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CAHIERS DE TOPOLOGIE ET Volume XLVIII-4 (2007)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

FIRM REFLECTIONS GENERATED BY
COMPLETE METRIC SPACES

by E. COLEBUNDERS and A. GERLO

RESUME. Nous étudions des catégories concretes olt chaque objet
est un sous-espace d’un produit “d’espaces métrisables”. Si une telle
catégorie est munie d’un opérateur s de fermeture, nous considérons
Us, la classe des immersions denses. Nous traitons les questions sui-
vantes: (1) si les espaces complétement métrisables sont des objets
Us-injectifs, (2) si la classe des sous-objets s-fermés d’un produit
d’espaces complétement métrisables est U “uniquement” reflective.
Nous démontrons que dans notre contexte, ces questions sont équiva-
lentes et nous formulons des conditions pour avoir une réponse af-
firmative. Le théoréme principal permet de traiter un grand nombre
d’exemples.

1 Introduction

The category Unify of separated uniform spaces, endowed with the closure
operator r determined by the underlying topology, will be our guiding ex-
ample in the study of completeness in a more general setting. Completely
metrizable uniform spaces play an important role in the uniform case, since
firstly they are injective objects with respect to the class U, of all dense em-
beddings and secondly the complete uniform spaces are exactly the closed
subspaces of products of completely metrizable spaces. Moreover the com-
plete objects form a firmly U, - reflective subconstruct of Unify in the sense
of [3].

We will investigate to what extent these results hold in a more general
setting. The general framework we will be working in is the one of metri-
cally generated constructs as introduced in [6]. These are constructs X for
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which a natural functor describes the transition from (generalized) metric
spaces to objects in the given category X. For example, with a (general-
ized) metric d one can associate e.g. a (completely regular) topology 7y, a
(quasi)uniformity Uy, a proximity P, or an approach structure 4. In each of
these examples, a natural functor K from a suitable base category C consist-
ing of (generalized) metric spaces to the category X is given. If the functor
K fulfills certain conditions (preserves initial morphisms and has an initially
dense image) then the category X is said to be metrically generated. This
setting, which covers all the examples above and many others, is convenient
for our purpose since in particular every object in X is a subspace of a prod-
uct of “metrizable” spaces. We will restrict to Tp-objects and a first attempt
will be to endow Xp with its regular closure operator r and to consider the
class U, of all r-dense embeddings. The following two questions will be
investigated:

1) Are the completely metrizable objects U,-injective?

2) Is the class of all r-closed subspaces of products of completely metrizable
objects firmly U,-reflective?

In fact we will show that in our setting these questions are equivalent
and we will give necessary and sufficient conditions for a positive answer.
Our main theorem will apply to a large collection of examples listed in the
tables of the next sections. It will become clear that there exist metrically
generated constructs X allowing a U,-firm reflective subconstruct & which
cannot be generated by complete metric spaces, so for which the questions
above nevertheless have a negative answer.

In some cases where the answer to the questions above is negative, we
still succeed in defining a smaller non-trivial closure operator for which the
answers do become positive.

2 Metrically generated theories

In this section we gather some preliminary material that is needed to intro-
duce the setting of this paper. We use categorical terminology as developed
in [1] or [17] and we refer to [9] for material on closure operators.

In [6] it was shown that every metrically generated construct can be isomor-
phically described as a subconstruct of a certain model category. It will be
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convenient to deal with these isomorphic copies. So we recall the material
on the model categories and fix some notation.

We call a function d : X x X — [0,0] a quasi-pre-metric if it is zero on

the diagonal, we will drop “pre” if d satisfies the triangle inequality and we
will drop “quasi” if d is symmetric. Note that we do not ask these quasi-pre-
metrics to be realvalued or separated. If d is a quasi-metric we denote by d*
its symmetrization d vd~'.
Denote by Met the construct of quasi-pre-metrics and contractions. Recall
that a map f: (X,d) — (X',d’) is a contraction (also called a nonexpansive
map) if for every x € X and y € X one has d'(f(x), f(y)) <d(x,y) (or shortly
ifd’ o f x f < d). Further denote by Met(X ) the fiber of Met structures on X.
The particular full subcategory of Met consisting of all quasi-metric spaces
[12] will be denoted by C?. Other subconstructs that will be considered are
C2 the construct of metric spaces, C2? the construct of totally bounded
metric spaces and C* the construct of ultrametric spaces.

