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CAHIERS DE TOPOLOGIE ET 
GEOMETRIE DIFFERENTIELLE CA TEGORIQUES

Vol. L-l (2009)

ON BOUNDEDNESS AND SMALL-ORTHOGONALITY CLASSES

Dedicated to Jiri Adamek on the occasion of his sixtieth birthday 

by Lurdes SOUSA

Abstract

Une caractérisation des catégories localement bornées et un critère pour 
identifier les sous-catégories a-orthogonales dans ces catégories (pour un car­
dinal régulier a) sont donnés.

1 Introduction

In [11], P. Gabriel and F. Ulmer proved that in locally presentable categories the 
orthogonal subcategory Af1- is reflective for any set J\f of morphisms. The key point 
of the proof is the fact that for any object of the base category there is some infinite 
regular cardinal a such that the object is a-small, where a-smallness means a- 
presentability. In [10] and [15], P. Freyd and M. Kelly gave a generalization of this 
property for a wider range of categories, using a different concept of smallness for 
objects: boundedness. They showed that in a locally bounded category (as defined 
in [14] and [17]) the subcategory of all objects orthogonal to a set of morphisms is 
reflective. (In fact they went further: they proved that Af1- is reflective for every 
class N  which is the union of a set of morphisms with a class of epimorphisms.)

In a cocomplete category A an object A is said to be a-bounded if the hom- 
functor A(A, — ) preserves a-directed unions. A locally bounded category (see [14]) 
is a complete and cocomplete category A with a proper factorization system {£, M) 
and an £-generator Q such that (i) A has E-cointersections and (ii) there is a regular 
cardinal a such that each object of G is a-bounded. We call these categories locally 
a-bounded when they are ¿’-cowellpowered and a is a regular cardinal which fits 
the condition (ii). Locally presentable categories and epi-reflective subcategories of 
the category of topological spaces are examples of locally bounded categories. We

Financial support by the Centre for Mathematics of the University of Coimbra and by the School 
of Technology of Viseu is acknowledged.
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show that a cocomplete and cowellpowered category is locally bounded precisely 
when there is a regular cardinal a and a set H of a-bounded objects such that any 
object A of A is an a-directed union of objects of Ti. This characterization will be 
useful in the study of small-orthogonality classes, that is, subcategories of the form 
Af1 for Af a set of morphisms.

In [13] the a-orthogonality classes of a locally a-presentable category were 
proved to be exactly the subcategories closed under limits and a-directed colim­
its, for all uncountable regular cardinals a. (Recall that, following [4], an a- 
orthogonality class is a subcategory of the form Af1- for some set Af of morphisms 
whose domains and codomains are a-presentable.) This characterization does not 
work for a = No, as was shown in [20] and [12]. A description of the No-orthogonality 
classes in locally finitely presentable categories in terms of closure properties was 
given in [5]: they are the subcategories A closed under products, directed colim­
its and *4-pure subobjects. In the context of locally bounded categories we shall 
adopt the terminology a-orthogonality class as expected: the meaning is as in [4], 
just replacing “presentable” by “bounded”. The aim of this paper is to charac­
terize the reflective subcategories of locally bounded categories which are small- 
orthogonality classes. In cowellpowered locally bounded categories a subcategory 
is a small-orthogonality class iff it is an a-orthogonality class for some a. We 
are going to restrict ourselves to reflective subcategories whose reflector preserves 
.A/f-monomorphisms. For example, reflective subcategories of Top whose closure 
under subspaces is the category Top0 of To spaces have an M  -preserving reflector, 
for A4 = {embeddings}. Also the reflector from the category Norm of normed 
spaces and linear contractions into its subcategory Ban of Banach spaces preserves 
embeddings. In [18] Ringel studied the properties of M -preserving reflectors for 
A4 the class of monomorphisms. We show that, in locally a-bounded categories, 
a reflective subcategory with an M  -preserving reflector is an a-orthogonality class 
iff it is closed under a-directed unions and a-S-neat subobjects. (The notion of a- 
B-neat morphism is parallel to the one of a-B-pure morphism, used in [5]: If B is a 
subcategory of A , a morphism /  : A —► B of A is said to be a-B-neat provided that, 
if we have morphisms e, u and v such that /  • u = v • e and e is a B-epimorphism, 
then there exists a morphism u' such that uf • e = u.) For instance, the category 
Topo is an No-orthogonality class of Top, but the category Sob of sober spaces is 
not an No-orthogonality class of Top0. The category Ban is an Hi-orthogonality 
class of Norm.
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2 Properties o f  locally  bounded categories

