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CAHIERS DE TOPOLOGIE ET Vol L-2 (2009)
GEOMETRIE DIFFERENTIELLE CA TEGORIQUES

THE ROLE OF SYMMETRIES IN CUBICAL SETS AND 
CUBICAL CATEGORIES 

(On weak cubical categories,

by Marco GRANDIS

Abstract. Symmetric weak cubical categories were introduced in [G3, G5], 
as a basis for the study of cubical cospans and higher cobordism. Such 

cubical structures are equipped with an action of the symmetric groups, 

which simplifies the coherence conditions. We give now a deeper study of 

the role of symmetries. While ordinary cubical sets have a tensor product 
which is non symmetric and biclosed, the symmetric ones have a symmetric 

monoidal closed structure (and one internal hom). Similar facts hold for 

cubical categories and the symmetric ones, and should play a relevant role 

in the sequel, the study of cubical limits and adjunctions. Weak double 

categories are a cubical truncation of the present structures.

Résumé. Les catégories cubiques symétriques faibles ont été introduites en 

[G3, 05 ], pour l'étude des cospans cubiques et du cobordism de dimension 

supérieure. Ces structures sont équipées d'une action des groupes symétri
ques qui simplifie les conditions de cohérence. On donne ici une étude 

plus approfondie du rôle des symétries. Les ensembles cubiques ordinaires 

ont un produit tensoriel qui est non symétrique et fermé, à gauche et à 

droite; mais les ensembles cubiques sy m é tr iq u es  ont une structure 

monoïdale fermée sy m é tr iq u e  (et un seul hom interne). Des faits 

semblables se vérifient pour les catégories cubiques ordinaires et 
symétriques; ils devraient jouer un rôle important dans la suite, c'est-à-dire 

l'étude des limites et des adjonctions cubiques. Les catégories doubles 

faibles sont un tronquement cubique des structures considérées ici.

Mathematics Subject Classifications (2000): 18D05, 55U10, 20B30

Key words: weak cubical category, weak double category, cubical set,
symmetries.

Introduction

A weak cubical category [G3-G5] has a cubical structure, with faces and 
degeneracies; moreover, there are weak compositions in countably many directions,
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GRANDIS - SYMMETRIES IN CUBICAL SETS AND CUBICAL CATEGORIES

which we call cubical (or geometric), and one strict composition, in the transversal 

(or structural) direction.

As a basic example, one can think of the weak cubical category o)Cosp(X) of 
cubical cospans in a category with pushouts X. An n-dimensional o b je c t  is a 
functor x: A” X, where A is the 'formal cospan' category

(-1,-1) (0,-1) ^  (1,-1)

(1) -1 ^  0 ^  1 A (-1,0) —> (0,0) ^  (1,0)

(-1, 1) (0, 1) ^  (1, 1) a 2.

An n-dimensional t r a n s v e r s a l  m ap , or s tr u c tu ra l m ap , is a natural 
transformation f: x ^  y: A" ^  X of such functors. Their composition is also 
called transversal, or structural.

The ordinary categories Cospn(X) = Cat(A”, X) form a cubical object in Cat, 
with obvious faces and degeneracies. Moreover, n-dimensional objects (and maps) 
have cubical, or geom etric, composition laws x +i y in each direction i = 1,..., n, 
which are constructed with pushouts; these compositions are consistent with faces 
and degeneracies, but only behave well up to suitable transversal maps, which yield 
invertible comparisons for their associativity, unitarity and interchange.

Actually, as already stressed in [G3], o)Cosp(X) is a sym m etric  weak cubical 
category, when equipped with the obvious action of the symmetric group Sn on 
Cat(A", X); namely, the action of permuting the factors of Â , i.e. the directions of 
n-cubical cospans in X. These symmetries allow one to only consider the faces, 
degeneracies and cubical compositions in a single direction (see 2.2), which greatly  

simplifies the coherence conditions. Notice also that cubical 1-truncation, keeping 
one weak direction and  the strict transversal one, yields the weak double  category 
C osp(X) of ordinary cospans and their transversal maps, studied in [GPl]; here, 
symmetries'disappear', since the groups Sq and Si are trivial.

We begin here a study of the theory of symmetric weak cubical categories, or 
weak sc-categories, with the aim of extending the study of weak double categories 
developed in [GP1-GP4].

The present paper analyses the role of symmetries, beyond the simplification of 
coherence properties. Symmetric cubical sets - where the n-dimensional synrnietric 
group Sn operates on the n-dimensional component, form a sym m etric monoidal
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closed category sCub, while the ordinary ones have a non-symmetric monoidal 
biclosed structure. Even more relevant to the sequel should be the (related) fact that 
ordinary cubical sets have a left and a right path functor (1.6), whose liftings to 
symmetric cubical sets are isomorphic, yielding - essentially - one path functor (2.3); 
the latter will be crucial in defining and studying cubical limits.

In the first two sections, after reviewing the (non symmetric) monoidal biclosed 
structure of ordinary cubical sets [BH2], we study symmetric cubical sets and their 
path functor. Then, Section 3 recalls the definition of a cubical category and of a 
symmetric one, from [G3], and introduces the path functors of these two structures
(3.6). Again, in the symmetric case there is one path functor, which produces one 
internal hom (3.7(c)). The definition of the weak case, introduced in [G3], is only 
sketched here (in 3.5) as it would be too long to completely rewrite it.

The next two sections are devoted to examples: after recalling the weak sc- 
categories <«§p(X) and o)Cosp(X) of cubical (co)spans, also introduced in [G3], 
we construct the strict sc-category of cubical relations wRel (4.2,4.3). Then, we 
reconsider the passage from o)Sp(Set) to toRel, abstracting the notion of a 
quotient of weak sc-categories modulo transversal maps o f reduction, a kind of 
rewriting procedure with normal forms (Section 5). The dual procedure allows us to 
construct a strict sc-category wCat of (small) categories and cubical profunctors
(5.7), from a quotient of the weak sc-category (oCosp(Emb) of cospans of full 
embeddings of categories.

We end in Section 6 by defining the symmetric tensor product of symmetric 
cubical sets (and categories); after the internal hom of Section 3, this completes the 
symmetric monoidal closed structure; it also yields a cylinder functor, by tensoring 
with an obvious 'standard interval'. However, the computation of the tensor product 
(and of the cyhnder) is complicated and - likely - not really needed.

References to the rich literature on higher categories can be found in two recent 
books, by T. Leinster [Le] and E. Cheng - A. Lauda [CL]; but this literature is 
mostly developed in the globular geometry, rather than the cubical one. Strict cubical 
categories with connections (and without transversal maps) have been studied in 
[ABS], and proved to be equivalent to (globular) w-categories.

The author is pleased to acknowledge helpful discussion with J. Baez and R. 
Paré.

Size aspects (for categories of cubical categories, for instance) can be easily 
settled working with a suitable hierarchy of universes.
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1. Cubical sets and internal horns

While reviewing the {non symmetric) monoidal biclosed stracture of the category 
Cub of ordinary cubical sets [BH2], we want to stress the role of the 'transposer' S, 
which reverses the order of faces; in particular, we are interested in the external 
symmetry s: S(X®Y) -»• (SY)®(SX), which somewhat surrogates here the 
'internal' symmetry of a symmetric tensor product. The binary index a takes values 
0,1, written + in superscripts.

1.1. Cubical sets. A cubical set X = ((Xn), (3f), (ej)), in the usual sense [Kl, K2, 
BH1,BH2], has/aces (3“) and degeneracies (ej)

(1) df: X„ ^  X„_i :ei ( i= l,...,n ; a = ±), 

satisfying the cubical relations :

(2) (j^iX ej.ei = ei+i.ej Q̂ i),
af.ej = (j< i), or id (j = i), or Sj-vdf (j>0-

Elements of Xn are called n-cubes\ vertices and edges for n = 0 or 1, 
respectively. Every n-cube x E X„ has 2” vertices: for n = 3 and a,

P ,  Y =  ± .

A morphism f = (fn): X Y is a sequence of mappings f„: X„ Y„ which 
commute with faces and degeneracies.

Small cubical sets and their morphisms form a category Cub, which has all 
limits and colimits and is cartesian closed. In fact, it is the presheaf category of 
functors X: Set, where I is the subcategory of Set consisting of the
elementary cubes 2" = { 0 ,1}”, together with the maps {0, 1}"™ ^  {0, 1}" which 
delete some coordinates and insert some O's and I's, without modifying the order of 
the remaining coordinates [GM].

The terminal object T is freely generated by one vertex * and will also be 
written {*}; but notice that each of its components is a singleton. The initial object 
is empty, i.e., all its components are; the other cubical sets have a non-empty 
component in each degree.

The category Cub has two (covariant) involutive endofunctors, which we shall 
call reversor and transposer

(3) R: Cub ^  Cub, RX = X^P = ((Xn), (ei)) {reversor),

(4) S: Cub -  Cub, SX = ((Xn), (a«^i_i), (en+i_i)) {transposer).

- 1 0 5 -

»

J
d1

iß3
J'
)ad -1IH

d\ ■1

op:]

x)

(àto
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The first reverses the 1-dimensional direction; the second can be thought to 
reverse 'the 2-dimensional one', in a sense which will appear below (see 1.6.5). If x 
E Xn, the corresponding element in (RX)n =  X„ will often be written as x°p, so  

that a7(x®P) = (atx)op.

A cubical set X is said to be reversive if RX = X and permutative if SX = X.

1.2. Tensor product. The category Cub has a monoidal structure [Kl, BH2]

(1 ) (X ® Y )„  =  (2 p ^ = n X p x Y q )/~ „ ,

where ~ n is the equivalence relation generated by identifying (er+ix, y) with 
(x,eiy), for all (x,y)GXpxYq (where p+q = n-l).

Writing x®y the equivalence class of (x, y), faces and degeneracies are defined 
as follows, when x is of degree p and y of degree q

(afx)®y, if 1 s i s p,

x®(0f_py), if p < is n ,

(ejx)®y, if 1 s i s p+1,

x®(ej_py), if p+1 s i s n+1.

Note that ep+i(x®y) = (ep+ix)®y = x®(eiy) is well defined precisely because of 
the previous equivalence relation.

The identity of the tensor product is the terminal object T = {*} (1.1), obvi
ously reversive and permutative.

