d(tn*x,tn*uj) v(tn)d(x,u)) d(x,uj)

But, as lim„ xn — to and hi h?, this provides 0 = limn d('hl^ J ^ Xn'>'> = 

which implies d(hi(x), h,2 (x)) = 0 , i.e hi(x) = h,2 (x). □

Theorem 1.16 Let M ,M ' be £-contracting spaces with M' revertible,

V a neighborhood of u in M, and maps f  : V — > M ', h : M  — > M' 

such that h is S-homogeneous and verifies f  h\y■ Then, for all

x E M, we have h(x) = limô t,(t)->o t * f(t-kx).

Proof: The above equality is clearly true for x = u. If x 7  ̂u, we have 

u> — lim ^^o  t * x (since d(t * x,u) = d(t * x,t * u) 
= v(t)d(x,u)), which insures that there exists e > 0 such that, for all
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t € £  verifying 0 < v(t) < e, we have t*x 6 V — {u}. Thus, for all these

i  w p  ra-n w r i t o  • d(f(t*x),h{t*x)) _  d(f(t*x),t*h(x)) _  d(t*(t * f(t*x)),t*h(x)) _  
i, we can write . d(i*XiW) — d(t*x,t*u) ~ v(t)d(x,u) ~

Since f *!>'> we have

ltao*,(.MO = »• which

means that limo/^t)-^ i * f(t*x ) = h(x). □

Theorem 1.17 Let M ,M ' be £-contracting spaces with M' revertible,

V a neighborhood of oj in M, g : V — > M' a k-LLu map, and 

h : M  — >■ M' a H-homogeneous map verifying g h\v- Then, 

h is k-lipschitzian.

Proof : Let W  be a neighborhood of lo in V such that g\w is 

/c-lipschitzian, x,y G M, and t £ £  such that 0 < v{t) < 1; then, 

there exists N  € N such that tn * x,tn * y € W for all n > N ; so 

that, for all these n, we have d(g(tn * x),g(tn * y)) < kd(tn *x ,tn * y)

= kv(tn)d(x,y), which provides d(tn * g(tn * x),tn * g(tn ★ y)) = 

(v(tn))~1d(g(tn *x),g(tn * y)) < kd(x,y). Now, d being continuous, we 

obtain (doing n —>• +oo) : d(h(x), h(y)) < kd(x, y). □

Corollary 1.18 M ,M ' being as in 1.17, and h : M  — > M' being a 

H-homogeneous map, we have the equivalences :

h lipschitzian h LLW h Tangu

Counter-example 1.19 We give here an example of function 

/  : R2 — > R which is R-homogeneous and continuous (since it is LSL : 

see 1.20 below), but not lipschitzian (thus not Tango). Consider the 

function f(x,y) = xsin^ if x 0 and f{0,y) = 0 (see Figure 1 in [5]). 

This /  is clearly R-homogeneous Rq — > R0- We also notice that /  is 

LSL (at every point) since it is differentiable on R* x R ; and it is clear 

at each point (0, a). Now, if x ^  0, we have j£(x, y) = sin ̂  ^ cos | and 

thus, putting xn = 4? and yn = we obtain limn §f (ar„,y„) = -oo, 

where limn(xn, yn) = (0,0). Thus, this function /  cannot be lipschitzian!
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Remarks 1.20

1) For a map /  : M  — > M' between metric spaces; 

LSL means “locally semi-lipschitzian” at every point of M ; and “semi- 

lipschitzian” at a € M  means that, there exists a real A; > 0 such that, 

for all x 6 M, we have d(f(x), f(a)) < kd(x, a).

2) By the way, in 1.19, we have prove that : LSLa- ^  Tanga. 

Thus, we cannot complete our equivalences of 1.18, adding the proper

ties of being LSLU or continuous at uj ! Even though, for linear maps, 

all these properties are equivalent.

2 Representability and Contactibility

The E-uniqueness property allows to choose at most one canonical 

representative element in each jet between E-contracting spaces (poin

ted by their central point u j) ; hence the term of “E-representable” jets. 

The maps /  which are tangentiable at u j  and whose tangential T/w is 

E-representable are called “E-contactable” at u j .

Remarks 2.1

1) Let E be a valued monoid; a map h : M  — > M' which is 

E-homogeneous and lipschitzian will be called E-Lhomogeneous.

2) A E-Lhomogeneous map is a E-homogeneous which is LLU.