The order on Met(X) is defined pointwise and as usual a downset in
Met(X) is a non-empty subset .S such that if d € § and e is a quasi-pre-
metric, e < d then e € S. For any collection B of quasi-pre-metrics we put
Bl:={ecMet(X)|3d € B:e<d}. We say that B is a basis for M if
Bl=M.

M is the construct with objects, pairs (X, M) where X is a setand M is a
downset in Met(X). M is called a meter (on X) and (X, M) a metered space.
If (X, M) and (X', M) are metered spaces and f : (X, M) — (X', M) then
we say that f is a contraction if

Vd eM' :dofxfeM.

It is easily verified that M is a well fibred topological construct. We refer
to [6] for the detailed constructions of initial and final structures.

A base category C is a full and isomorphism-closed concrete subcon-
struct of Met which satisfies certain stability conditions as formulated in [6].

In this paper we will only consider base categories C that are contained in
C? and that satisfy some supplementary conditions from [5] ensuring some
results on separation.

In order to deal with completions we will add one more condition which
will be assumed on all base categories we encounter.
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[B] C is said to be closed under “r-dense” extensions in C® whenever
f:(X,d) — (Y,d") is a Ty~-dense embedding in C* with (X,d) belonging
to C then also (Y,d’) belongs to C.

The subconstructs of Met introduced earlier, C2, €%, C2? and C* are
base categories and as we know from [5] the results on separation go through.
Note that all of them satisfy [B].

Given a base category C, one considers C-meters, these are meters ha-
ving a basis consisting of C-metrics. The full reflective subconstruct of M,
consisting of all metered spaces with meters having a basis consisting of C-
metrics is denoted by MC and the fiber of M€ structures on X is denoted by
ME(X).

An expander & on M€ provides us for every set X with a function

ME(X) —ME(X) : M §(M)

such that the following properties are fulfilled:
[E1] M C (M),
[E2] M C A= E(M) C §(N)),
[E3] E(E(M)) = §(M),
[E4]if f:Y — X and M € ME(X), then: (M) o fx f CE(Mofx f )

Given an expander £ on MC, then Mg is the full coreflective subconstruct

of M¢ with objects, those metered spaces (X, M) for which §(M) = M.

The main result of [6] states that M€ provides a model for all C-metri-
cally generated theories in the sense that a topological construct X is C-
metrically generated (meaning that there is a functor K : C — X preserving
initial morphisms and having an initially dense image) if and only if X is
concretely isomorphic to Mg for some expander & on M. Again in order to
apply some results on separation we assume two extra technical assumptions
[E5],[E6] on the expanders:

[E5]1 £({0}) = {0}, where 0 denotes the zero-metric,

[E6] £(M) is saturated for taking finite suprema, for every M € M¢(X).

Without explicit mentioning, we will only consider expanders that satisfy
the conditions [El] up to [E6] from [6] and [5].

For a C-meter D on a set X, denote £€ (D) = {d € §(D) | d C-metric} |.
If we consider the following examples for £, we obtain expanders £$,£$.E§,
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E56.E5 and 1€ on MC, which will yield important constructs within the
framework of metrically generated theories.

edc&r(D)iff Vx € X,Ve > 0,3d,,....d, € D,38 > 0:supl_, di(x,y) <d=d(x,y) <€

o d c & (D)iff Vx € X,Ve > 0,V < 00, 3d),...,d, € D:d(x,y) A® < sup’, di(x,y) +¢€
od e y(D)iff ve >0,3d,....,d, € D38 > 0: supl_, di(x,y) < d=>d(x,y) <€

o d e &ycg(D) iff Ve > 0,V < o0, 3d),...,dy € D : d(x,y) A0 < supl_, di(x,y) +€

od € &p(D)iff d <sup,cpe.

o d € (D) iff d < sup,cqe, for afinite £ C D.

Whenever it is clear from the context what base category is involved, we
will drop the superscript C in the notations above. We capture many known
topological constructs, considering the above expanders on categories M¢,
for different base categories C.