(2) 0f(x®y) =

(3) ei(x®y) =

13. The external symmetry. The tensor product is not symmetric, but is related to 
reversor and transposer ( 1.1.3,1.1.4) as follows

(1) R(X®Y) = RX®RY,

(2) s(X,Y): S(X®Y) s  (SY)®(SX), x®y ^  y®x.

(R is a strict isomorphism of the monoidal structure, while the pair (S, s) is an 
anti-isomorphism.) Therefore, reversive objects are stable under tensor product while 
permutative objects are stable under tensor powers: if SX s  X, then S(X®") s  
(SX)®" S X®".

Notice that the symmetry s: AxB BxA of the cartesian product of sets (i.e.,
0-truncated cubical sets) becomes, here, the external symmetry (2), which is an 
isomorphism of functors Cub x Cub —► Cub. Its inverse is S(s(SY, SX)).
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1.4. The standard interval. The {elementary) directed interval, or standard 
interval, \'i = 2 is the cubical set freely generated by a 1-cube, u

(1) 0 - ^ 1  a7(u) = 0, d|(u) = 1.

This cubical set is reversive and permutative. It is the representable presheaf y(2) 
= I ( - , 2): I°P Set.

The directed n-cube is its n-th tensor power ti®" = ti®...©ti (for n a 0), 
freely generated by its n-cube u®", still reversive and permutative. It is the 
representable presheaf y(2") = I ( -  , 2"): I°p Set. The directed square = 
ti®ri can be represented as follows, showing the generator u®u and its faces

u®0

00  > 10 1

(2) o®u u®u 10U 2

01   ̂ 11
U®1

(The face 3p(u®u) = 0®u is orthogonal to direction 1, a criterion which works 
in every dimension.) By the Yoneda Lemma, Cub(ti®", X) = Xn.

1.5. Left and right cylinder functors. Let us start from the standard interval fi, 
and work with the monoidal structure recalled above, with unit {*} and reversor R. 
Recall that u denotes the 1-dimensional generator of ti, and u°p is the 
corresponding edge of (I I)-

The cubical set ti has a structure consisting of two faces (3“), a degeneracy
(e) and a reflection or external reversion (r):

(1) a«(0) = a  (a = 0 ,1 ) ,  

e: ii ^  {*}, e(t) = *, e(u) = ei(*),

r: ti ti°P, r(0) = 1°P, r(l) = 0°P, r(u) = u°P.

Since the tensor product is not symmetric, the elementary directed interval yields 
& left (elementary) cylinder ti®X mA di right cylinder X®ti. These functors are 
not isomorphic, but each of them determines the other, using the transposer S (1.1) 
and the property S(ti) = ti

(2) I: Cub ^  Cub, IX = ti®X,

SIS: Cub — Cub, SIS(X) = S(ti ® SX) = X ® ti.
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The last equality is actually the canonical isomorphism s(fi, SX) (1.3.2); but we 
will realise SIS as described above.

The left cylinder, IX = ti®X, inherits from the structure of ti (1.5.1) two 
faces, a degeneracy and a reflection, as follows

(3) d“ = a«®X: X ^  IX, a«(x) = a®x (a = 0 ,1),

e = e®X: IX X, e(u®x) = ei(*)®x = *®ei(x) = ej(x),

r = t®RX: IRX RIX,

r(a®x°P) = ((l-a)® x)°P, r(u®x°P) = (u®x)°P (a = 0,1).

1.6. Left and right path functors. The category Cub has a left path functor P, 
right adjoint to the left cylinder functor IX = ti®X.

The functor P shifts down all components discarding the faces and 
degeneracies of index 1; the latter are then used to build three natural 
transformations, the faces and degeneracy of P

(1) P: Cub -  Cub, PY = ((Y„+i), (df^,), (ei+i)),

3« = a«:PY ^  Y, e = ei; Y ^  PY.

The transposer S (1.1.4) produces the n'gAipaiA fiinctor SPS, right adjoint to 
the right cylinder SIS(X) = X®ti. Explicitly, SPS shifts down all components and 
discards the faces and degeneracies of highest index (used again to build the 
corresponding three natural transformations)

(2) SPS: Cub -  Cub, SPS(Y) = ((Y„+i), Of), (ej)), 

d«: SPS(Y) -  Y, 3“ = Y„+, -  Y„)„^, 

e: Y -  SPS(Y), e = (en+,: Y„ -  Y„^i)„^.

An (elementary or immediate) left homotopy f: f“ l  f ”: X Y is defined as 
a map f: X PY with d°i = P . This leads immediately to a simple expression of 
f as a family of mappings

(3) fn: Xn —*■ Yn+1, ^f+1 “  n̂-1 î+l fn-1 = fn

a«fn = f« (a = ±; i= l,...,n ) .

Similarly, an (elementary) right homotopy f: f~ —*• r  f^: X ^  Y is a map f: 
X SPS(Y) with faces d°i = f“. This amounts to a family (f„) such that

(4) fn’ Xn Yn+l, fn ~  fn-1 fn-1 ~  fn

^n+1 ^  (a = ±; i= l ,. . . ,  n).
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The transposer can be viewed as an isomorphism S: CubL ^  CubR between 
the left and the right structure. One can define an external transposition s 
(replacing, from a formal point of view, the transposition s: P  ̂ of topological 
spaces, which permutes the two variables); it is actually an identity PP' = P'P

(5) s: PSPS -  SPSP, Sn = idYn+2,

since both functors shift down all components of two degrees, discarding the faces 
and degeneracies of lowest and highest index.

1.7. Internal horns. The category Cub has left and right internal homs [BH2].

The right internal hom CUB(A, Y) can be built with the left cocylinder functor 
P and its natural transformations (which give a cubical object P’Y in Cub)

(1) - 0 A  — CUB(A,-), CUBn(A,Y) = Cub(A,P^Y).

The natural bijection

(2) (p(X,Y): Cub(X0A,Y) — Cub(X, CUB(A, Y)),

is constructed as follows, on an arbitrary morphism f = (fn): X 0  A ^  Y. Its n- 
component fn decomposes into a family of mappings

(3) fpq! Xp X Aq —► Yp^ ,̂

consistent with the equivalence relations ~n (1.2.1). By the exponential law in Set, 
these amount to mappings gpq: Xp —► Set(Aq, Yp+q). At fixed p, we get a mapping

(4) gp = ( gpq): Xp -  Cub(A, PPY) = CUBp(A, Y) C 11̂  Set(Aq, Yp^), 

whose family forms a morphism of cubical sets g = (gp): X — CUB(A, Y).

1.8. Higher path functors. We have seen that the two path functors P, P': Cub 
Cub commute (1.6.5). Therefore, every composition of n occurrences of them can 
be written as

(1) P? = P"-'.F ' = P"-‘.SFS: Cub Cub (i = 0,...,n).

P”(X) has p-component Xp+„; its faces and degeneracies Xp+„ ^  Xp+„-i 
are part of those of X, corresponding to the directions n-i+1,..., n-i+p 
(renumbered as l,...,p). In particular, Pq = P and P} = F.

There are generalised faces linking higher path functors

(2) F.d«.pj.SP^S: F+j+^SP^S PH.SP*^S,

F.SPja«P*̂ S: F.SPj+^+^S ^  PH.SP^S,

- 1 0 9 -

P2
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and similar generalised degeneracies.

2. Symmetric cubical sets and their closed structure

We consider now symmetric cubical sets, equipped with transpositions. In the 
singular cubical set of a topological space, this amounts to transposing variables.

Lifting the previous left or right path functors (1.6) to the symmetric case, we get 
isomorphic functors, and essentially one path functor. The latter produces one 
internal hom, and a symmetric monoidal closed structure. The real points of interest 
are the path functor and the internal hom, which in the next section will allow us to 
define the cubical transformations of sc-fiinctors.

On the other hand, the symmetric tensor product (of symmetric cubical sets) and 
the corresponding cylinder functor are complicated and - perhaps - not really 
needed; they will be sketched in Section 6.

2.1. Symmetric cubical sets. As in [G3], a symmetric cubical set, or sc-set, is a 
cubical set which is further equipped with mappings, called transpositions

(1) S i : X n - X n  ( i= l , . . . ,n - l ;  n^2).

These have to satisfy the Moore relations

(2) Si.Si = 1, Si.Sj.Si =  Sj.Si.Sj ( i= j - l ) ,  Si.Sj =  Sj.Si ( i< j - l ) ,  

and the following equations of coherence with faces and degeneracies:

j< i j = i j = i+l j > i+1

(3) Ô̂ .Si = si-i.â a? si.a?.

Si.Cj = ej.Si_i 6i+ l Ci ej.Sj.

Assigning the mappings (1) under conditions (2) amounts to letting the symmet
ric group Sn operate on Xn. Indeed, it is well known that Sn is generated, under 
the Moore relations, by the 'ordinary' transpositions si,..., Sn_i, where Si, acting on 
the set {1,..., n}, exchanges i with i+1 (see Coxeter-Moser [CM], 6.2; or 
Johnson [Jo], Section 5, Thm. 3).

A morphism f = (fn): X ^  Y is a sequence of mappings fn: Xn Yn which 
commute with faces, degeneracies and transpositions. The category sCub, of small 
sc-sets and their morphisms, is again a category of presheaves X: ► Set, for 
the symmetric cubical site Is- The latter can be defined as the subcategory of Set

- 1 1 0 -
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consisting of the elementary cubes 2" = {0, 1}" together with the maps 2^ 2" 
which delete some coordinates, permute the remaining ones and insert some O's and 
I's. It is a subcategory of the extended cubical site K of [GM], which also contains 
the 'connections' (higher degeneracies).

The reversor and transposer of Cub ( 1.1.3,1.1.4) have obvious liftings

(4) R: sCub sCub, RX = X^P = ((Xn), (ei), (Si)) (reversor),

(5) S: sCub sCub, SX = ((Xn), (^„+i-i)’ (^n+i-i), (Sn+i-i)) {transposer).

But here the transpositions make S isomorphic to the identity functor, and not 
essential (as we will see in 2.6).

2.2. Reduced presentations of symmetric cubical sets. In a symmetric cubical 
set, the presence of transpositions makes all faces and degeneracies determined by 
the 1-directed ones, a]", a | and ei. In fact, from = af.Si and ei+i = Si.ei, we 
deduce that:

(1) = a^.s|, ei = Si.ei (i = 2,..., n; a = ±), 

where we are using the inverse'permutations' Si and s\

( 2 )  Sj =  S i_ i ......... s i ,  Sj =  s j ..........Si_j.