We denote E-Contr, the category whose objects are the 

E-contracting spaces and whose morphisms are the E-Lhomogeneous 

maps (it is a suitable world for guarantying the E-uniqueness property). 

When a : E — > E' is a morphism of valued monoids, there exists a ca

nonical functor a : E'-Contr — > E-Contr. For every valued monoid E, 

we also have another canonical functor U : E-Contr — >• LL defined by 

U(M) = (M, u/) and U(h) = h\ then we call J  the following composite :

E-Contr LL —̂  Jet (refer to the introduction for q : LL— > Jet).

Proposition 2.2 E-Contr is a cartesian category and the previous 

functors U, and then J, are strict morphisms of cartesian categories.

-  189 -
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Now, since for each M, M ' G |E-Contr|, the canonical map : 

E-Contr(M, M ’) ^  Jet(JM, JM '), defined by can{h) = J{h) =Thw, is 

injective (thanks to the E-uniqueness property), we can equip 

E-Contr(M, M') with the distance d(h,h') = d(J(h),J(h')) (we recall 

(see [6]) that the category Jet is enriched in Met, the cartesian category 

whose objects are the metric spaces and morphisms, the LSL maps).

Proposition 2.3

1) The cartesian category E -C ontr is enriched in Mei.

2) For each G |E—Contr|, the following canonical map : 

E-Contr(M ,M0 x M i ) “  E-Contr(M ,M0) x E-Contr(M, Mi) is 

an isometry.

Proposition 2.4 Let h, h' G E-Contr(M, M ') ; then, we have d(h, h') = 

sup{C(a;) | x G 1)}, where C(x) = if x ^  uj, C{ui) = 0.

Proposition 2.5 Let M, M' be H-contracting spaces where M' is 

revertible, and h : M  — > M' a S-Lhornogeneoiis map. Let us set

k  =  I x , y e  B ' ( u '  -1 ) ’ x  í  y } - T h e n  :

1) h is k-lipschitzian,

2) p(Thu) = k (if ip is a jet, its lipschitzian ratio p(y>) = inf K(tp) 

where K(<p) = {fc > 0 | 3/ G <p, f  is k — LLa} ; see [6]).

Proof: Come from 1.17. □

Definition 2.6 Consider two E-contracting spaces M, M' and a jet 

ip : (M ,u) — > (M ',u ). We say that : is E-representable if there 

exists a T,-Lhomogeneous element h : M  — > M' verifying J(h) = <yo 

(i.e. Thu = ip). Thanks to the uniqueness theorem, such a h is unique, 

and may thus be called the E-representative element of the jet (p.

Remark 2.7 The E-representable jets are stable under composition, 

and pairs (and thus products).

We now call E-contracting domain a pair (M,V) where M  is a 

E-contracting space and V a neighborhood of u> in M. Besides, 

/  : (M, V) — > (M ', V') is said to be a centred map if (M, V) and 

(M ', V') are E-contracting domains, and /  : V — >■ V' verifies f(u) — u>.
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Definition 2.8 Let f  : (M , V) — > (M', V') be a centred map. We say 

that f  is E-contactable if f  : V — > V' is tangentiable at uo and if the 

following composite jet is E-representable :

(M, w)------ - (V, u )-- (V, u )-------- (M', u)

We denote K s/ : M  — > M' (or merely K/  if none ambiguity about 

E) the unique representative element of the above composite jet; and we 

call it the E-contact of f.

Remarks 2.9

1) In other words, /  is S-contactable if there exists a E-Lhomogeneous 

h : M  — ¥ M' such that /  X u h\v (where, here, /  is seen as a map

V — > M'). In that case, h = K s /; and Ke/ G E-Contr(M, M').

2) Let a : E — > E' be a morphism of valued monoids. If 

/  is a E'-contactable centred map, /  is also E-contactable, with 

K  E /  =  K  E, / .

3) Let E , E' be n.v.s., U an open subset of E, a G U, f  : U — > E' 

a map. If /  is differentiable at a, then /  : (Ea,U) — > (E'^ay E') is 

standard R-contactable with Krf{x) = f(a)+dfa(x—a)), its continuous 

affine tangent at a ; and, for every valued monoid E, it is even canonically 

E-contactable with Ks f = K r/ written as above.

Proposition 2.10 Let f  : (M, V) — > be a centred H-contac-

table map. Then, for all x 6 M, K f(x) — limo/t>(t)_»o t * f(t*x ).

Proposition 2.11 Here, for lightening, we omit the surrounding 

E-contracting spaces of the several neigborhoods of ui.