¢t s
EC| Top Creg Creg ZDim
C| Ap UAp UAp ZDAp
¢ | qUnif Unif Prox naUnif
‘6| QUG UG efGap tUG
N I Sl S

Top, Creg and ZDim consist of all topological spaces, of all completely reg-
ular and of all zero dimensional topological spaces respectively, with contin-
uous maps as morphisms.

Ap and UAp consist of all approach spaces and uniform approach spaces in
the sense of [13], with contractions as morphisms. ZDAp is the full sub-
construct consisting of all zero dimensional approach spaces. These are
approach spaces with a gauge basis consisting of ultrametrics or could be
equivalently defined as those approach spaces that are subspaces of products
in Ap of ultrametric spaces.

qUnif consists of all quasi-uniform spaces [12], [8], Unif of all uniform
spaces, with uniformly continuous maps as morphisms, Prox of all prox-
imity spaces and proximally continuous maps [17] and naUnif is the full
subconstruct of Unif consisting of all non-Archimedian uniform spaces in
the sense of [16].

qUG consists of all quasi-uniform gauge spaces [7], UG of all uniform
gauge spaces [14], with uniform contractions, efGap of all Effremovic-gap
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spaces in the sense of [10] with associated maps and tUG is the full subcon-
struct of UG consisting of all transitive uniform gauge spaces.

3 Cogeneration by completely metrizable spaces

Recall that an object (X,d) in C2 is said to be bicomplete if (X,d*) is com-
plete. (Y,q) is a bicompletion of a C*-object (X,d) if (Y,q) is a bicomplete
space in which (X,d) is g*-densely embedded. For objects in a base cate-
gory C, we will use the following analogous definition for completeness and
completion.

Definition 3.1. e A C-object (X,d) is called bicomplete if (X,d*) is
complete.

e (Y,q) is a C-completion of a C-object (X ,d) if (Y,q) is a bicompletion
of (X,d) in C* and (Y,d) belongs to C.

As usual we denote by Xy the class of Tp-objects in X [15]. In particular
(b is the subconstruct of C consisting of its Tp-objects.
It is well known that every Tp quasi-metric space has an (up to isometry)
unique Q)A-completion. It easily follows from our assumptions on the base
categories that for (X,d) a Ty C-object, the ('-completion of (X,d) is also
the unique (h-completion.

Recall from [4] that a (complete) construct is said to be Emb-cogenerated
by a subclass ? if every object is embedded in a product of P-objects.

Proposition 3.2. Assume C is a base category and let & be an expander on
MC. Let

P={(Z,E({e}l)) : (Z.e) is a bicomplete Cy — space}

Then P is an Emb-cogenerating class for (Mg )0.

Proof. Case 1) of the proof deals with the expander 1€. Let (X,D) be an
arbitrary (M) ,-object, with a base Q of C-metrics.
Note that the source

(Ix : (X,D) — (X,{q}1))4eq
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is initial in MlCC. Recall that the Tp-quotient reflection of a quasi-metric space
(X,d) is given by the morphism

T (X,d) — (Xd,Z) XX

where ¥ = {y € X | d(x,y) =d(y,x) =0}, Xy = {¥ | x € X} and d(X,y) =
d(x,y) for x,y € X. Using the standing assumptions on C, the Tp-reflection
of a C-object is obtained in the same way as in C2. The reflection morphism
Tq: (X,q9) — (X4,9) : x— X is initial. which implies that also the source

(‘L'q : (X, Q)) I (Xqv {7}1))qu

is initial in MICC. By our standing assumptions on C, for each g € Q, one can
consider the (j-completion (5(;,5) of the space (Xq,ﬁ). So, forevery g € Q,
the map k, : (X,,g) — (X,,g) is initial in C. It follows that the contraction
kg : (X5, {G})) — (X, {g}1 ) is initial in M. Finally one obtains the
following initial source in MlCC:

(kgote: (X, D) — (%, {3} ))qu

Due to the Ty property of (X, D), which means that for any x,y € X,x # y,
there exists d € M : d(x,y) # 0 or d(y,x) # 0, this source turns out to be
point-separating. Moreover for every g € Q, the C-space ()/(;, {5}1 ) isa
P-object.