This leads to a more economical presentation of our structure, as proved in [G5]. 
Namely, an sc-set can be equivalently defined as a system

(3) X = ((Xn),a7,a|,ei,(si)),

under the Moore relations for transpositions (2.1.2) and the axioms:

(4) af.af = ei-ei = si.ei.ei, af.ei = id, 

Si.a“ = ôf.Si+i, ei.Si = Si+i-ei-

In other words, X can be presented as a system ((X„), a ,̂ a |, ei) where each 
Xn is an Sn-set (equipped with an action of the symmetric group Sn) and the 
axioms (4) are satisfied.

2.3. The symmetric path functor. We define now the path functor P of sc-sets, 
by lifting the left path functor of ordinary cubical sets (1.6): P (acting on an sc-set 
in the complete presentation, 2.1) shifts down all components, discarding the faces, 
degeneracy and transpositions of index 1

(1) P: sCub ^  sCub,

-111 -
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GRANDIS - SYMMETRIES IN CUBICAL SETS AND CUBICAL CATEGORIES

PX = ((X„+i), (ei+i), (Si+i)), (Pf)„ = f„+i.

Again, the discarded faces and degeneracy are used to build three natural 
transformations, the faces and degeneracy of P (while the discarded sj will give 
the transposition of P ,̂ cf. 2.4)

(2) 5“: PX -  X, a« = 0«: Xn+, -  X„)„^,

e : X - P X ,  e = (ei: X„ -  Xn+i)„^.

Also here the transposer S (2.1.5) yields the functor P '= SPS,
which shifts down all components discarding the mappings o f highest index. But S 
^  id and SPS s  P (as we will see in 2.6), so that one path fiinctor is sufficient.

2.4. The transposition of the path functor. The 'second order' path functor is 
computed as:

(1) P2; sCub ^  sCub,

p2X  =  ((X„^2), (ei+2). (Si+2)), (P2f)„ = fn+2.

It has two pairs of faces Pd“, d“P: P  ̂ —► P and two degeneracies Pe, eP: 
p ^ p 2  ( ¡ = 1 , 2 )

(2) PO«X) = Of: X„+2 -  X„+i)„^, a«(PX) = O^: X„+2 X„+i)„^, 

P(eX) = (ej: Xn+l “ *■ Xn+2)na0> ®(PX) = (e2: Xn+l Xn+2)naO-

Because of these formulas, it would be appropriate to label the faces Pd® as df, 
and the faces as Similarly for degeneracies. (But such labels are not 
really necessary here and will be avoided. In various papers on homotopy theory, we 
have made the opposite choice, guided by the path functor of topological spaces.)

The important fact is that we have a transposition for the path functor P

(3) s: P^ P^, X si.x.

First, s: P^X P^X is indeed a morphism of sc-sets, as it follows immediately 
from the symmetric cubical relations (2.1)

(4)

X„+2

î+2 î+2

Xn

Xn+2

a?i+2 ®i+2

SI
Xn

Xn+2

Si+2

Xn+2
SI

Xn+2

î+2

Xn+2
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Second, always because of the symmetric cubical relations (more precisely, of 
some of them, not applied above), the involution s interchanges the 1-directed faces 
(or degeneracies) of with the 2-directed ones, independently of how we choose 
to label them

(5) d“P.s = ?a“. s.eP = Pe.

2.5. Internal homs. We define the intemal-hom functor as

(1) sCUB: sCub°PxsCub — sCub, sCUBn(A,Y) = sCub(A,P"Y). 

Notice that

(2) sCUB({*},Y) = Y, sCUB(ti,Y) = PY,

where ti = y(2) is the (representable) symmetric cubical set freely generated by 
one 1-cube u. This is the same as the cubical set fi of Section 1, equipped with 
the unique symmetric structure which permutes its (degenerate) cubes of degree a 2.

2.6. The right path functor. This point is not technically needed for the sequel, but 
makes clear how the previous structure of ordinary cubical sets is simplified by the 
addition of symmetries.

(a) Firstly, the transposer S is (here) isomorphic to the identity endofunctor. 

Consider the involutive permutation On E  Sn

(1 ) On =  (SiS2...Sn_l) ... (SiS2S3)(SiS2)Sl,

which, acting on {1,..., n}, reverses all indices. It is easy to verify that, for i < n

( 2 )  d “ .On =  O n-1 -5“  C n.O n-i =  O n .e i ,  S i .a „  =  O n .S n+ i-i.

We have thus a natural isomorphism (according to the reduced presentation of 
symmetric cubical sets which was given in 2.2):

(3) aX:X — SX, Qn.X,

On

x„
d

Xn-l
On-1

Xn

X n - l

X„

X„

On

On

Xn

4- '>n+l-i

Xn

- 1 1 3 -
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(b) Secondly, and as a consequence, there is a natural isomorphism c: P SPS 
between the left and the right path functors, which is computed with the main cyclic 
permutation Vn = Sn...... Si E  Sn+i

(4) Y “  oPS.Pa: P —► SPS, Yn̂ Xn+I Xn+i,

X ^  (aPSX)n.(P(aX))n(x) = On.On+i.X = Sn- ... Si.X = Yn-X (x E Xn+i). 

Its inverse is computed with the inverse cyclic permutation Yn = .......Sn E S„+i

(5) y': SPS -  P, y;: Xn+i -  X„^i, x -  ŷ x.

(c) Finally, combining these isomorphisms with the external transposition of 1.6.5:

(6) s: PSPS ^  SPSP, Sn = idYn+2,

we obtain again the transposition of the path functor s: P  ̂ —̂ P  ̂ (2.4.3)

(7) s = Y'P.id.PY: P  ̂ ^  PSPS SPSP ^  P^,

X (S2 . . .S n + l ) ( S n + l . . .  S i ) x  =  S iX .

3. Cubical categories and the symmetric case

First, we recall the main definitions on cubical categories, introduced in [G3]; we 
refer to this paper for a complete formulation of the weak structures. Then we 
introduce the path functor of cubical categories and of symmetric cubical categories 
(strict or weak), which will be a crucial tool for further developments.

3.1. Reduced cubical categories. We begin by considering a cubical set equipped 
with compositions in all directions; these are assumed to be strictly categorical (i.e., 
strictly associative and unital) and to satisfy the interchange property.

(cub.l) A reduced cubical category A is, first of all, a cubical set (1.1):

(1) A = ((An),Of),(ei)).

(cub.2) Moreover, for 1 ^ i  ̂n, the {-concatenation x +i y (or i-composition) of 
twon-cubes x, y is defined when the latter a r e i . e .  ^|(x) = 0^(y); the 
following 'geometrical’ interactions with faces and degeneracies are required:

(2 ) dT(x +i y) = dT(xl at(x +i y) = at(y),

a^(x) +i_i a^(y), if j < i, 

a^(x)+i a^(y), if j> i,
a ^ ( x  + i y )  =

- 1 1 4 -
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(3) ej(x+iy) =
ej(x) +i+i ej(y), 

Cj(x) +i ej(y),

if

(cub.3) For 1 ^ i ^ n, we have a category A? = (An_i, A„, at, Ci, +i), where 
faces give domains and codomains, and degeneracy yields the identities. In other 
words, we have the following equations for i-consecutive n-cubes x, y, z:

(4) (x +i y) +i z = X +i (y +i z), eidTx +i x = x = x +i eidtx.

(cub.4) For 1  ̂i < j  ̂n, and n-cubes x, y, z, u, we have

(5) (x+i y)+j (z+i u) = (x 4-j z)+i (y+j u) 

whenever these compositions make sense:

{middle-four interchange).

(6) at(x) = â7(y), dt(z) = d7(u). X y •

»

at(x) = Ô7(z), dt(y) = c)7(u), z U

A cubical functor F: A B between reduced cubical categories is a morphism 
of cubical sets which preserves all composition laws.

3.2. Commutative cubes. Let X be an ordinary category. As a simple example of 
the previous structure, we recall the construction of the reduced cubical category 
o)Cub(X) of commutative cubical diagrams in X.

An n-cube can be viewed as a functor x: i" ^  X, where i = 2 = {0 1} is 
the category corresponding to the ordinal two. This category has the basic structure 
of a formal interval (or reflexive cograph), with respect to the cartesian product in 
Cat: in other words, it comes equipped with two (obvious) faces d^, defined on the 
singleton category 1 = {*} = î  and a (uniquely determined) degeneracy e

a"
(1) {*} a«(*) = a (a = 0,1) .

These maps (trivially) satisfy the equations e6® = id. A 1-cube x: i X 
amounts to an arrow x: xq xi and has faces a“(x) = x.a® = Xq, while the 
degeneracy, or identity, of an object x is e(x) = x.e: i X.

- 1 1 5 -
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(1 s i s n ) ,

(tj

Then, as usual in abstract homotopy theory based on a formal interval (with 
respect to the cartesian product), the functors

(2) (-)i> = X -  X i«-*: Cat ^  C at 

produce the higher faces and degeneracies of the interval

(3) af(ti,...,t„_i) = (ti,...,a,...,t„_i), 

ej: i” “ *■ i" ej(ti,..., tn) = (ti,...,ti,...,tn)

(Note that these functors between order-categories are determined by their action 
on objects. The dimension n is generally omitted.)

By a contravariant action, we get the faces and degeneracies of the cubical set 
coCub(X), denoted by the same symbols

(4) af(x) = x.af, ei(x) = x.ei (i = 1,..., n; a = ±).

Concatenation of 1-cubes is the ordinary composition in X. But it will be useful 
to give a formal construction, based on the concatenation pushout ¡2 = 3 (in Cat), 
equipped with a concatenation map c

(5)

»+
{*} i Ì2 = 3 = {0 ^  1 ^  

c: i Ì2,

c(0) = 0, c(l) = 2.

2},

And indeed, given two consecutive 1-cubes x, y: i X, their (ordinary) 
composite z = yx can be expressed with the functor [x, y]: Ì2 X determined by 
the pushout, and the map c

(6) z = [x, y].c: i ^  \2 0 |x  = d- ŷ).

Now, acting on the concatenation pushout and the concatenation map c, the 
functors (-)? produce the n-dimensional i-concatenation pushout and the n- 
dimensional i-concatenation map Cii F  i f

(7)

:n - l

1+

4

i"2* =  i * - '  X Ì2  X i "

Ci X C X *2-

- 1 1 6 -
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c"*"
¡2

i" -i
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Given two i-consecutive n-cubes x, y: i" — X (with djx = ^jy), their i- 
concatenation z = \  +■, y is computed using the functor [x, y]: ¡2' X 
determined by the pushout in X

(8) z = [X, y].Ci: i" -  i“  -  X.