1) Let f  : V — > V1, g : V' — > V" be two centred maps. If f  and g 

are E-contactable, so is g.f, with K(g.f) = Kg.Kf.

2) Let fo : V — > V0, fi : V — > Vi be two centred maps. If fo 

and fi are 'E-contactable, so is the pair (/o,/i) : V — > Vo x V\, with 

K ( / o , / 1) =  ( K / o , K / 1).

3) Let fo : Vo — > V¿, fi : V\ — >• V{ be two centred maps. If fo and 

fi are E-contactable, so is the product fo x fi : Vo x V\ — > V¿ x V{, 

with K ( / 0 x / i )  =  K / o  x K / i .
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In the n.v.s. frame, we can define, with the help of an isometric 

translation, the analog k/a of the differential at a dfa, for the contact 

K f (this one generalizing the continuous affine tangent to /  at a). More 

precisely, we recall that, for every n.v.s. E  and a € E, the pointed 

n.v.s. Ea is a E-contracting space for any valued monoid E. Now, if 

/  : (Ea,U) — > (E'j(ay U') is a E-contactable map (in the sens of 

2.8 and 2.9), then we say that /  is E-contactable at a, its E-contact 

at a being kE/a = ©a/(a)(K/s)> in short k/a = 0 a/(a)(K/) ! where 
©aa' : E-Contr(£’o, E'0) — > E-Contr(£’a, E'a,) is the isometric transla

tion defined by Qaa>(h)(x) = a1 + h(x — a). The E-Lhomogeneous map 

k/a : Eo — ► E'0 is thus the translate at 0 of the E-Lhomogeneous map 

K f : Ea — > Ef(ay the E-contact of /.

The formulas of 2.11 can then be rewritten in this context for the k/a, 

absolutely similar to those of dfa (the k/Q are stable under composition, 

pairs and products, with : k(g.f)a = kgf{a)kfa, k (/i,/2)0 = (k/ia.k/20) 

and k(/j x /2)(ai,a2) = k/iai x k/2a2).

Remarks 2.12

1) Let E, E' two n.v.s., U an open subset of E, a £ U; then 

/  : U — ► E' differentiable at a = >  /  : (Ea,U ) — > (E'^ay E') 

E-contactable at a for any E ; with ks/a = d/a. More precisely, if /  is 

E-contactable at a, then /  is differentiable at a iff ks/a is linear.

2) /  : (Ra,U) — > {E'j(a)) U') is standard R-contactable at a iff 
/  : U — >■ U' is differentiable at a with kR/a = d/a. It is not always the 

case : see 2)below.

3) We prove here that standard R-contactable at a =£$■ 

differentiable at a : consider the function /  : R2 — > R defined by 

/(0,0) = 0 and f(x,y) = x2+yi if (x,y) 7̂  (0,0). This /  is differentiable 

on R2 — {(0,0)}, and, since for (x, y) ^  (0,0), ||d/(i,j,)|| is bounded, /  
is lipschitzian on R2. Besides, it is obviously R-homogeneous, so that /  

is standard R-contactable at 0, with kn/o = /. However, since /  is not 

linear, it cannot be differentiable at 0 (see Figure 5 in [5])!

Proposition 2.13 If f  : (Ea,U) — > {E'^ayU') is Y,-contactable at a, 

we have :

1) kfa(x) = limo^i)-*) /(a+t;(„t()tX))~/(o) for all x e E ,
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2)p{Tfa) = sup{ IIMj^ _ y 11 \x,y G B '(0 ,l),x ^y} , where h = kfa 

is p(Tfa)-lipschitzian (see 2.5).

3 G-differentiability

Here E = R+. René Gateaux1, defined maps (said “differentiable in 

the sense of Gateaux”) which are very close to our R+-contactable maps : 

the main difference being the fact that we replace his continuous maps 

(see Bouligand in [7]) by lipschitzian maps. In homage to Gateaux, we 

choose “G-differentiable” for “R+- contactable”2.

E and E' being two n.v.s., we merely write IHIom+(£', Er) for the 

n.v.s. that we should denote R+-Contr(£’o, E'0) ; we thus recall that its 

elements are the R+-Lhomogeneous maps h : E0 — > E'0, i.e the maps 

h : E  — > E1 which are lipschitzian and verify h(tx) = th(x) for all 

t G R+ and x G E.