For case 2) of the proof, let (X, D) be an arbitrary (Mg )o-object. It
suffices to apply the coreflector & : MIC; — Mg 1 (Y,G) — (Y,E(G)) to
the source (k;0T4)geq- O

We capture some well known results like Unify being Emb-cogenerated
by the class

{(Z, Uy) | d a complete Hausdorff metric on Z}
and the construct UAp, being Emb-cogenerated by the class

{(Z,3,) | d a complete Hausdorff metric on Z}.
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The previous theorem implies analogous results for all the constructs in ta-
ble of section 2. Note that Top, and Ap, are cogenerated by a single ob-
ject. Topy is Emb-cogenerated by the Sierpinski space S, which is quasi-
metrizable by a Tp bicomplete quasi-metric. Ap, is cogenerated by the ob-
ject P. This object P however is not (bicompletely) quasi-metrizable. We
will come back to these examples in section 5.

4 Construction of complete objects from com-
pletely metrizable spaces

In this section we tackle our main problem. We will endow (MC )0 with a
closure operator s and we will consider the class U of all s-dense embed-
dings. The following two questions will be investigated:

1) Are the completely metrizable objects Us-injective?

2) Is the class of all s-closed subspaces of products of completely metrizable
objects firmly Us-reflective?

For explicit definitions on firmness we refer to [4] and [3]. Here we
briefly recall that, given a class U of X-morphisms, a reflective subconstruct
with reflector R is said to be subfirmly U-reflective if it is U-reflective and
if for every morphism u in U the reflection R(u) is an isomorphism. If U
coincides with the class of morphisms for which R(u) is an isomorphism,
the subconstruct is said to be firmly U-reflective. Among other things U-
firmness implies uniqueness of completion with respect to the class .

Since the class U; we will be dealing with consists of certain embed-
dings, Us-firmness will imply that 7 is contained in the class of all epimor-
phic embeddings. In all the examples in section 6. we will be dealing with
closure operators on (Mg )¢ that are (pointwise) smaller than the regular clo-
sure operator r, describing the epimorphisms. In order to satisfy the standing
assumptions on stability of U with respect to compositions, as put forward
in [3], we will assume that the closure operator s is idempotent. The class of
‘Us-injective objects is denoted by Inj ;. The proof of the next result uses
standard techniques, see for instance [4].

Proposition 4.1. [f s is a weakly hereditary, idempotent closure operator on

X, then InjUs is closed for taking s-closed subspaces of products in (Mg )o-
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In [5] the closure operator r has been explicitely formulated in the fol-
lowing way. For an (Mg )o-object (X, D)

x€rx(M) < VdeD: ig{ld(x,m)+d(m,x) =0

The closure operator r is known to be idempotent and was shown to be hered-
itary on (Mg ), for all the expanders listed in section 2, i.e. for arbitrary C in
cases where & equals any of the expanders 1€,£(, ES - or €S, and for C C €&
and C in the cases £C” £

Theorem 4.2. Assume C is a base category and let & be an expander on MC.
On (Mg )0 let s be a weakly hereditary, idempotent closure operator and let
U be the class of all s-dense embeddings in (Mg )0.

The following are equivalent:

1. Forevery j: (X,H) — (Y,D) with j € Us:

JEUand H =Dojxj|

2. The class P = {(Z,E({e}])) : (Z,e) is a bicomplete Gy-object} is Us-
injective in (Mg )o and U C Uy,

3. The class R of s-closed subobjects of products of P-objects is a sub-
firm Us-reflective subcategory of (Mg ) o

Proof. To prove that 1. implies 2. let (Z,E({e}])) be an arbitrary P-object,
j:(X,H) — (Y, D) belong to Us and f: (X,H) — (Z,&({e}])) be a
contraction in Mg . Since eo f x f belongs to A and since by 1. H =
Do jx j |, wecanchoose a C-metric d € D suchthateof x f <dojx j.
Consider the following situation in C*. The map j: (X,do jx j) — (Y,d) is
ad*-dense embedding and f : (X,do j X j) — (Z,e) is a contraction. Since
(Z,e) is bicomplete, it is injective in C* with respect to r-dense embeddings,
and hence there is a contraction f : (Y, d) — (Z,e) such that foj= f.
Clearly f : (Y,D) — — (Z,{e}l) is a contractlon in M and since (Y, D)
belongs to Mg the map f : (Y, D) — Z,E({e}])) is a contraction in Mg
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To prove that 2. implies 3., we follow the lines of proof of theorem 1.6
in [4]. First note that by 3. P C InjU,. Hence, from proposition 4.1 we have
that R C InjU;. Next we show that K is a Us-reflective subconstruct.