Let A be a category with a proper factorization system (£, M) (where proper means 
that £ and M  consist of epimorphisms and monomorphisms, respectively). Recall 
that £ and M  determine each other: £ = M  ̂ and M = £̂  ([10]).

A set Q is said to be an £-generator of A if for each object A there is some 
subset {G{, i G 1} of Q and an £-morphism e : IIi^iGi —> A. (A detailed study of 
¿̂ -generators is made in, e.g., [6] and [7].)

Let rrii : Ai —> A, i G I, be a diagram in A with all ra* E M. The M-union 
(or just union) of (ra*)^/ is the supremum of (ra*)*G/, up to isomorphism, in the 
class of all .A/i-subobjects of A. It coincides with the M-part m : B —> A of the 
(£, M )-factorization of the canonical morphism —► A. We shall often write
Uieimi = m or Ui^iAi = B for short.

Let a be an infinite regular cardinal. An object A is said to be a-bounded if the 
hom-functor A(A, —) preserves a-directed unions.

2.1. Definition (1) ([14], [17]) A category A is said to be locally bounded if it 
is cocomplete, has a proper factorization system (£,M ), and there is an infinite 
regular cardinal a such that:

(i) A has £-cointersections;

(ii) A has an ¿-generator all of whose objects are a-bounded.

(2) By a locally a-bounded category with respect to M  we shall mean a category 
under the conditions of (1), for a given a , which moreover is £-cowellpowered. The 
reference to M  will often be omitted.

2.2. Remark Every locally bounded category is complete. In [14] and [17], the 
authors include completeness in the definition of locally bounded category. How­
ever the completeness comes for free, since any ¿’-cocomplete category with an 
£-generator is complete. This follows from the fact that any such category is total 
(see [7]), that is, the Yoneda embedding A [.A°v, Set] has a left adjoint ([16]); 
and any total category is complete and M -complete (see [7] and [8]).

2.3. Examples (1) Every locally presentable category is locally bounded with re­
spect to monomorphisms, and also with respect to strong monomorphisms (see [10] 
and [2]).

(2) The category Top of topological spaces is locally No-bounded with respect 
to strong monomorphisms (= embeddings). And every epi-reflective subcategory
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of Top is locally No-bounded with respect to embeddings. More generally, any £- 
reflective subcategory B of a locally a-bounded category with respect to M  is also 
locally a-bounded with respect to M  fl Mor(B) ([10], [2]).

(3) Any topological category over Set (see [3]) is locally Ko-bounded with re­
spect to strong monomorphisms.

(4) The category Ban of Banach spaces and linear contractions is locally Ni- 
bounded([14], [17]).

2.4. Remark The following properties are easily verified:
(i) In a locally bounded category, for every object A there is an infinite regular 

cardinal a such that A is a-bounded ([10], 3.1.2).
(ii) In a cocomplete category if (3 and 7 are regular cardinals such that (3 < 7, 

then every /̂ -bounded object is also 7-bounded; consequently, the fulfillment of 2.1 
for a = f3 ensures that it also holds for a = 7.

2.5. Lemma In a cocomplete category with a proper factorization system (£,M ) 
any £-quotient of an a-bounded object is a-bounded.

Proof Let B be a-bounded, let e : B —> E belong to £ and let

Q ----- - — -C  ( i e l )

be an a-directed M -union, that is, 1 c = ^ieini- Given /  : E —> C, there are some 
i and some morphism f  : B —► such that /  • e = n¿ • /'. Then, since G M  
and e £ M \  there exists f " : E —► such that /  = n* • □

2.6. Remark The property stated in Lemma 2.5 is in contrast to the case of a- 
presentability: a quotient of an a-presentable object is not necessarily a-presentable 
(see Remark 1.3 of [4]).