Examples 3.1

1) Standard R-Lhomogeneous implies R+-Lhomogeneous ; in parti

cular, the continuous linear maps from E  to E' are in io m +(Ê, E').

2) Let E be a n.v.s. ; then every norm N on E, which is equivalent 

to the given norm || || on E, is in Hom+(£', R).

3) The maps Max, Min : Rn — > R are in Hom+(Rn,R), since they 

are 1-lipschitzian.

Proposition 3.2

1) Let h G Hom+(.E, E'), where E ^  {0}; we have ||/i|| = 

sup{||/i(r)|| | \\x\\ = 1}.

2) Let h G Hom+(£', E'), then, for all e > 0, we have 

p(Th0) = sup l^ ^ i y 11 | x i  y, x,y G C{e)}, where C{e) = 

\x G E 11 — £ < ||x|| <C 1 + £}.

1. The young French René Gateaux was one of the first victims of the first world 
war, he was twenty five years old when he died on the third of october 1914.

2. it is shorter than “lipschitzian Gateaux-differentiable” which would be more 
convenient.
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Proof : 2) Let us set r(e) = sup{ \ x ^  V, xiV £ C(e)}. 

It is clear that r(e) < p(Tho) since h is p(T/io)-lipschitzian (by 2.12). 

Conversely, take a G E, a ^  0 and let us set e' = ||a||e. Then, for every

x G B(a,e'), we have tomtitm G C(e). Then r(e) > =v '  llall INI v '  w  — ||w _ w ||

if ^ 7  ̂ a; so that h is r(e)-LSLa. In particular, for every

a G B'(0,1) — {0}, h is r(e)- LSLa, with B'{0,1) convex. Thus, /i|B'(o,i)
is r(e)-lipschitzian (see section 1 in [6]), so that p(Tho) < r(e). □

Proposition 3.3 Let E be a n.v.s.; then the following map is a linear 

isometry : can : Hom+(R, E) — > E x E : h ^  (—h(—1), /i(l)).

Definition 3.4 A centred map f  : (Ea,U ) — > (E'^ayU') is said to be 

G-differentiable at a if it is R +-contactable at a ; in this case, K+/  and 
k+/a will respectively merely denote Kr+/  and kn+/a.

Remarks 3.5 In the following cases, E and E' are n.v.s., /  : U — > E' 

with U an open subset of E, and a EU.

1) If /  is differentiable at a, then /  is G-differentiable at a with 

k+ fa = d/a. More precisely, if /  is G-differentiable at a, then /  is diffe
rentiable at a iff k+fa is linear.

2) If /  is G-differentiable at a, then /  is standard R-contactable at 

a iff k+ fa is standard R-homogeneous with k+/a = k^fa.

3) If /  is G-differentiable at a, then /  is E-contactable at a for all 
valued monoid S, with kE/a = k+/a.

Examples 3.6 The following examples are all G-differentiable :

1) The norm function t? : R — > R : x |x|, which verifies k+i90 = $ 

and, for o^O , k+$a =d$a = sign(a)Idu where sign(a) =

2) The euclidian norm function N2 : Rn — > R : x ||x||2 , which 

verifies k+Nfi = N2 and, for a ^  0, k+A^ =dA„.

3) The functions Max, Min : R” — > R, which verify :

k+Maxa(x) =Maxigj (a)(xj) and k+Mina(x) =Minfej(a)(xi), where 1(a) = 

(i€  {1,... ,n} | a, =Max(a)} and 1(a) = {z G {1,... , n} | a* =Min(a)} ; 

which provides k+Maxo =Max and k+Mino =Min.
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4) The product norm function N°° : Rn — > 1 :  1 4  ||#||oo) which 

verifies k+A^ = N°° and, for a ^  0, k +N£°(x) =Maxiej (̂ (sign(ai)xl), 

where |a| = (|ai|,. . . ,  |an|).

5) The norm function N1 : R" — > R : x t-)- ||x||i, which veri

fies k+N£(x) = E i€io(a)lx*l + 'Lieio(a)sign(ai)xi, where 2b(o) = 

{* G { l,...,n }|o , = 0}.

Proof : First, all the above functions h being R+-Lhomogeneous, 

they are all G-differentiable at 0 with k+ /i0 = h.

3) It comes from the equality Max(a + x) =Max(a)+Maxi6j(a)Xj, 

which is true for all a, locally in a neighborhood of 0. Indeed :

- If 1(a) = {1, • • • , n} (i.e, if a is a constant n-uplet), then, for all x € R", 

we have Max(o + x) =Max(a)+Max(:r) =Max(a)+ M ax^j^xj.