A functor F; X Y can obviously be extended to a cubical functor F*, which 
coincides with F in degree 0 (identifying X with Cubo(X))

(9) F*; (oCub(X) ^  o)Cub(Y), F*(x: i" — X) = F-x: i" -  Y.

Our formal interval i, in Cat, has no reversion (a peculiar fact of directed 
algebraic topology, see [Gl, G2] and references therein). But it has transpositions

(10) s: ^  ¡2, s(ti, ii) = f e  ti),

Si = X s X i" F  (i=  l,...,n -l).

They operate, contravariantly, on every category Cubn(X) = Cat(i”, X)

(11) Si(x) = x.Sii X,

generating an action of the whole symmetric group Sn-

3.3. Cubical categories. The reduced cubical category o)Cub(X) has a natural 
extension o)Cub(X) (notice the different notation), where we introduce transversal 
maps f: X ^  x' of n-cubes (also called n-maps, or (n-\-l)-cells, or structural 
maps) as natural transformations f: x x': i" X, so that the n-th component 
Cubn(X) = Cat(i", X) is now a category. The new faces, degeneracy and 
composition are written

(1) a^f = X, a^f = x', eox = id(x), co(f, g) = gf: x x", 

where gf is the ordinary (vertical) composition of natural transformations.

The new structure we are interested in, a cubical category A [G3], is a category 
object within reduced cubical categories (and their cubical functors)

^0“  «=0
(2) ^  ^  A(2) (a  = ±),

eo

or, equivalently, a reduced cubical category within categories

(3) A = ((tVnA), (df), (ei), (+j)), tv„A = (A„, Mn, d^, Cq, cq).

- 1 1 7 -
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Explicitly, this statement means that A is a reduced cubical category where each 
component tVnA is a category (namely, the category of n-cubes of A and their 
transversal maps, called the transverse category o f A o f degree n), while the 
cubical faces, degeneracies and concatenations are functors

(4) af : tVnA tVn_i A : ei, +il tVnA Xi tVnA tVnA.

(The pullback tVnA xi tVnA is the category of pairs of i-consecutive n-cubes.)

A cubical functor F: A ^  B between cubical categories strictly preserves the 
whole structure. A reduced cubical category amounts to a cubical category all of 
whose n-maps are identities.

A transversal (or structural) transformation h: F -> G: A B between 
cubical functors assigns, to every n-cube x of A, a transversal map in B

(5) h(x): F(x) -  G(x),

consistently with faces, degeneracies, concatenations, and satisfying the naturality 
condition

(nat) hy^Ff = Gf«hx, (for every n-map f: x y in A).

In a cubical category, as well as in all the weaker cases considered below, a 
transversal n-map f: x ^  x' is said to be special if its 2" vertices are identities

(6) a“f: a°x a"x' a« = a«« a«2 ... a«« («i = ±). 

In degree 0, this just means an identity.

Recalling that a k-map between k-cubes is viewed as a fA:+7 )-dimensional cell, an 
n-truncated cubical category is called an (n+l)-cubical category. For instance 
2Cub^(X) = tr2Cub*(X) is a 3-cubical categories; and, indeed, its 2-maps are 
commutative 3-dimensional cubes.

Thus, a 1-cubical category is a category, a 2-cubical category amounts to a (strict) 
double category, and a 3-cubical category amounts to a (strict) triple category of a 
particular kind, with:

- objects (of one type);

- arrows in directions 0,1 and 2, where the last two types coincide',

- 2-dimensional cells in directions 01,02,12, where the first two types coincide',

- and 3-dimensional cells (of one type).

3.4. Symmetric cubical categories. A symmetric cubical category, or sc-category

- 1 1 8 -
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(1) A  = ( ( t V n A ) , O f ) , ( e i ) , ( + i ) , ( S i ) ) ,

is a cubical category (3.3) equipped with cubical functors si: tVnA ^  tVnA (1 = 1,..., 
n-1) called transpositions, which make it a symmetric cubical set. Furthermore, 
concatenations and transpositions must be consistent, in the following sense

(2) S i_ i(x  +i y) =  S i_i(x) + i_ i S i_ i(y ) ,  Si(x +i y )  =  s i(x )  + i+i Si(y),

Sj(x +i y) = Sj(x) +i Sj(y) i).

As for symmetric cubical sets (see 2.2), all faces, degeneracies and concatena
tions are now determined by the 1-directed ones (6p ei, +i), together with trans
positions.

o)C ub(X) is a symmetric cubical category, with transpositions defined as above 
(3.2.11). The involutive case, further equipped with reversions under axioms which 
can be easily deduced from [GM], is also of interest, e.g. for higher relations and 
higher spans or cospans; however, we will not go here into such details.

A symmetric cubical functor, or sc-functor, is a cubical functor which also 
preserves transpositions. A symmetric transversal (or structural) transformation h: 
F G: A B between sc-functors is defined as above (3.3), by further requiring 
that the transversal maps h(x): F(x) G(x) commute with all transpositions.

3.5. Symmetric weak cubical categories, (a) First, a reduced symmetric pre- 
cubical category

(1) A = ((An), Of), (eO, (Si), (+ i)),

is a symmetric cubical set with compositions, satisfying the consistency axioms 
(cub. 1-2) of 3.1, where transpositions and compositions agree (in the sense of 
3.4.2). We are not (yet) assuming that i-compositions behave in a categorical way or 
satisfy interchange, in any sense, even weak; and there are no transversal maps.

(This notion has been introduced in [G3], 3.4, under the name of 'symmetric pre- 
cubical category'; but here this term will be used for the stronger notion below, 
which was also introduced in [G3], 4.1, without a specific name.)

(b) Next, a symmetric pre-cubical category will be a category object A within the 
category of reduced symmetric pre-cubical categories and their (structure- 
preserving) morphisms

- 1 1 9 -
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(2)
Co

A<2)
eo

We have thus;

(a = ±).

(wcub.l) A reduced symmetric pre-cubical category Â °̂  = ((A„), (ôf), (Cj), (Si), 
(+i)), whose entries are called n-cubes, or n-dimensional objects of A.

(wcub.2) A reduced symmetric pre-cubical category A '̂  ̂= ((Mn), (d°), (ej), (si), 
(+i)), whose entries are called n-maps, or (n+1 )-cells, of A.

(wcub.3) Morphisms Ôq (0-faces) aad eo (0-degeneracy), v/iüi dQ.eo = id.

(wcub.4) A composition law co which assigns to two 0-consecutive n-maps f: 
X x', h: x' —>■ x" (of the same dimension), an n-map hf; x —► x" (also written 
h.f). This composition law is (strictly) categorical, and forms a category tv„A = 
(A„,Mn, d^, eo, Co), for every n a 0. It is also consistent with the symmetric pre- 
cubical structure, in the following sense

(3) âf(hf) = Ofh).Off), ei(hf) = (eih)(eif), Si(hf) = (sih)(sif),

dyf âih

- f  - h  X

(h+ ik).(f+ ig ) = hf+ikg.

g atk

(c) Finally, a symmetric weak cubical category A [G3, 4.2] is a synnunetric pre- 
cubical category, as defined above in (b), which is further equipped with assigned 
invertible special transversal maps (see 3.3.6). The latter play the role of 
comparisons for units, associativity (in direction 1) and cubical interchange (in 
direction 1,2), the other comparisons being generated by transpositions.

Essentially, we have the following additional structure and conditions:

(wcub.5) For every n-cube x (n > 0), we have an invertible special n-map Xix, 
natural on n-maps

(4) Xix: (Qidjx) +1 X {left-unit 1-comparison).
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(wcub.6) For every n-cube x (n > 0), we have an invertible special n-map pix, 
natural on n-maps

(5) pix: X ^  X +1 (eidjX), (right-unit 1-comparison).

(wcub.7) For every three n-cubes x, y, z, which are consecutive in direction 1, we 
have an invertible special n-map ki(x, y, z), natural on n-maps

(6) Ki(x,  y, z): x +i (y +i z) (x +i y) + i  z {associativity 1-comparison).

(wcub.8) Given four n-cubes x, y, z, u making the following concatenations 
legitimate, we have an invertible n-map xi(x, y, z, u), which is natural on n-maps

(7) xi(x, y, z, u): (x +1 y) +2 (z +1 u) (x +2 z) +1 (y +2 u)

{interchange 1-comparison).

(wcub.9) Finally, these comparisons are coherent {coherence axiom).

The complete axioms (wcub.5-9), written in [G3], 4.2-4.3, give conditions on the 
cubical faces of these comparisons and an explicit list of coherence conditions.

Truncation works as described at the end of 3.3. Since the symmetric groups So 
and Si are trivial, a 1-truncated symmetric weak cubical category has no trans
positions and is the same as a weak double category.

3.6. Path functors of cubical categories. We will write cbCat the 2-category of 
(small) cubical categories, cubical functors and their transversal transformations; we 
will write scCat the symmetric analogue.

Cubical categories have a left and a right path 2-functor, which are obvious 
liftings of the ones of cubical sets

(1) P: cbCat cbCat, P' = SPS: cbCat — cbCat.

In every degree, P discards faces, degeneracies and concatenations in direction 1 
while P' discards the ones in the last direction. Again, P and P' are linked by the 
transposer S: cbCat cbCat, which in every degree reverses the order of faces, 
degeneracies and concatenations.

Also here, P and P' have isomorphic liftings to the symmetric case (where S 
^  id), and we will only use the path 2-functor which discards direction 1, written

(2) P: scCat —► scCat.

The symmetric weak case is similar, and has a path 2-functor

(3) P: wscCat ^  wscCat,

-121 -
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for the 2-category of weak sc-categories, their (strict) sc-functors and their 
transversal transformations.

For cbCat, scCat and wscCat, we always have the relation

(4) tVnoP = tVn+1.

3.7. Exponentials, (a) First, for a small ordinary category X and a symmetric pre- 
cubical category A, we have the symmetric pre-cubical category o f level functors 
and their natural transformations

(1) A* = Lv(X,A), tv„(Lv(X,A) = Cat(X,tVnA).