2.7. Lemma In a cocomplete category with a proper (£, M) factorization system:
(i) any a-small colimit of a-bounded objects is a-bounded;
(ii) any a-small union of a-bounded objects is a-bounded.

Proof (i) We are going to prove the statement for the particular case of coproducts. 
Then the result follows for colimits taking into account Lemma 2.5 and the fact that 
M  C Mono implies that RegEpi C £.

Let Ak (k £ K) be an a-small set of a-bounded objects. Let —► C (i £
I) be an a-directed union, and consider a morphism d : IIkei<Ak —► C. Since every 
Ak is a-bounded, there are morphisms fk : Ak —> C{k such that d • Vk — Cik • fk 
for all k (where Vk are the injections of the coproduct). Since K  is a-small and
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I is a-directed, there is some i G I such that ik < i, k e K. Then, putting
fkgk = ( Ak---- ►  Cik ---- >• Ci ), we obtain q • = d-Vk. Let h : IIAk —> Ci be the

morphism determined by the morphisms gk and the universality of the coproduct. 
Then we have d = Ci • h.

(ii) Let rrik : Ak —► A (k G K) be a union (not necessarily a-directed) with X 
a-small and all Ak a-bounded. Let C{ : C{ —» C (i G /) be an a-directed union, 
and consider a morphism f  : A —* C. Since 1 a = UjkeK^k  ̂the induced canonical 
morphism e : 11̂ 4̂  A belongs to £. Put

d = f  • e

and let i and h : UAk Ci be obtained as in (i). Then, we have the following 
commutative diagram:

UAk— =

h f 

Q ---- ^— >C

By the diagonal fill-in property, there exists a morphism t : A —* Ci such that 
(H-t = f. □

2.8. Theorem Let Abe a cocomplete and £-cowellpowered category with a proper 
factorization system (£, M). The following conditions are equivalent:

(i) A is locally a-bounded with respect to M.
(ii) There is a set H of a-bounded objects such that any object of A is an in- 

directed M-union of objects ofTL.

Proof (ii) => (i): It is clear that if H is a set as in (ii), then it is an f-generator of

A. In fact, given A G A, let Hi mi > A (i G I) be an a-directed .A/f-union, with 
all Hi in H. This means exactly that the induced canonical morphism IIHi —► A 
belongs to S.

(i) => (ii): Let Q be an -̂generator of A with all objects a-bounded. The class 
of objects

H = { ¿-quotients of a-small coproducts of objects of Q}

is essentially small, because Q is small and A is £-cowellpowered. Moreover, from 
2.5 and 2.7, the objects of H are a-bounded. We show that H fulfils (ii).

Let A € A, and let

{ f i : G i ^ A , i e I } =  |J  A(G,A).
GeG
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Let
J  = {J Q I : J is a-small}. 

Consider the following commutative diagram

G,'

3 y
Gj ^ + Q j ^ Ì A

“i l  ' f ‘/™ I-
Gk - ^ Q k

where:
• Gj = IIj€ jGj and the morphisms are the corresponding injections;
• for each J C. K, v f  : Gj Gk is the obvious canonical morphism;
• fj  : Gj —► A is the morphism determined by /j, j G J;
• mj • ej is the (£, A4) factorization of /j  : Gj —> A\
• for each J C K, dj : Qj —> Qk is the morphism given by the diagonal 

fill-in property applied to the equality (rriK • ¿k) ' = mj • ej.
For J  equipped with the inclusion order, both the diagrams

(vf : Gj - ►  Gk) jqk JKeJ and (<# :Qj ^ Q k ) JiKeJ

are a-directed. Moreover the colimit of the former one is Let : Qj —>
C = Colim Qj be the colimit cocone of the latter one. Then there is a morphism e : 
JlieiGi —> C making the left-hand square of the following diagram commutative.