- If 1(a) 7  ̂ {1, • • • , n}. Let j  G 1(a) such that M ax^^a;*) = Xj ; we 

can write : Max(a)+ MaxJGj(aj(x,) = aj +Xj <Max(a + x). Conversely, 

we set r = |Min^j(aj(Max(a) — a*) ; then r > 0. Let V be the open ball 

£?oc(0, r) (for the product norm || H«,) ; then, for x G V, we have :

- i î j  fÉÏ(a), X j- M ax ^^x i) < 1̂ 1+1 Maxiex(a)(^i)I < 2IMIoo < 
2r < Max(a) — av and thus again a3 + x} <Max(a)+

- if j  G 1(a), aj + Xj =Max(a) + Xj < Max(a)+Maxiej(a)(a;i) ; 

finaly, for all x G V, we have Max(a + x) <Max(a)+ Maxi€j(a)(x,) ; 

hence the result. Same for Min.

4) Since N°°=Max.î?", (where i?n = d x • • • x $, n times), the function 

N°°is G-differentiable by composition (section 2).

5) Since N 1 = a.t?", where a is the addition of Rn, N 1 is 
G-differentiable still by composition. □

Remarks 3.7

1) We are giving here, for each G-differentiable function h studied 

in 3.6, the domain D(h) on which h is differentiable.

a) D(0) = R* = R — {0}.

b) D(N2) = (R*)n.

c) D(Max) = {a G Rn | 3H < n (a* = Max(a))}. For instance, 

for n = 2, D(Max)=Ac where A is the diagonal.
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d) Here D(N°°) — {a € R" | < n (|a¿| = ||a||oo)}- For n = 2, 
D(N°°) = ({a € R2 I |ai| = |a2|})c.

e) For TV1, we have D(N1) = {a G R" | Vi < n a, ^  0}.

2) Of course, there exist G-differentiable maps which are not 

R+-homogeneous : 3.6 gives a lot of such examples. Indeed, a trans

late g(x) = f(a  +.?') of a R+-homogeneous map /  is not necessarily still 

R+-homogeneous, although, in our examples, such a translate remains 

G-differentiable (by composition).

Proposition 3.8 Let f  : (Ra, U) — > (E'^ayU') be a centred map. 

Then f  is G-differentiable iff f  admits left and right derivatives ata. In 

this case, referring to 3.3 for the linear isometry can, we have k+/a = 

can-1(f[(a),f'(a)).

Continuously G-differentiable maps
Our aim here is to prove that, in finite dimension, every continuously 

G-differentiable map /  (i.e G-differentiable such that k+/ is continuous) 

is in fact of class Cl . We need some preliminary results.

Proposition 3.9 Let U be an open subset of R and f  : U — > R a 

continuous function admitting left and right derivatives at every point 

of U and such that the functions //, / ' : U — > R are continuous at 

a G U. Then f[(a) = /^(a), so that f  is derivable at a.

Proof : We need the following well-known lemma :

Lemma 3.10

1 ) Let f  : [a, b] — > R be a continuous function which admits a right 

derivative at every point o/]a, b[, and k G R. Then,

a) If‘ for all t G ]a, b[ f¡.(t) < k, then f(b) — /(a) < k{b — a),

b) If  for all t G]a,b[ /'(i) > k, then f(b) — f(a) > k(b — a).

2) Same statements with f[ instead of fr.

We come back to the proof of 3.9 : Let e > 0; let us prove that 

//(a) ^  fr(a) + e' Since / ' is continuous at a, there exists 77 > 0 such
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that f'r{x) < f'r(a) + £ for all x e]a — r],a + r][c U. Let k — /¿(a) + s. 

Then, 3.10 provides that, for all x € R verifying a — rj < x < a, we 

have f(a) — f(x) < k(a — x), i.e ^  < k, which gives //(a) < k 

(doing x —> a—); hence f[(a) < /'(a), doing c —> 0. Same for the reverse 

inequality. □

Corollary 3.11 Let f  : (E ,U ) — > (R,U') be a G-differentiable map, 

such that the map k+/ : U — > Hom+(£’,R) : x t-> k+/x is continuous 

at a € U. Then, for all v G E, the directionnal derivative at a f£(a) = 

limô t_>o exists in R.