An n-cube is an ordinary functor F: X ^  tVnA, and will also be called an n- 
level functor with values in A; an n-map is a natural transformation f: F —► G: 
X tv„A. Their faces, degeneracies, transpositions and concatenations are obtain
ed by post-composition with the structural functors of A (3.3, 3.4)

(2) df: tVnA ^  tVn_iA :ei,

Sjl tVnA tV„A, -l-i: tV„A X[ tVnA ^  tVnA.

(b) If A is a weak sc-category, also A^ is, with comparisons obtained from the 
ones of A.

(c) Now, let X be a small weak sc-category and A a weak sc-category. We define 
the weak sc-category of higher sc-functors from  X to A and their transversal (or 
structural) transformations

(3) A^ = Wsc(X, A).

An n-cube is an sc-functor F: X ^  P*^A, an n-map is a transversal 
transformation of such functors. Faces, degeneracies, transpositions are obtained by 
post-composition with the structure of the path functor P of weak sc-categories 
(3.6.3)

(4) a f : P̂ ’A ^  P«-iA :ei, Sii P"A P^A.

Similarly, one obtains concatenations and the comparisons of the weak structure 
of A^.

If X is the free weak sc-category on a small category X, we obtain the 'same' 
structure A^ considered above, in (b).

- 1 2 2 -
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(d) Cubical transformations. The cubical geometry allows us to view these n-cubes 
as higher homotopies. Thus, a 1-cube F: X —>• PA can be viewed as a cubical (or 
geometric) transformation of sc-functors

(5) F: F^ F^: X ^  A, F“ = 0«F,

and more generally an n-cube F; X —> P“A is an n-dimensional cubical 
transformation, with 2n faces ^“F.

Notice that in the non-symmetric case, the presence of two non-isomorphic path 
functors makes things much more complicated. We would have left and right cubical 
transformations

(6) X ^  PA, X ^  P'A,

and, in higher degree, we should replace P" with n-ary compositions P" = P"-'.P" 
( 1.8.1).

3.8. T ransversal invariance. Extending a property of double categories 
(introduced in [GPl], 2.4, under the name of horizontal invariance, and charac
terised in [GP2], 1.5, we say that the symmetric pre-cubical category A is 
transversally invariant if, for every n-cube x and every pair of transversal (n-1)- 
isomorphisms P ; ô“x —<■ y“ (a = ±), there exist some transversal n-isomorphism 
f: X y with d5*f = f“ (and therefore dfy = y“)

(1)

r

f+

y

Of course, because of symmetries, the same property holds for every pair of 
faces df, with i= l,..., n.

3.9. Weak double categories and coskeleton. A weak double category will 
generally be viewed in wscCat via the coskeleton functor, right adjoint to cubical 1- 
truncation wscCat ^  wDbl

(1) coski: wDbl ^  wscCat, tri —' coski.
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Concretely, if A is a weak double category, the weak sc-category 1  = coski(A) 
coincides with A in cubical degree 0 and 1. Then, in the component tV2®, a 2-cube 
is a 'shell' of 1-cubes of A

(2)

B

D

1 Ô7U = d]v, d|u' = a|v',

ô|u = 37V', a+v = ôpi'.

under no further condition. A transversal 2-map is a similar 'shell' of 1-maps of A. 
Notice that the #~marked square (2) is not assumed to commute under concatenation 
of 1-cubes, in any sense (strict, weak or lax). Similarly, one defines all the higher 
components, by n-dimensional shells of 1-cubes and 1-maps of A.

Faces and degeneracies are obvious: for instance, for the 2-cube U represented 
above, djU = u and djU = v. Concatenations are also obvious, and computed with 
the concatenation of 1-cubes (or 1-maps) in A; thus, in dimension 2 and direction 1, 
we get

A A

(3) “i # i«' #

v'
D

w'
D'

v' + w'
D'

Finally, the comparisons for associativity and units are families of comparisons 
of A, while interchange is necessarily strict.

Viewing weak double categories in this way leads us to define a cubical (or 
geometric) transformation o f double functors (between weak double categories) F: 
F" ^ F ^ i X ^ A  as a cubical transformation of the corresponding 1-coskeletons

(4) F: coskiF" ^  coskiF^: coskiX coskiA.

Explicitly, this means to assign:

(a) to every object (0-cube) X of X a 1-cube FX: F^X F^X of A,

(b) to every 0-map f: X Y of X, a 1-map Ff: F"f F^f of A,

consistently with the transversal structure (faces, degeneracies and composition):

(5) F(a«f) = a«(Ff), F(eoX) = eo(FX), F(gf) = Fg.Ff.
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Notice that there is no 'naturality' condition based on a 1-cube u:X  ^  X' of X: 
the latter is simply sent to a 2-dimensional shell, with 1-directed faces F®(u) and 2- 
directed faces FX, FX'

FX
¥~X  — ^ P-X'

(6) 1 # Phi

F-X' — ^ F̂ X'
FX'

Moreover, the consistency with concatenation of 1-cubes is simply 'managed' by 
the cubical functors F", F .̂

More generally, we define in the same way a cubical transformation F" F^: 
X ^  A  o f weak (or lax, or colax) cubical functors F®: the only comparisons 
which we need are those of the latter.

This notion is certainly simpler than a 'strong vertical transformation of lax 
double functors', as defined in [GPl], 7.4 - where a weak naturality condition was 
assumed. Further study will show whether the present notion does work better.

4. Examples of symmetric weak or strict cubical categories

After the strict sc-category coCub(X), described in 3.2, we describe here the 
weak sc-categories o)Cosp(X) and o)Sp(X) of cubical (co)spans. Then we 
construct the strict sc-category coRel of cubical relations of sets, and we end with a 
sketch of a strict sc-category coCat of cubical profiinctors. These two constructions 
will be made precise in the next section.

All these examples are transversally invariant (3.8).

4.1. Cubical cospans. We begin our examples by reviewing the symmetric weak 
cubical category o)Cosp(X) of higher cubical cospans, introduced in [03] to study 
cubical cospans in Algebraic Topology and higher (cubical) cobordism. Its cubical
1-truncation (3.3, 3.5) is the weak double category Cosp(X) studied in [GPl].

Let X be a category with a full choice o f distinguished pushouts: in other words, 
to every span (f, g) we assign one distinguished pushout ( f , g'), under the unitarity 

for which the distinguished pushout of the span (f, 1) is (1, f) (and 
symmetrically)

- 1 2 5 -
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(1)

-> x'

The 'geometric model' of the construction of our cubical structure is the category 
A, called the formal cospan, and its cartesian powers

(2) - 1 0 1 A,

(-1,

(-1, 1) (0,1) (1,1)

An n-cube of o)Cosp(X) is a functor x: A" —*• X, and an n-map is a natural 
transformation f: x —»• y: A" ^  X; these objects and maps form the category

(3) Cospn(X) = Cat(A", X).

It is now easy to construct a symmetric cubical object in Cat, based on the 
structure of the category A as a formal symmetric interval, with resj>ect to the 
cartesian product (in Cat)

(4) a«: 1 A, e: A ^  1,

a«(*) = «1,

s: a2 ^  a2

S(ti, t2) = (t2, ti).

(a = ±),

Namely, faces, degeneracies and transpositions of n-cubes and n-maps are 
defined by pre-composition with the following maps between cartesian powers of A 

(for a = ± and i = l,..., n)

(5) af: ^  A^ 

ef. A" A"-i,

Si! A^^+i ^  A " + i ,

af(ti,..., tn_i) =  ( t i , . . . ,a l , . . . , tn - i ) ,

tn) — (tl V »  tj,..., tn),

Si(ti,..., tn+l) =  (ti,..., ti+i, ti,..., tn),

SO that the 2n faces of an n-cube x: A" X are a^(x) = x®a :̂ A""̂  X, and 
so on.

- 1 2 6 -
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4.2. The cubical category of relations. We define now the strict sc-category of 
cubical relations of small sets coRel = ojRel(Set); of course, the same can be done 
in more general settings.

We will construct wRel as a quotient of o)§p(Set), extending the construction 
of ordinary (binary) relations as equivalence classes of spans.

First, at the level of n-cubes, the equivalence relation is generated by pairs of 
cubical spans x, x': v" ^  Set which admit a special transversal map p: x ^  x' all 
whose components p(t): x(t) x'(t) are surjective mappings ( tE { - l ,  0,1}").

Every equivalence class [x] of n-cubes contains some representative which is a 
jointly monic n-span, in the sense that each pair of mappings with the same domain 
and having the same direction i (for i = 1,..., n) is jointly monic. The existence of 
such representatives is trivial in degree 0, obvious and well known in degree 1. In 
degree 2, represented in the diagram below, we begin by choosing a jointly monic 
representative for each of the four faces (the four spans at the boundary)

(1)

a'
a b

* <— * » i► --->

b' , 2

Then we choose a jointly monic span (a, b) in direction 1 (say), which induces a 
consistent choice for the span (a', b'). The latter is also jointly monic, as it follows 
from the fact that the four composites from the centre to the vertices are jointly 
monic. In higher dimension one proceeds in the same way. A jointly monic 
representative of an equivalence class of n-cubes is determined up to an invertible 
special transversal map of cubical spans.

Second, at the level of n-maps, the equivalence relation is generated by pairs of n- 
maps of cubical spans f: x y, f  : x' y' for which there exists a commutative 
diagram

(2 )

- 1 2 7 -
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The concatenation x +i y of two n-cubes which are i-consecutive (i.e., 0t(x) = 
^7(y)) is computed in the obvious way, by 3""  ̂ distinguished pushouts whose 
'vertices' are the ones of the common face. More precisely, concatenation can be 
given a formal definition (as in [G3], and along the same lines of 3.2.5), for which 
we only give here some hints. It is based on the model o f binary composition (for 
ordinary cospans), the category A 2 displayed below, with one non-trivial distin
guished pushout

(6)

-1 A2.

Indeed, given two consecutive cospans x, y in X, we get an obvious functor 
[x,y]: A2 X, from which we deduce the concatenation x+ i y: A ^  X by pre- 
composing [x, y] with the concatenation map c: A -> A2, already displayed 
above by the labelling of objects in A2.

Then, 1-concatenation of n-cubes is based on the cartesian product A2 x A""̂

(7)

(0,-1)

\

(-1,-1) (a,-l) (b,-l) ^  (c,-l) ^  (1,-1) 

^  t 1̂
'  I \

(-1,0) ^  ( a , 0 ) ^  ( b , 0 ) ^  ( C , 0 ) ^  (1,0)

\

(-1, 1) ^  (a, 1) ^  (b, 1) (c, 1) ^  (1, 1) A2 X A.