The morphism e belongs to £, since all ej do. Let m! • e' be the (£,M) factorization 
of the canonical morphism from C to A determined by the morphisms mj. By 
hypothesis, m! • (e' • e) : H /̂G* —> A belongs to £ (because Q is an ¿̂ -generator). 
Consequently, mf lies in £, and, since it also belongs to M, is an isomorphism, that 
is, A is an union of the .M-subobjects

m j:Q j A, J e j . □
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2.9. Corollary A locally bounded category is E-cowellpowered iff for every regular 
infinite cardinal ¡3 the class of all P-bounded objects is essentially small

Proof Let A be locally a-bounded. Without loss of generality we assume that (3 > 
a. Then A is also locally /̂ -bounded and has a set H of /3-bounded objects such 
that any object of A is an .A/l-union of objects of 7i. Given a /?-bounded object A 
let rrii : Hi —> A (i G /) be that existing union. The /3-boundedness of A implies 
the equality ra* • t = I a for some t : A —► Hi. But then A ~ Hi.

Conversely, let A be a category fulfilling the conditions of 2.1(1), and such that 
for every regular infinite cardinal (3 the class of all /3-bounded objects is essentially 
small. Given an object X of A, there is some regular infinite cardinal (3 such that X 
is /3-bounded (see 2.4(i)). Consequently, by 2.5, the class of ¿-quotients of X has a 
representative set. □

3 Small-orthogonality classes

In this section we study the following problem: When is a reflective subcategory1 
B of a locally bounded category A a small-orthogonality class, i.e., a category of 
the form Af1, for AT a set of morphisms? In this study we restrict ourselves to the 
particular case of the reflector R : A —> B preserving .M-monomorphisms. More 
precisely, we characterize those reflective subcategories of a locally a-bounded cat­
egory with an M  -preserving reflector which are of the form Af1 with all morphisms 
of AT having a-bounded domains and codomains.

In the case of locally presentable categories the subcategories of the form Af1- 
for Af a set of morphisms with a-presentable domains and codomains were charac­
terized in [13] and [5] (see Introduction).

Throughout this section by an a-orthogonality class of a locally bounded cat­
egory we shall mean a subcategory of the form AfL for some set Af whose all 
morphisms have a-bounded domains and codomains. We borrow this terminology 
from [4] using boundedness instead of presentability.

3.1. Remark Recall that, for a subcategory B of A, a morphism g : C —> D of A is 
said to be a B-epimorphism if for any pair of morphisms a, b : D —> B with B G B, 
the equality a - g = b- g implies a = b.

Let A = Top. If B = Haus the S-epimorphisms are just the dense morphisms 
of Top. If B = Topo the fí-epimorphisms are the 6-dense morphisms, i.e., the 
continuous maps /  : X —► Y such that {y} D H n f(X) ^ 0 for each y e Y  and

1 Throughout this paper all subcategories are assumed to be full and isomorphism-closed.
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each open set H of Y containing y. More generally, if A has equalizers and a proper 
factorization system (£,M), then for any subcategory B of A the B-epimorphisms 
are the morphisms which are dense with respect to the regular closure operator 
induced in A by B ([9]).

If B is reflective in A it is easy to see that the B-epimorphisms are just those 
morphisms of A whose image by the reflector is an epimorphism in B.

3.2. Definition Let A be a locally bounded category and let B be a subcategory of 
A. A morphism /  : A —> B of A is said to be a-B-neat provided that in each 
commutative diagram

g
C —^  D

B
with C and D a-bounded and g a B-epimorphism, u factorizes through g, i.e., 
u = v! • g for some u'.

3.3. Remark The following properties are easily established (compare with the 
properties of B-pure morphisms in [5]):

(i) The composition of a-B-neat morphisms is an a-B-neat morphism.
(ii) If /  • g is a-B-neat than g is a-B-neat.
(iii) Every 7-B-neat morphism is a-B-neat for 7 > a.
(iv) All a-B-neat morphisms are monomorphisms; and every equalizer is an 

a-B-neat morphism.
(v) If B is cogenerating in A , then

StrongMono(A) C {a-B-neat morphisms}.
The last statement follows from the fact that, in this case, every B-epimorphism is 
an epimorphism in A.

3.4. Proposition Let Abe a locally a-bounded category with respect to M. Then 
any a-orthogonality class of A is a reflective subcategory of A which is

(i) closed under a-directed M-unions;
(ii) locally a-bounded with respect to M! — M  fl Mor(B);
(iii) closed under a-B-neat subobjects.