Theorem 3.12 We assume that E and E ’ are n.v.s. of finite dimen

sions and that f  : (E, U) — ► (E', U') is a centred map which is conti

nuously G-differentiable. Then, f  is of class C1.

Proof: Begin first with E' = R. □

4 Fractality and neo-fractality

Here E = NJ. (see section 1). The interest of this particular case is 

to speak of fractality.

As in section 3, we remain in the n.v.s. context. Let us fix a real 

number 0 < r < 1. Now, E,E ' being two n.v.s., we specify (referring 

to 1.2 and 1.11 for NJ.) that the N(,-Lhomogeneous maps h : E0 — > Ef0 

are the maps h : E  — > Ef which are lipschitzian and which satisfy the 

following fractality property : h(rx) = rh(x) for all x G E ; such maps 

will be called Ur-Lfractal”. Thus, we merely write Fracr{E,E') for the 

n.v.s. which we should denote N^-Contr(£^05 ^o) : see section 2.

Examples 4.1

1) The M+-Lhomogeneous maps £o — > Ef0 are r-Lfractal.

2) Consider the function /  : R — > R defined by f(0) = 0 and 

f(x) = x sin log \x\ for all x ^  0. Then, /  is r-Lfractal for r = e~2ir.

3) More generally, for p G {1,2, oo}, the map f p : Rn — > Rn : 

x i-)> Ap(x)x, where Ap : Rn — > R is the function defined by Ap(0) = 0 

and Ap(x) = sin log ||x||p for x ^  0. Then f p is r-Lfractal for r = e~2n.
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4) K being the triadic Cantor set, let = Unepj3nK and 

g : M — > d(x, K^). Then g is |-Lfractal.

Proof :

2) is a particular case of 3) ... see Fig 1.

3) The fact that f p is lipschitzian, comes from the formulas k+f£{y) = 

(sinlog \\x\\p)y + co!j y ip k+Np(y)x and \k+Np(y)\ < \\y\\p (referring to 

the examples of 4.6). Using now 3.11, we obtain that f p is 2-lipschitzian.

4) g is 1-lipschitzian. Besides, as \Koo = Koo, we have g{\x) = 

d(\x,Koo) = d(\x, \KX) = \d(x, K^) = \g{x). See Fig 2 3

Figure 2
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Proposition 4.2 Let h e Fracr(E, E').

1) If E ^  {0}, we have : ||/i|| = \r < ||x|| < 1}.

3. We could call g the “Giseh” function, if, as Napoleon, we gaze at the Giseh 
pyramides diminishing at the horizon !



BURRONI & PENON - REPRESENTATION OF METRIC JETS

2) For every e > 0, we have p(T/i0) = sup{ | x ^  y,

x, y G C(r,e)}, with C(r,e) — {x G E\r < ||x|| < 1 + e}.

Proof: 2) Let us put R{e) = supf^ ^ ^ y 11 \x ^  y x,y G C{r,e)}. 

Clearly, , R(e) < p(Th()) since h is p(T/i0)-lipschitzian (by 2.12). Let us 

now show that p(Tho) < R(s). Let a G E verifying 0 < ||a|| < 1 and 

n G N such that rn+1 < ||a|| < r", i.e r < ||r_"a|| < 1. Let us put e' = 

r"Min{£,r~"||a|| — r} and let x G B{a,e'). Then, r~"a, r~nx G C(r, e) ; 

so that, if x yi a, we have R(e) > > which

proves that h is R(e)-LSLa■ This being true for every a G B'{0,1) — {0}, 

we deduce that the restriction /i|b'(o,i) is i?(e)-lipschitzian (see section 

1 in [5]) which finally implies that p{Tho) < R(e). □

Definition 4.3 A centred map f(E a,U) — > (E'^ayU') is said to be 

r-neo-fractal at a G U if f  is N'r-contactable at a ; in this case, krfa will 

merely denote fa ■

Remarks 4.4 In each case, E and E' are n.v.s. and /  : U — > E' 

where U is an open subset of E, and a G U.

1) When /  is G-differentiable at o, it is also r-neo-fractal for every 

0 < r < 1, and we have krfa = k+/a.

2) Every r-fractal map h : E  — > E' is r-neo-fractal at 0 and we 

have krho = h.

3) Every r-neo-fractal map at a is tangentiable at a.

4) When /  is r-neo-fractal at a, then /  is G-differentiable at a iff 

krfa G Hom+(E, E ') ; in this case, k+fa = kr/a.