Let X be an arbitrary (Mg ) o-object. Proposition 3.2 ensures that there exist
objects P; € P (i € I) such that we have an embedding j : X — [];c, P;i. Con-
sider its (‘E*, M*)-factorization j = moe where X —» M — [;¢; Pi, with
e € E° and m € M. Since j is an embedding, so is e. So we get that e € U
and M € R;.

ForY € R; and f : X — Y an arbitrary contraction, using the Us-injectivity
of Y, we can construct a contraction f* such that f* oe = f which is unique
by the fact that e is an epimorphism.

Moreover, R; is subfirmly U-reflective. For (Mg )o-objects X and Z sup-
pose g : X — Z belongs to Us. Denote by rz : Z — RZ and rx : X — RX
the R;-reflection morphisms. Using the Us-injectivity of RX and the fact that
g, rz and rx belong to U, we can conclude that there exists a contraction
h: RZ — RX such that 4 and Rg are each others inverses. Finally Rg is an
isomorphism.

To prove that 3. implies 1. suppose R is subfirmly Us-reflective. Then
the results in [3] already imply that K = InjU; and that Us C U,.

Let j: (X,H) — (Y, D) belong to U and consider an arbitrary C-metric
e € H. Then, as in the proof of proposition 3.2, the map

Oe: (X, H) — (fe’a (XX

is a contraction in M€ and therefore o, : (X, #H) — ()?e,é({?}l)) is a con-
traction in Mg Since (X,,&({e}])) is Us-injective, there exists a contraction

a, : (Y,D) — (X.,E({€})), such that G, o j = 0. Composing G with the
MC -morphism

J (X, Do jx jl) — (¥, D) :x— j(x)

we get that R R
deoj' 1 (X, Dojxjl) — (Xe,E({e}]))

is a morphism in MC. Consequently: e = 2o (g 0 j') X (0 0 j') belongs to
Do jx jl. 0
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If moreover we assume the closure operator s to be hereditary, we can
strenghten 3. in the equivalences of theorem 4.2.

Corollary 4.3. Assume C is a base category and let & be any expander on
MC. On (Mg )o let s be a hereditary, idempotent closure operator and let Us
be the class of all s-dense embeddings in (Mg )o-

The following are equivalent:

1. Forevery j:(X,H)— (Y,D) with j € Us:

jeEUand H=Dojxj|

2. P={(Z,E({e}]l)) : (Z,e) is a bicomplete Cy-object} is Us-injective
in (Mg ) oand Us C Uy,

3. The class R of s-closed subobjects of products of P-objects is a firm
U-reflective subcategory of (Méj )0'

Proof. The only non-trivial implication is 2. implies 3. In view of the fact
that by theorem 4.2 the class X is already subfirmly U;-reflective, it is suf-
ficient to show that U is coessential [3]. Suppose both u and u o f belong to
U, then clearly f is an embedding. The hereditariness of s and the fact that
uo f is s-dense imply that f is s-dense.

a

5 Examples

Remark that if one of the equivalent claims of propositions 4.2 or 4.3 holds
for the regular closure operator r of (Mg )o» then it also holds for every
idempotent, (weakly) hereditary closure s on (Mg )o With s < r. For this
reason we start investigating concrete situations of categories endowed with
the regular closure r.
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5.1 U,-firmly reflective subconstructs: the case of the ex-
panders & equal to 16, £5, £5 - or .

Let C be any base category. As was shown in [5] the regular closure r on
(Mg )o, built with the expanders listed above, is idempotent and hereditary.
We will show that the first claim in 4.3 (and thus also property 2. and 3.)
holds.

Proposition 5.1. For any expander listed in the subtitle 6.1.,let
Jj: (X, H) — (Y, D) a morphism in (Mg )o Such that j € U,, then we have

H=Dojxj]|.

Proof. Remark that the proof of the statement for the expanders &g and 1€
is based on the fact that in both cases subobjects in Mg coincide with sub-
objects in MC.