Proof Let B = Af1- for M a set of morphisms in A with a-bounded domains and 
codomains. From [10], we know that B is reflective and has an proper
factorization system, with £’ = (M 'Y. Moreover, cowellpoweredness of A with 
respect to £ implies £‘'-cowellpoweredness of B. Let R : A —> B be the reflector.

(i) Let
b i'.B i^ Z  (i e  I )
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be an a-directed M -union in A with all Bi G B. We want to show that Z G 
B = AfL. Let h : X —> Y be a morphism of Af and let /  : X  —> Z. Since 
X  is a-bounded there is some i and some /' : X  —► Bi such that bi • /' = /. 
The morphism /' factorizes through h, because Bi G B, and, hence, so does the 
morphism /. To show the uniqueness of the last factorization, let y, y' :Y  —> Z be 
such that y-h = y, -h. Since Y is a-bounded, we can find k G I and t , t r : Y —>Bk 
such that y = bk -1 and y' = b̂  * t'. Now the equality b̂  • i • h = b̂  • tf • /i, the 
orthogonality of Bk to h and the fact that bk € M  imply that t = t!, thus y = yf.

(ii) Of course B is cocomplete. Moreover:
(a) If X  is an a-bounded object of A , then is an a-bounded object of B. 

This is clear since, from (i), every a-directed .A/f-union in B is an a-directed A4- 
union in A.

(b) If Q is an ¿̂ -generator of A then it is well known that R{Q) is an '̂-generator 
of B ([10]). In fact, let A e B, and let e : IlieiGi —> A be a morphism of £ with all 
Gi in Q. Then the morphism Re : IIi^iRGi —► A belongs to £‘f since, as it is easily 
seen, R(£) C

(iii) Let m : Z —> B be an a-B-neat morphism with B G B. We want to show 
that Z G B. Let h : X —> Y lay in Af. Given a morphism /  : X —> Z, since 
B G AfL, we get /' such that /'  • h = m • / .  Because m is a-B-neat, there is f" 
such that f ' - h  = f. The uniqueness of /" follows from the fact that m • /  factors 
uniquely through h and m is a monomorphism. □

3.5. Remark Let A be a locally a-bounded category with respect to A4. Let B be 
a subcategory of A which is locally a-bounded with respect to M  D Mor(B) and 
closed under limits and under a-directed .A/i-unions. Then B is reflective. In fact, 
the inclusion functor B ^  A fulfils the solution set condition: Given A G A, there 
is some regular cardinal A > a such that A is A-bounded in A and B is a locally 
A-bounded category. Consequently, there is a set {Bi, i G 1} of A-bounded objects 
of B such that every object of B is a A-directed A4 fi Mor(B)-union of Bi s. But, 
being closed in A under a-directed unions, B is also closed under A-directed unions. 
Then, any morphism g : A —> B with codomain in B factorizes through some of 
the objects Bi.

Next we want to characterize the reflective subcategories of a locally bounded 
category which are small-orthogonality classes. We restrict ourselves to reflective 
subcategories whose reflector preserves A'i-monomorphisms. This kind of reflec­
tors were studied by Ringel in [18], for M = {monomorphisms}. Top0 and Sob 
are examples of subcategories of Top whose reflector preserves embeddings. Let 
Soba denote the limit-closure in Top of the ordinal a regarded as a topological

-75-



L. SOUSA - ON BOUNDEDNESS AND SMALL ORTHOGONALITY CLASSES

space with the Alexandrov topology. Both Top and Top0 have an {embeddings}- 
preserving reflector into Soba (see [19]). Also the inclusion functor of the category 
Ban of Banach spaces into the category Norm of normed spaces and linear con­
tractions has a reflector which preserves embeddings.

3.6. Theorem Let Abe a locally a-bounded category with respect to M. Let B 
be a reflective subcategory of A whose reflector preserves morphisms of M. Then 
B is an a-orthogonality class in A iff it is closed under a-directed M-unions and 
a-B-neat subobjects.