Comparisons for associativity and interchange can be defined taking advantage 
of this formal construction, see [03], Section 3. On the other hand, degeneracies 
work as strict units, because of the unitarity constraint recalled above for the choice 
of pushouts.

Of course, cubical spans are obtained by the dual procedure, for a category X 
with assigned pullbacks:

(8) o)Sp(X) = o)Cosp(X«P), Spn(X) = Cat(V ^X),

where the category V isth t formal span: -1 - ^ 0 ^ 1 .
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where p, q are special transversal maps whose components are suijective mappings.

Equivalently, since p, q are the identity on each vertex, a transversal map f: 
[x] —̂ [y] between n-cubical relations can be defined as a family of mappings 
between the vertices of x and y

(3) ft): x(t) -  y(t), t E { - l , l } " ,

which can be extended to a transversal map of cubical spans x y between jointly 
monic representatives. This extension is unique, because of the cancellation 
property of such representatives.

Faces, degeneracies, transpositions and concatenations are induced on the 
quotient, by the ones of cubical spans. Since the comparisons of o)Sp(Set) are 
invertible transversal maps, all their components are surjective and the quotient we 
are considering is a strict symmetric cubical category.

The quotient procedure we have used will be abstracted in the next section, and 
its dual will be used to define cubical profiinctors.

4.3. Cubical relations as subsets of products. One can give a more concrete 
description of coMel, whose worse drawback is that the construction of degeneracies 
becomes cumbersome.

Items will be indexed on the three-element set {0, u, 1} and its powers. A 1- 
cubical relation is an ordinary relation a: ao ^  ai of sets, viewed as a subset au C 
aoxai, and will be written with a dot-marked arrow; their composition will be 
written in additive notation.

A 2-cubical relation a consists of:

- four vertices (ay): 2x2 ^  Set (where 2x2 = {0, 1}  ̂ is a discrete category on 
four objects),

- four (binary) relations on the sides of a square, written auj and aiu (see the 
diagram below, no condition of commutativity is assumed)

- and one quaternary relation auu C TI aij whose projection on each side is 
contained in the corresponding binary relation

auo

aoo —  ̂ a io  • —  ̂ 1 auu ^  aoo x aoi x a io  x a n ,

(1) aou I a„„ I a,„ |   ̂ pijXauJ C 3uj,

 ̂ ^11 (piOi Pil)(^uu) ^  îu-
^ul
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(We write py the four cartesian projections of riay.) The 1-concatenation c = 
a +1 b is defined when the 2-cubes a, b are consecutive in direction 1, i.e. ai„ = 
bou, and is computed below, at the right

ûO Ko

aoo

(2) aou ûu

aoi

aio = boo
»lu = t>Ou I

an  = boi

>10

bn

aoo
aou

aoi

®uO + l>uO

>ul

bio

>11

Obviously, the subset 

(3) Cuu = a„u +1 buu C aoo X aoi X bio x bn,

contains those 4-tuples (xoo, xoi, zio, zn) for which there is some pair (y, y') E 
aio X an = boo X boi such that (xoo, xqi, y, y') G auu and (y, y', zio, zn) G b„u. In 
other words, a„u +i b„u is an ordinary composition o f relations, provided we view 
auu and b„u as binary relations, as follows:

(4) a„u: aoo X aoi aio x an , buu: boo X boi bio x bn-

This proves that 1-concatenation is strictly associative, with strict units provided 
by the following degeneracies ei(a) of ordinary relations

(5)

ao

ai

(eia)u,
ao

au

id
ai

(eia)uu = {(xo, x i, xo, xi) e  ao x ai x ao x ai I (xo, x i) G au}.

The same holds for 2-concatenation, which can be defined in the symmetric way, 
or by transposition of the previous operation:

(6) a +2 a' = si(sia +i sia').

We proceed analogously in higher dimension. The definition of degeneracies, 
extending (5), looks unnatural.

4.4. Cospans of embeddings of categories. Cubical profunctors can be 
constructed by a quotient procedure, whose formal aspects are transversally dual to 
the procedure sketched above (4.2): we will start from cubical cospans of full
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embeddings of categories, and identify them when they have the same reduced form, 
in a suitable sense. This will be done at the end of the next section, after formalising 
this kind of quotients.

The crucial point is the fact that an ordinary profunctor x: x_i xi has a 
collage xo, which consists of the sum of the categories x_i and xi, supplemented 
with new homs xo(a, b) = x(a, b), for a in x_i and b in xi. (Formally, the 
collage of a profunctor is a double colimit, the cotabulator, in the weak double 
category of categories, functors and profunctors, see [GPl].)

Thus, the profunctor x can be described as a cospan

X“  x+
(1) x_i ^  Xo ^  Xi

characterised by the following conditions (which imply that x"'' have disjoint 
images)

(1) X", x”̂ are full embeddings,

(ii) there are no arrows in xq going from an object of xi to an object of x_i,

(iii) the embeddings x”, x"̂  cover (together) all the objects of xq.

We have already seen how a profunctor yields such a cospan. Conversely, given 
the cospan (1), the profunctor is reconstructed as:

(2) x: (x_i)°P X X I  Set, (a, b) xo(x-(a), x+(b)).

Now, the first two conditions above are closed under concatenation, but the third, 
a sort of jointly-epi condition, is not (in the same way as jointly monic spans are not 
closed under concatenation). Which is why we will obtain (cubical) profunctors as 
equivalence classes of (cubical) cospans, with reduced representatives satisfying the 
(cubical extension of the) third condition (5.7).

5. Weak cubical categories, cubical rewriting and quotients

We formalise the procedure which has been used above to pass from the weak 
sc-category of cubical spans to the strict sc-category of cubical relations (4.2), as a 
'quotient' which forces certain transversal maps to become identities. Then, the dual 
procedure is used to construct a strict sc-category of cubical profunctors. These 
techniques are a sort of term rewriting, based on the existence of 'normal forms', 
determined up to transversal isomorphism.
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5.1. Rewriting and normal forms. Let us first recall a classical case of term 
rewriting, the description of the free group on a set X.

One begins with the disjoint union Y = X u X"  ̂ of the set X with a isomorphic 
copy, adding for each x E X an element x"̂  (which will become its inverse). Then, 
we let Y* = 2 Y ” be the free monoid on the set Y, consisting of words w = yi,..., 
yn of elements of Y; they are multiplied by juxtaposition, and the unit is the empty 
word e.

We define an order relation w' w, generated by the following (elementary) 
rewrite rule:

(1) the word w' can be obtained from w by omitting one occurrence of the 
sequence x, x"̂  or one occurrence of the sequence x"^x (for some xE X ).

This order is obviously consistent with juxtaposition, and it spans an equivalence 
relation w ~ w' which is a congruence of semigroups. It is easy to prove that the 
quotient semigroup F = Y*/~ is a group, and actually the free group on the set X: 
the embedding X C Y C Y* ^  Y*/~ satisfies the usual universal property.

Now, in order to better understand the construction, it is convenient to notice that 
an equivalence class of words in Y* is determined by a word in normal form, to 
which the rewrite rule (1) cannot be applied (i.e., a minimal element for the order 
relation).

Plainly, every equivalence class [w] contains some minimal word, which cannot 
be further reduced. But the crucial fact is that the ordered set [w] has a minimum, 
the normal form  w, which, therefore, does not depend on the reduction process 
which yields it. (One begins with proving that two distinct immediate predecessors 
of w always have a common immediate predecessor; since the number of 
immediate predecessors of a given word is finite, the existence of the minimum is an 
easy consequence.)

Notice that normal forms are not closed under multiplication: we only have that 
(w.z)" = (w.z)". Thus, the quotient Y*/~ cannot be embedded as a subsemigroup 
of Y* (as soon as X is not empty).

Notice also that the fact of having a normal representative in every equivalence 
class is an effective way of describing the elements of the free group, but is not 
formally necessary for the construction of the latter. In other situations, as the ones 
considered below, it may happen that the existence of normal forms is crucial in 
order to prove that some operation passes to the quotient.
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5.2. Rewriting for cubical spans. The passage from cubical spans to cubical 
relations (of sets) is based on a p reo rd er  x'  ̂ x between cubical spans, given by 
the existence of a reduction  p: x —̂ x', or domain-rewriting: a special transversal 
map whose components are surjective mappings (so that we can think of x' as a 
'simpler form' of x). The following diagram shows the 1-dimensional case

X“ X'*’

X_1 -̂------  Xo ------- > Xi

( 1)  II Í P 0
X_1 -̂------  X¿ ------- > Xi

X ' -  x ’+

Now, in the equivalence relation between n-cubes x ~ x' generated by this 
preorder:

(*) every equivalence class [x] has a least representative x, determined up to 
transversal isomorphism (and we choose one).

This representative will be called the reduced form , or normal form , of x. It is 
the essentially unique jo in tly monic n-span which belongs to [x] (in the usual sense 
for n = 1, and in the sense of 4.2 for higher n).

As a second crucial fact,

(**) for every cubical span x, there is precisely one reduction px: x x,

which will be called the least reduction, or normal reduction, of x. It is also charac
terised, directly (i.e. without using x), as 'the' minimum in the set of reductions 
starting from x, with respect to the usual preorder of epimorphisms: p'  ̂ p if p' 
factors through p. (Actually, since x is jointly monic, there is a unique spec ia l 

transversal map  x ^  x, and for every n-cube y at most one special transversal 
map y —̂ X, but these stronger facts will not be used.)

In the definition below, we are not assuming that each reduction be special, but 
this will always be the case in the present applications.

Notice also that, generally speaking, the transversal isomorphisms of a weak 
cubical category do not satisfy the uniqueness condition (**) and cannot be taken 
as reductions, by themselves. Thus, the quotient procedure which we are establishing 
cannot be used to 'strictify' an arbitrary weak cubical category. (In the same way as 
spans up to invertible cells do not form a 2-category.)