Examples 4.5

We consider successively the examples 2),3),4) already studied in 4.1 :

1) The function /  is e_27r-neo-fractal at 0, and differentiable on R*.

2) For p G {1,2, oo}, the map f v is e~27r-neo-fractal at 0, and 

G-differentiable at every .r ^  0.

3) The Giseh function g is G-differentiable at every x £ K^. Fur

thermore, if we denote K + and the subsets of K00 defined, for 

x G tfoo, by : x G <==> 3e > 0 (]cr — e, x[ HK^, — 0),
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x e 3e > 0 (]x, x + elnKoo — 0),

then g is ^-neo-fractal at every point of U K^, and we have : for 

a £ K+, k iga = g ; and for a £ K~ , kiga = g-, where g_(x) = g(-x).

Proof: 1), 2) Use 4.4.

3) For the Giseh function, we verify that, in the neighborhood of a, 

we have g(x) = g(x — a) if a £ and g(x) — g(a — x) if a £ K ^  ... 

for a detailed proof, see section 5 in [5]. □

Remarks 4.6 In the previous examples, we notice that :

1) a) Thanks to 4.4, we see that /  is e~2?r-neo-fractal at 0, but not 

G-differentiable at 0. Same remark for the f p where p € {1,2, oo}.

b) g is not G-differentiable at all x € U . although it is 
^-neo-fractal at these points.

2) a) Of course, there exist neo-fractal maps which are not Lfractal: 

we have just, as in 3.7, to translate our previous examples at every point 

where they are neo-fractal.

b) As for the function /  of 4.5 which remains differentiable at 0, 

although no more Lfractal, we obtain a convincing example considering 

the function x1 + f(x) ... So guided, we can find a lot of other good 

examples of neo-fractal maps which are not Lfractal.

Construction of fractal functions
Let s and T be strictly positive real numbers and /  : R — > R a 

T-periodic and s-lipschitzian function which admits a right derivative 

at every point (we have |/̂ (x)| < s for all x 6 R ); in particular, /  is 

bounded on R. Then, we associate to /  the function <p : R — > R defined 

by </?(0) = 0 and, for x ^  0, <p(x) = x/(log |x|). Then <p admits a right 

derivative at every points of ]0, +oo[ which is bounded, thus lipschitzian 

on R. Clearly, <p is r-Lfractal.

Let us consider now the set Vt of the T-periodic functions R — >• R 

which are lipschitzian and which admit a right derivative at every point. 

Then, Vt has a structure of vectorial subspace of RR. The previous 

construction provides a map j  : Vt — > Fracr(R,R), where j( f )  is the
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function (p associated to /  as above. This map is clearly linear and 

injective. By composition, we have an injective linear map :

VT Fracr(R, R) -A Jet((R, 0), (R, 0)) ^  Je t^e(R, R) 

which provides the following statement (for the free jets, refer to [6]) :

Proposition 4.7 The space Jet/ree(R,R) is thus a vectorial space of 

infinite dimension.

Summary
The tangentiable maps have made in evidence new classes of maps. 

We give a recapitulative diagram of the various implications mentionned 

all along this paper :

C1 Diffa ==^> R -conta ==> G — diffa —L>r-neofra

X  ^
LLa 6 ?• Tanga = T =* LSLa = = ►  C°a

Where, here, Diffa, G-diffa and r-neofra and R — conta stand respec

tively for differentiable, G-differentiable , r-neo-fractal and standard 

R-contactable at a for all of them (C1 means “of class C1”, and C® 

means continuous at a). In the above diagram, every inverse implica

tion is false; we give counter-examples below.

Counter-examples 4.8

In each case (except for 2), we denote /  : R — > R the given counter

example (here a — 0 and /(0) = 0; the “number” i) corresponding to a 

counter-example to the iieth above implication).

1) f(x) = x2 sin ^ (well-known),

2) see 2.12,

2’) f(x) = |x| (see 3.6 and 3.7),

3) f(x) = xsin(log |x|) (see example 4.6 and 4.7),

4) f(x) — a;sin(log | log |x||) if x ^  0 [4].

5) f(x) = |x| (lipschitzian but not differentiable at 0).

6) f(x) = x2 sin ̂  (see section 3 in [5]),
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7) f(x) = xsin^ (same as for 6)),

8) f(x) = #5 (same as for 6)).