Proof The necessity was proved in 3.4.
In order to prove the sufficiency, we first show that the reflector R : A —> B 

preserves a-directed .A/i-unions. Given an a-directed M -union ra* : Xi —► X (i E 
/), we have commutative diagrams

X i-------------------—------------------ RXi
R u y /

mi II iç-lXi---- >~Jli£iRXi Rrrii

„ w 
X ------------------- ------------------- ► RX

where e E £. But, as is easy to see, R(£) C £ f = for M! = M  Pi Mor(B).
Then the morphisms Rmi : RXi —> RX form an X'-union in B.

To finish the proof, we show that, for

J\i = {h : X  —> Y in A, h _L B, X, Y  a-bounded},

M1- C B, and thus B = Af1. Let X e Af1. We show that the reflection rx • X  —► 
RX of X  in B is a-S-neat; consequently, as B is closed under a-B-subobjects, 
X e B. Let f  : Y  —> Z be a B-epimorphism with Y and Z a-bounded. Given 
morphisms s : Y —> X  and t : Z —> RX such that t • /  = rx • s, let rrti : Xi —► X  
be an a-directed M -union in A with all Xi a-bounded. Then there is some i e I 
and sf : Y —> Xi such that rrii • s' = s. The closedness of B under a-directed M- 
unions and the fact that Z is a-bounded implies the existence of some j  E I and a 
morphism t' : Z —► RXj such that Rmj -t' = t. Since I is a-directed, we can then 
find k E I and morphisms s and t such that the following diagram is commutative 
(the commutativity of the upper quadrilateral is derived from the fact that Rrrik is
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monic):
f

Y --------------- ---------------
t

^ rXu
x k ----k+R Xk t

X -------------- —------------*R X

ft ,
Let X k---- ►  W ^ — Z be the pushout of /  along s. Since rxk -L B, any mor­
phism g : Xk —> B with B G B is factorizable through /'. Furthermore, as 
one easily sees, the pushout of a S-epimorphism is also a S-epimorphism. Hence 
/' _L B. The domain of /' is a-bounded, and from Lemma 2.7, also its codomain 
is a-bounded, then f  G Af. Hence there is a morphism n : W X  such that 
n- f  = rrik. Therefore, n • s' is the needed diagonal morphism, since (n • s') • /  = 
n- f r - ~s = rrik -s = s. □

3.7. Examples (1) The category Top0 is an No-orthogonality class in Top. In fact 
Topo = {h}1- where h is the map h : {0,1} —> {0}, considering the two-elements 
set with the trivial topology.

(2) The category Topx of T\ topological spaces is an Ho-orthogonality class 
of Top. It is just the subcategory of all objects orthogonal to the quotient S 
{0}, where S is the Sierpinski space. In this case, the reflector does not preserve 
embeddings.

(3) Sob is not an No-orthogonality class in Top0, and, consequently, it is not 
an No-orthogonality class in Top. This follows from the above theorem taking into 
account that Sob is not closed under No-Sob-neat subobjects in Top0.

For that, we show that every Sob-epimorphism e : X  —► Y with X  and Y finite 
is a suijection. (We recall that the Sob-epimorphisms of Top0 are the 6-dense mor- 
phisms, see 3.1.) Let y e Y ,  let {Hi, i E 1} be the set of all open neighbourhoods 
of y, and put H = f)ieI H Since I is finite, H is an open containing y, and, then, 
H n e(X) fl {y} 7̂  0. Let y' be an element of that intersection. Thus {y'}
But for all Hi we have y' e H hence {y} = {yf}. Since Y G Top0, we conclude 
that y = y', then y G e(X).

As a consequence we have that
{embeddings} C { No - Sob-neat morphisms}.

But then, if Sob were closed under No-Sob-neat subobjects, it would also be 
closed under embeddings, what is obviously false (since the reflections are embed­
dings).
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(4) The category Norm of normed (real or complex) vectorial spaces and linear 
contractions is a locally No-bounded category with respect to embeddings, and its 
No-bounded objects are the spaces with finite dimension. Analogously, all spaces 
with countable dimension are Ni-bounded. The subcategory Ban of all Banach 
spaces is an Ni-orthogonality class of Norm. In fact, it is easy to see that

Ban = M*-

where N  is the class of all dense embeddings X ^  Y with X  and Y with countable 
dimensions.

Acknowledgement I acknowledge the referee for the suggestion of the name a-B- 
neat.
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