In the dual procedure, from cubical cospans to cubical corelations, the preorder 
relation x'  ̂ x is given by the existence of a coreduction, or codom ain-rewriting

■ 1 3 3 -
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m: x' X, i.e. a special transversal map whose components are injective mappings 
(so that, again, we can think of x' as a'simpler form'of x, within cospans)

X“ x+
X_1 ------> Xo <------  Xi

(2) 1^0

X_1 ------- > Xo -̂------  Xi
X ' -  x '+

5.3. Cubical reduction systems. Let A be a synmietric pre-cwhicdX category 
(3.5(b)), which is transversally invariant (3.8).

k{c\ih\cdX) reduction system RdA of A satisfies the following conditions:

(i) RdA is a wide substructure of A (i.e., it is closed under faces, degeneracies, 
transpositions, concatenations and transversal composition, and contains all the 
cubes of A); moreover, it contains all the invertible transversal maps of A;

(ii) every transversal n-map p: x ^  x' which is a reduction, i.e. belongs to RdA, is 
an epimorphism (in the category tVnA);

(iii) for every n-cube x, the set of reductions p: x ^  x', preordered by the usual 
preorder relation of epimorphisms (p' p if p' factors through p) has a mini
mum px: X X (and we choose one of them, determined up to transversal 
isomorphism); px v îWhQ cdX\tà\hQ least reduction, ov normal reduction, of x, and 
X ihQ reduced form, or normal form, of x;

(iv) for every n-cube x, px: x ^  x is the unique reduction from x to its reduced 
form;

(v) for every transversal n-map f: x y of A, there is a consistent map f: x ^  y 
(in the sense that f.px = py.f); since px is epi, f is uniquely determined (by the 
choice of px and py) and called the of f;

(vi) dfx is isomorphic to the reduced form of the face dfx.

5.4. Lemma (The associated congruence). In the situation described in 5.3, the 
following properties hold.

(a) For every n-cube x, if the reduced form x is transversally isomorphic to x', 
then there is a unique reduction x x' and a unique reduction x x'; the latter 
is invertible.

(b) The procedure f f is consistent with transversal composition

- 1 3 4 -
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(1) py pz (g f i  = g.f.

(c) The equivalence relation x ~ x' generated by the existence of a reduction 
between n-cubes amounts to the existence of a transversal isomorphism u: x x', 
which is uniquely determined (and a reduction)

(2)
px px'

so that each equivalence class of cubes has precisely one reduced representative, up 
to isomorphism.

(d) The equivalence relation f ~ f  between transversal n-maps generated by the 
existence of a commutative square f  p = qf, where p, q are reductions, amounts to 
the fact that f and f  be transversally isomorphic, i.e. to the existence of a 
commutative square fu = vf, where u, v are transversal isomorphisms

p x

(3)

py py

therefore, each equivalence class of transversal maps has precisely one reduced 
representative, up to transversal isomorphism;

(e) Reduced forms are consistent with faces, degeneracies, transpositions and 
composition of transversal maps.

(f) On the other hand, the reduced form of a concatenation is smaller than the 
concatenation of reduced forms: more precisely, for a concatenation x+i y, one can 
choose two least reductions px: x ^  x, py: y which are 1-consecutive, so that 
px +1 py: X +1 y x + i y is a reduction (generally not the least one).

(g) The equivalence relations x ~ x’ and f ~ f  are consistent with faces, degen
eracies, transpositions, concatenations and composition of transversal maps.

Proof, (a) Let u: X -  
tion; then u“W.px: x

x' be a transversal isomorphism and v: x -> x' any reduc- 
X is a reduction and must coincide with px, whence u“W
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= idx and v = u; moreover, a reduction p: x x' necessarily factors through px, 
and coincides with u.px.

(b) Obvious, since reductions are epimorphisms.

(c) Relation (1) is obviously an equivalence relation. It implies x ~ x', because 
every transversal isomorphism is a reduction. Conversely, if p: x —► x' is a reduc
tion, then X, x' have the same reduced form, up to transversal isomorphism, hence 
they are in relation (1).

(d) Has a similar proof.

(e) For faces, this is assumed in point (vi) of the definition. For degeneracies, a 
reduction p: x x' gives a reduction eip: eix eix', and conversely a reduction 
q: eiX eix' gives d^q: x x'. For transpositions, the property follows from 
their being invertible. Composition of transversal maps has already been considered 
in(b).

(f) For a concatenation x +i y, with a|x = djy, the normal reductions px: x x 
and py: y y give, up to transversal isomorphism, the normal reductions d|px 
and dĵ py of the common face d|x = djy; now, if u: d'[x d~[y is a transversal 
isomorphism, let v: x —► x' be a transversal isomorphism such that 6 jv  = u and 
0|x' = ajy (it exists, by transversal invariance of A ). Then v.px: x ^  x’ is a 
normal reduction of x which can be concatenated with py, giving a reduction v.px 
+1 py: X +1 y x' +i y. One can now rename v.px: x x' as px: x ^  x.

The least reduction of x +i y can be strictly smaller than the concatenated 
reduction. For instance, in the case of spans and relations (5.2), it is well known that 
the concatenation of two jointly monic spans need not be jointly monic.

(g) Follows from the last two points. The only non-obvious aspect being concatena
tion, let us suppose we have x +i y and x' +i y', with x ~ x' and y ~ y'. By (f), 
we can choose the same reduced forms x and y, in such a way that they are 
consecutive in direction 1, and we get two reductions with values in the same form

(4) x + i y  x + i y  ^  x '+ i y'.

Therefore x +i y ~ x' +i y' (even if x +i y need not be normal). □

5.5. Theorem and Definition (Quotients modulo cubical reductions), (a) Given a 
transversally invariant, symmetric pre-cubical category A (3.5(b)) and a reduction 
system RdA (5.3), one can form a symmetric pre-cubical category B = A /~ , as a 
quotient modulo the equivalence relations of n-cubes and n-maps defined in 5.4. B

- 1 3 6 -
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will be written as A/RdA and called the quotient o f A modulo reductions (of 
RdA).

The projection Q: A —*■ B is a symmetric pre-cubical functor such that:

(i) all reductions of A are sent by Q to transversal identities,

(ii) Q is universal for this property.

If all the reductions of A are special transversal maps (3.3.6), one can identify 
tvoA and tvo®.

(b) If A is a (transversally invariant) weak sc-category, then B is a strict sc- 
category.

Proof, (a) Form B = A /~  as specified above. We already know that the induced 
concatenation [x] +i [y] = [x +j y] does not depend on the choice of a pair of i- 
consecutive representatives, but we must show that it is defined whenever the given 
classes [x], [y] are i-consecutives. Indeed, if atx ~ dry, then

(1) at(x) ~ (at(x))^ ~ (d .yr  -  97(y),

and, up to modifying x by a transversal isomorphism constructed with property
(vii), we can assume that 5t(x) = d'^iy), so that

( 2 )  [X] + i  [y] =  [X + i  y ] ,  

is defined.

Similarly, we already know from the previous lemma that the induced 
composition of transversal maps [g].[f] = [gf] does not depend on the choice of a 
pair of composable representatives. But we must also show that, if the given classes
[f], [g] are transversally consecutive then they admit composable representatives. 
Indeed, if the transversal maps f: x —► y and g: y' —► z become composable in the 
quotient, i.e. y' ~ y, then f is equivalent to py.f: x ^  y and g is equivalent to 
g.u: y —► z, for the unique isomorphism u: y — y' (which is a reduction).

Now, B is also a symmetric pre-cubical category and the universal property of 
the projection Q is obvious. The last statement on special maps is obvious.

(b) In the new, stronger hypotheses on A, comparisons and all the axioms pass to 
quotient. But all comparisons are invertible transversal maps, whence they are 
reductions and become identities in B, which is therefore a strict sc-category. °

5.6. From cubical spans to cubical relations. We can now review 4.2 at the light 
of the previous points.
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In the weak sc-category Sp(Set), we say that a transversal map f: x y: 
V” X is a reduction if:

- all its components f(t): x(t) ^  y(t) (t E {-1 ,0 ,1}”) are surjective mappings,

- f is special (i.e., all its vertices f(t), for t E { - l , l } ” are identities).

The reduced form of an ordinary span is the associated jointly monic span; the 
same holds in higher dimension, according to the definition of a jointly monic 
cubical span given above (4.2). The conditions (i)-(vii) of 5.3 are satisfied.

The quotient of Sp(Set) modulo these reductions is Rel(Set), as a strict 
symmetric cubical category.

5.7. Cubical profunctors. Following the ideas of 4.4, we begin with considering 
the weak sc-category E = o)Cosp(Emb) of cubical cospans of full embeddings of 
(small) categories.

This is legitimate, because the category Emb, of small categories and their full 
embeddings, has pushouts (which are also pushouts in Cat): given a span of such 
embeddings A ^  X ^  B, let us rename the items of A and B so that these 
functors are full inclusions and X = A fi B. Then the pushout W contains the 
obvious set-theoretical union A u B, supplemented with:

- new arrows [pa]: a ^  x ^  b (modulo the equivalence relation generated by 
identifying pa = p'a' if there exists some x ^  x' in X such that a' = |a  in A 
and p = p'? in B),

- and, symmetrically, new arrows [ap]: b ^  x a.

The composition in W is easily defined, as in the following examples:

(1) [pa].a' = [p(aa')], for a': a' a, a: a —̂ x, p: x ^  b,

[a'.p'].[pa] = a'.(p'p).a, for a: a —̂ x, p: x b, p': b ^  x', a': x' a',

where the last composition is in A (p'p: x x' belongs to the full subcategory X 
= AnB).

A coreduction, or rewriting of the codomain, will be any special transversal map 
of E (notice that all its components are full embeddings). This gives a wide 
substructure CrdE C E , which satisfies the axioms transversally dual to those of
5.3.

The reduced form of an n-cospan x: A*' —̂ Emb is obtained in a way similar to 
the construction for spans, in 4.2, actually simpler: the vertices of the cube (marked 
with bigger bullets, below) are unchanged, but we replace each other category x(t)
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(t E ObA^) with the full subcategory determined by the objects which are reached 
by some object of a category occupying a vertex of the cube

(2)

Now, the quotient E' = E/CrdE is a symmetric cubical category, where each n- 
cube [x] has precisely one reduced representative x (up to special transversal 
isomorphisms).

Coming back to the conditions (i)-(iii) of 4.4, we have taken (i) and (iii) into 
account, by restricting to cospans of full embeddings and passing to the quotient. 
We consider now condition (ii), by ^electing some n-cubes of E', which are defined 
to be cubical profiinctors, and taking all the transversal maps of E' between them.

We say that an n-cube [x] of E' is an n-profunctor if it admits a representative 
X such that, for each ordinary cospan which appears in x in a given direction i

(3) x(t') -  x(t) -  x(t") (t; = -1, ti = 0, t" = 1; t] = tj = t] for j i ),

condition (ii) of 4.4 is satisfied: there are no arrows in x(t) going from an object of 
x(t") to one of x(t'). Equivalently, we can ask that this condition be satisfied by the 
normal form x.