We give an explicit proof for the case & equal to E_,[C,G The remaining case
where & equals £S will follow from it, since MS. is a bireflective subcon-

&
struct of M{.. . Let j: (X, #) — (Y, D) a morphism in (M, ), and sup-
aUG aUG 0

pose j € U,. First apply the symmetrizer in the sense of [5] to (X, H), (Y, D)
and to j. It is a coreflector in this case. Then compose it with the re-
striction of the uniform coreflector. Using isomorphic descriptions of the
objects we denote U(H*) and U(D*) for the objects obtained and again
J (X, U(H*)) — (Y, U(D*)) for the image through the composed func-
tor. j now is a dense embedding in Unify.

Let e € # be an arbitrary C-metric. Then e is uniformly continuous on X x X
endowed with the product of the uniformities U(#*). In view of the density
assumption, there is a unique uniformly continuous quasimetric g on Y x Y
endowed with the product structure of U(D*) and satisfying go j x j =e.
An explicit formulation of g is given by

g:YxY —[0,0]: (y,y) —> d:[l)lioe(j_l(Bd*()’,e)),J '(Ba (' .€))).

Since we have that j : (X,e) < (Y,g) is an r-dense embedding in C* the
quasi-metric g is a C-metric.
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The only thing left to prove is that g belongs to D.

Let € > 0 and @ < oo be arbitrary. Since H = &{ (Do jx j |) there exists a
C-metric d € D such that e(z,w) A\@ < d o j x j(z,w) + § for every z,w € X.
Take y,y’ € Y arbitrarily. We will show that g(y,y') A® < d(y,y) +¢.

Let p € D, { > 0 be arbitrary. Choose x,x’ € X such that (pVd)*(y, j(x)) <
EA%and (pvd)*(y,j(x')) < CA%. Then we have

e By (50), 7 (Bp (D) A0 < eX) A S d(ny) +e.
O

The previous results imply that for a metrically generated construct X,
which is one of the examples qUnify,Unify, Proxo, naUnify, UG, UGy,
efGap,, tUG, (p, or (MY),, there exists a U,-firmly reflective subcategory
R, of complete objects. Moreover the complete objects are “‘generated” by
the completely metrizable objects in the construct, meaning that an object in
Xp is complete if and only if it is an r-closed subset of a product of objects in
the image of the class of bicomplete (p-objects under the functor K : C —
X.

In the table below we associate to each subconstruct X, in the list of
examples some known subconstruct of complete objects described in the
literature.

R. is generated by bicompletely metrizable objects
qUnif,, | bicomplete Tp quasi-uniform spaces
Unify | complete Hausdorff uniform spaces
Prox, | Effremovic proximity spaces with compact Hausdorff
underlying topology
naUnify | complete non-Archimedian uniform spaces
UGq | complete Ty-Uniform Gauge spaces
efGap, | Gap-spaces with compact Hausdorff underlying topology
tUGq | complete transitive To-Uniform Gauge spaces
Q)A bicomplete Ty quasi-metric spaces
4s | complete Hausdorff metric spaces
G | compact metric spaces
G | complete Ty ultrametric spaces
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5.2 U,-firmly reflective subconstructs: the case of the ex-
panders &S and &

In case & equals ES or &S, things do not work in the same way as in the
previous examples.

We first deal with base categories C contained in C2* and we refer to

table in section 2 for the isomorphic descriptions of the constructs.
It is well known that in Creg, there doesn’t exist a U,-subfirm subconstruct
K. It is shown in [4] that Creg, does not have U, -injective objects, ex-
cept for the singleton spaces. The argument uses the r-dense embedding
J: (N, T) — (N*,T*) of the discrete space of natural numbers into its
Alexandroff compactification. On (N, 7") a two valued continuous function,
which is 0 on even numbers and 1 on odd numbers, has no continuous exten-
sion to (N*,7*). Since both (N,T) and (N*,7*) are zero dimensional, the
same argument shows that in ZDimg there cannot exist a U,-subfirm sub-
construct either. Considering (N,7) and (N*,7*) as topological approach
spaces gives the same negative result for UAp,. Showing that these spaces
are moreover zero dimensional approach spaces, yields that there is no U,-
subfirm subconstruct in ZDAp,, either.