Remarks 4.9 We complete the above diagram of implications, adding 

the following diagram (where R-Lhom, R+- Lhom and r-Lfrac stand for 

standard R-Lhomogeneous, R+-Lhomogeneous and r-Lfractal) :

R —Lhom > R+ — Lhom —  > r—Lfrac

R —conto > G —diffo >r—neofr0

The inverse implications are false : refer to 2’) and 3) in 4.8 for the 

horizontal non-implications, and to 3.7 and 4.6 for the vertical ones.

5 Local extrema

In this last section, we present nice generalisations of classical theo

rems about extrema of functions taking their values in R. In particular, 

we give a sufficient condition for having an extremum which only needs 

hypotheses at order 1! In 5.1 and 5.2, E is a valued monoid.

Theorem 5.1 Let f  : (M ,U ) — > (R6,R) be a centred contact able 

function which admits a local minimum at u €. U ; then Kv/ admits a 
global minimum at oj.

Proof: We recall (see 1.8 and 1.11) and that, R& is a revertible E- 

contracting space for the canonical structure, with t*y = v(t)(y — b) + b

(for every t € E and y € R), and t * y = i-1 *y = ^  + b (if t ^  0). If

h =K s/, we have h{x) = lim o ^ ^o  t * f(t*x) = limo#l)(i)-,o +
b, for every x £ M. Since /  admits a local minimum at a;, we have 

f(x) > f(u>) = b on a neighborhood V of lo in U. Fixing x G M, and 
since limt,(i) .̂01 ★ x — u, there exists e > 0 such that, for all t e E, 

0 < v{t) < e t*x  € V. So, when 0 < v(t) < e, we have f(t-kx) > b,

which implies t * f(t*x) = + b > b. Doing v(t) —> 0, we obtain

h(x) > b = h(uj). □
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Corollary 5.2 Let f  : (Ea,U) — > (R/(a),R) a centred H-contactable 

function which admits a local minimum at a € U ; then kv/a admits a 

global minimum at 0.

Proof: It, comes from the fact that, for all x G E, we have kzfa(x) = 

K2/(x + a) - f(a) > 0 =ks/a(0), where KE/  : Ea — > R/(a). □

Remark 5.3 This gives back the well-known result of the differentiable 

case : “ /  admits a local minimum at a = >  a is a critical point of / ” 

since there exists a unique continuous linear function E — > R which 

admits a global minimum at 0 : the null function.

Theorem 5.4 Let f  : (M ,U ) — > (R&,R) a R+-contactable centred 

function. If M is a Daniel space (i.e a metric space in which every 

closed and bounded subset is compact) and if K%f : M  — > R& admits a 

strict global minimum at u>, then f  admits a strict local minimum at u.

Proof: We can suppose M  ^  {a;} and set S — {x € M \ d(x,u) = 1}. 

Then 5 is a non empty compact (if x € M — {u], we have *x e 5). 

Since h =K s/ is continuous, h reaches its inferior bound at xq £ S, so 

that h(x) > h(xo) > b for all x € S'. Consider £ = h(xo) — b > 0. 

Since /  X u h\u, there exists 7] > 0 such that B(u,rj) C U and verifying 

the implication : 0 < d(x,u) < r] = >  |f(x) — h(x)\ < ed(x,u>) for all 

x €. M. Let us fix x € B(uj,rj) — {w} ; it verifies f(x) > h(x) — ed(x,uj). 

If y =  * x- we have y € S, so that h(y) > h(xo) which implies 

h(y) — b — e > h{xo) — b — e = 0. Hence (since h : M  — t Rf, is 

R+-homogeneous, where R+ is a quasi-group) h(x) — sd(x,uj) — 

h(d(x,u)) ★ y) — ed(x,oj) = d(x,co)(h(y) — b) + b — ed(x,uj) — 

d(x,u)(h(y) — b — e) + b > b. Thus, for all x € B(u,rj) — {a;}, we 

have f(x) > h(x) — sd(x,u) >b  = f{u). □

Corollary 5.5 Let f  : (Ea,U ) — > (R/(a),R) a centred G-differentiable 

map (where E is a n.v.s. of finite dimension), such that k+/a > 0 (i.e 

verifying k+/a(:r) > 0 for every x €. E — {a}j. Then, f  admits a strict 

local minimum at a.

Proof: For all x ^  a, we have K+f(x) — f(a)+k+fa(x — a) > f(a).
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Remark 5.6 This theorem has not its equivalent, at order 1, in diffe

rential calculus, since a linear function cannot have a strict minimum. 

It is rather inspired by theorems giving sufficient conditions, at order 2, 
for the existence of extrema.
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