Degeneracies make some problems (as it is also the case within cospans in the 
domain of cobordism, see [G5]). Indeed, already in degree 1, the degenerate cospan 
of a (non-empty) category ei(x) = (x = x = x) is reduced and does not satisfy the 
previous condition. However (as in [G5]) we can replace degeneracies with 
cylindrical degeneracies: the 1-cube Ei(x) on the category x is the following 
cospan of disjoint embeddings (which is also reduced):

X "  x +

(4) X — > X q <—  X

where the category xq = x x 2 is the collage of the identity profunctor of x (and 
X", x"̂  are the obvious embeddings). It is easy to see that [Ei(x)] is a strict identity 
for concatenation with 1-profunctors (but not with general 1-cubes of E').
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Finally, we have obtained a strict sc-category wCat of cubical profunctors, 
contained in E'; the embedding preserves all the structure, except degeneracies, and 
is transversally full.

The fact that we have realised a strict cubical category should not surprise too 
much. The crucial point is the fact that a special transversal map f: x —̂ x' between 
two profunctors is uniquely determined (while the same is not true of arbitrary 
cospans of categories). Another realisation of the bicategory of ordinary profunctors 
as a strict 2-category has been recalled in [GPl]: a profunctor u: A B can be 
defined as a colimit-preserving functor

(5) u: Set^ Set», u(F)(b) = f  u(a, b) x F(a).

6. Complements on symmetric cubical sets

We prove now that the internal homs of symmetric cubical sets constructed in 
Section 2 come from a symmetric monoidal closed structure. The tensor product 
and the corresponding cylinder functor are complicated, which is why we preferred 
to work with the path functor.

6.1. Remarks. The ordinary tensor product X0 Y of two symmetric cubical sets 
can not be directly equipped with transpositions. For instance, if x, y are 2-cubes in 
X and Y, we might define Si(x0 y) = (six)0 y and S3(x0 y) = x0(siy), but 
S2(x0 y) cannot be obtained from the transposition si of X2 or Y2, and has to be 
formally introduced.

Therefore, we will define a symmetricy tensor product X 0  Y with n-component 
the free Sn-set on X0 Y, modulo the identifications exemplified above.

We still write 2 = {0,1}, but the symmetric group Sn will be viewed as the set 
of all bijections u: n n ,  where n =  {I,—, n}; in fact, this set of n elements is 
here more convenient then the cardinal n = {0 ,..., n -1}.

6.2. The action of permutations. Recall, from 2.1, that sCub is the category of 
functors X: ^  Set, where the symmetric cubical site Is is (realised here as) 
the subcategory of Set consisting of the elementary cubes 2 ,̂ together with the 
maps 2^ 2^ which delete some coordinates, permute the remaining ones and 
insert some O's and Ts.

Let X: ^  Set be a symmetric cubical set. It will be useful, for the sequel, 
to give an explicit description of the left action of the symmetric group Sn on the
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component X„ = X(2“). In fact, the group S„ (of permutations u: n n) acts 
contravariantly on the set 2“ = Set(n, 2) and then covariantly on the set X„

(1) u: 2“ —► 2“, u: 1 1-^ t«u (t: n ^  2), 

u: X„ -  Xn, U.X = X(G)(x) (X e  X„).

(For instance, let X be the singular cubical set of a topological space S, with 
components X„ = Top([0,l]“, S); take u, vE S „ , an n-cube x: [0,1]“ S, and 
let t:n  ^  [0,1] denote the variable of [0,1]“. Then (u.x)(t) = x(tu), where (tu)i = 
tu(i). It is indeed a left action, since: (v.(u.x))(t) = (u.x)(tv) = x(tvu) = (vu.x)(t).)

The permutation u E  S„ acts as follows on the face df: X„ —*■ Xn_i and the 
degeneracy ei: Xn_i ^  X„

(2) 3“»u = u'»d“, where u(i) = 1 and

u'(j) = u(j) -  1 for j < i, u'(j) = u(j-i-l) -  1 for j a i, 

ei»u = u"«ei, where u" = id x u: n ^  n-

6.3. Theorem and Definition. The category sCub of symmetric cubical sets has 
a symmetric monoidal closed structure, whose intemal-hom is the functor sCUB 
defined in 2.5.

The n-th component of the symmetric tensor product X ® Y of symmetric 
cubical sets

(1) (X®Y)„ = S„((X®Y)„)/-„,

is a quotient of the free S„-set generated by the n-th component of the ordinary 
tensor product X®Y, containing all the formal permutations u.(x®y) (u E  Sn). 
The quotient is taken modulo the congruence of Sn-sets generated by the 
following 'identifications'

(2) Sj(x® y) = Si(x)® y for i< p  = dim(x), Si(x® y) = x® Si_p(y) for i >p.

Faces and degeneracies in direction 1 are defined as follows, letting aj'-’U = u'»0“ 
and ei»u = u"»ei (with u', u" as in 6.2.2)

(3) a«[u.(x®y)] = [u'.df(x®y)] =
[u'.(Ofx)®y))], i f i ^ p ,  

[u'.(x®(df_py))], if i>p,  

ei[u.(x®y)] = [u".ei(x®y)l = [u".(eix)®y)].

This completes the definition of the symmetric cubical set X ® Y, in the reduced 
form 2.2
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(4) X ® Y =  (((X ® Y)n), ( 0 f ), (ei), (Si)).

Proof. The verification of the axioms 2.2.4 is left to the reader. To obtain the 
exponential law, as a natural bijection

(5) sCub(X ® A, Y) ^  sCub(X, sCUB(A, Y)),

let us take a morphism f = (f„): X 0  A —► Y. Its n-component f„ decomposes into 
a family of mappings

(6) fpq! Sn(Xp X Aq) *■ Yn (n = p + (}),

consistent with the action of S„, the equivalence relation (1.2.1) and the new 
equivalence relation *»„• Their restrictions

(7) f p q : X p x A q - Y „ ,

amount to mappings gpq: Xp —<• Set(Aq, Yp^). Keeping p fixed, we get mappings

(8) gp = (gpq): Xp -  sCub(A,PPY) = sCUBp(A, Y) C 11  ̂Set(Aq, Yp̂ K,), 

which form a morphism of symmetric cubical sets g = (gp): X ^  sCUB(A, Y). □

6.4. The cylinder functor. We have already considered the representable 
symmetric cubical set ti = y(2) freely generated by one 1-cube u (2.5.2), and 
observed that sCUB(ii, Y) = PY.

The cylinder functor

(1) I: sCub — sCub, I(X) = X 0  ti, 

is thus left adjoint to the path functor P: sCub —► sCub,

(2) sCub(X 0  ti, Y) = sCub(X, sCUB(ti, Y)) = sCub(X, P(Y)).

References

[ABS] F.A.A. Al-Agl - R. Brown - R. Steiner, Multiple categories: the equivalence of  

a globular and a cubical approach. Adv. Math. 170 (2002), 71-118.

[BHl] R. Brown and P.J. Higgins, On the algebra o f cubes, J. Pure Appl. Algebra 21 

(1981), 233-260.

[BH2] R. Brown - P.J. Higgins, Tensor products and homotopies for w-groupoids and 

crossed complexes, J. Pure Appl. Algebra 47 (1987), 1-33.

[CL] E. Cheng - A. Lauda, Higher-dimensional categories: an illustrated guide book, 

draft version 2004. http://www.math.uchicago.edu/-eugenia/guidebook/index.html

- 1 4 2 -

http://www.math.uchicago.edu/-eugenia/guidebook/index.html


GRANDIS - SYMMETRIES IN CUBICAL SETS AND CUBICAL CATEGORIES

[CM] H.S.M. Coxeter -W .O.J. Moser, Generators and relations fo r  discrete groups. 

Springer, Berlin 1957.

[Du] J. Duskin, Simplicial methods and the interpretation o f "triple" cohomology, 
Mem. Amer. Math. Soc. 3 (1975), n. 163.

[G1] M. Grandis, Directed homotopy theory, I . The fundamental category, Cah. 
Topol. Géom. Différ. Catég. 44 (2003), 281-316.

[G2] M. Grandis, Lax 2-categories and directed homotopy, Cah. Topol. Géom. Différ. 

Catég. 47 (2006), 107-128.

[G3] M. Grandis, Higher cospans and weak cubical categories (Cospans in Algebraic 

Topology, I), Theory Appl. Categ. 18 (2007), No. 12, 321-347.

[G4] M. Grandis, Collared cospans, cohomotopy and TQFT (Cospans in Algebraic 

Topology, II), Theory Appl. Categ. 18 (2007), No. 19, 602-630.

[G5] M. Grandis, Cubical cospans and higher cobordisms (Cospans in Algebraic 

Topology, III), J. Homotopy Relat. Struct. 3 (2008), 273-308.

[GM] M. Grandis - L. Mauri, Cubical sets and their site. Theory Appl. Categ. 11 

(2003), No. 8, 185-211.

[GP1] M. Grandis - R. Paré, Limits in double categories, Cah. Topol. Géom. Différ. 
Catég. 40 (1999), 162-220.

[GP2] M. Grandis - R. Paré, Adjoint for double categories, Cah. Topol. Géom. Différ. 

Catég. 45 (2004), 193-240.

[GP3] M. Grandis - R. Paré, Kan extensions in double categories (On weak double 

categories, III), , Theory Appl. Categ. 20 (2008), No. 8, 152-185.

[GP4] M. Grandis - R. Paré, Lax Kan extensions fo r  double categories (On weak 

double categories. Part IV), Cah. Topol. Géom. Différ. Catég. 48 (2007), 163-199. 

[Jo] D.L. Johnson, Topics in the theory of presentation o f groups, Cambridge Univ. 
Press, Cambridge 1980.

[K1] D.M. Kan, Abstract homotopy I, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 1092- 
1096.

[K2] D.M. Kan, Abstract homotopy. II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 255- 
258.

[Le] T. Leinster, Higher operads, higher categories, Cambridge University Press, 
Cambridge 2004.

Dipartimento di Matematica 

Università di Genova 

via Dodecaneso 35 

16146 Genova, Italy 

g r a n d i s @ d i m a . u n i g e . i t

- 1 4 3 -

mailto:grandis@dima.unige.it