Next we deal with the base category 2. The expanders Er and 4 pro-
vide isomorphic descriptions of the constructs Top and Ap respectively. It
is well known that the construct TSob of sober topological spaces is a U,-
firmly reflective subconstruct of Top,. However TSob is not generated by
bicompletely quasi - metrizable objects. In fact for the class

P={(Z,T,) | e Tybicomplete quasi-metric}

we have that ? ¢ TSob.
In order to illustrate this, consider the quasi-metric e on N given by e(n,m) =
0 and e(m,n) = = if n < m. Note that e is a Tp quasi-metric such that e* is
discrete and therefore complete. For € > 0 and n € N we have B,(n,€) =
{n,n+1,...}. It now easily follows that N is irreducible and that it can’t be
written as the closure of a singleton.

An analogous situation appears in Apy. In [11] it was shown that the
construct ASob of sober approach spaces is U,-firm in Ap,. Again

? ={(Z,8.) | e Ty bicomplete quasi-metric} ¢ ASob
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and by corollary 4.3 this implies that ASob is not generated by bicompletely
quasi-metrizable objects. Indeed, consider the same bicomplete Tp quasi-
metric space (N, e) as in the previous argument. The fact that (N, Z;) is not
sober as a topological space, implies that (N, 3,) is not sober as an approach
space.

R
Creg, | non existing
ZDimy | non existing
Top, | Sober topological spaces; not generated by completely metrizable obj.
UAp, | non existing
ZDAp, | non existing
Ap, | Sober approach spaces; not generated by completely metrizable obj.

5.3 Us-firmly reflective subconstructs for the closure oper-
ator determined by the metric coreflection

In this section, instead of considering the closure operator r we look for a
natural closure operator that is smaller. For (X,?) an (Mg )g-object, and
x,y € X, put
¢(x,y) = supd(x,y).
deD

Then, consider the topological closure c/®" associated with the symmetriza-
tion @*. Clearly cI?" is an idempotent closure operator which is smaller than
the regular closure r.

In case § = £, the closure cI?" clearly coincides with the regular closure
r, so the completion theory coincides with the one we investigated in 6.1.

If € equals £G or 1€, then ¢l®" is the closure of the symmetrization of the
coreflection into ( and cI® can be seen to be hereditary. Since proposition
5.1 holds for &y (1) and the regular closure r, the same is true for cl®. It
follows that the subcategory %K,,+ consisting of all cl® -closed subobjects of
products of bicompletely metrizable objects forms a U, -firm subconstruct
of (Mgf )o ((M%),). Via the expander & we get isomorphic descriptions

U
of qUG, UGy, efGap, and tUGo for which the U, -completion theory
was not yet considered in the literature.
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Note that if & equals &5 or ES, then cI?" is the discrete closure and so the
cl® -dense embeddings coincide with the isomorphisms in (Mg ) o- So the
completion theory with respect to U+ becomes trivial in these constructs.
For example, in Top,, Creg,, ZDimg, qUnif,, Unify, Proxo and naUnify,
all objects are U o+ -complete.

If € equals &S then cl®" is the closure of the symmetrization of the core-
flection into Gy and c¢l® is hereditary. We consider the constructs UApy,
ZDAp, for which the completion theory with respect to the regular clo-
sure failed and Ap, for which the firm U, -reflective subconstruct ASob is
not generated by bicompletely metrizable objects. The subconstruct cUAp,
consisting of complete objects in UAp,, as introduced in [13], is firm with
respect to U+, as can be deduced from the result on uniqueness of comple-
tion there. Moreover it also follows from [13] that the completely metrizable
objects are U4+ -injective. So by corollary 4.3 we can conclude that the ob-
jects in cUAp, are cl® -closed subobjects of products of complete metric
approach spaces. Similar results can easily be obtained for the objects in
¢ZDAp,, the :onstruct of all complete zero dimensional approach spaces.

In [2] a bicompletion theory for Ap, was developed. A subconstruct
bicAp, of so called bicomplete approach spaces was constructed which was
shown to be U+ -firm and the bicomplete quasi-metric spaces were shown
to be U -injective. Again this yields the conclusion that the objects in
bicAp, are generated by bicomplete quasi-metric spaces.

R.o- is generated by bicompletely metrizable objects
UAp, | cUAp,
ZDAp, | ¢ZDAp,
Ap, | bicAp,
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