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CAHIERS DE TOPOLOGIE ET Vol. XLVIII-2 (2007) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

COHOMOLOGY WITHOUT PROJECTIVES 
by Dominique BOURN and Diana RODELO 

Abstract 

Une longue suite exacte de cohomologie, sur le modèle de 
celle de Yoneda, est obtenue pour des catégories additives qui 
ne sont pas strictement abéliennes, sans projectifs et même 
sans object 0. Cela permet, entre autres, de faire entrer dans 
ce cadre les catégories des groupes topologiques et des groupes 
topologiques séparés et de jeter quelques lumières sur le par
allélisme de traitement de la cohomologie des groupes et de la 
cohomologie des algèbres de Lie. 

Introduction 
One of the most illustrative cohomology results is that in any 

abelian (i.e. additive+exact) category A, provided that there are 
enough projectives, any short exact séquence in A: 

0 —+ A ̂ - B - ^ C — 0 

and any object X produce a long exact séquence of abelian groups: 

0 >HomA(X,A) ^ - HomA(X,B) — Hom,A{X,C) 

Extk(X,A) =—*• Extk(X,B) -—+Extk{X,C) 

Extl(X,A) - ^ Extn
A(X,B) -±+ Extl(X,C) 

in 

Extn
A

+l(X,A) = ^ Extl+1(X,B) -j* Extl+1(X,C) 

1 
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see, for instance, the classical books [19] or [15] as well as a more 
récent approach [21]. The aim of this work is to show that this long 
exact séquence still holds even when the additive category A is not 
exact, has no projectives and even in the absence of an object 0 (see 
example 3 in Section 6). 

An additive category without 0 is known by the notion of a nat-
urally Mal'cev category and was introduced by P.T. Johnstone in 
[18], see also [6]. The principal examples of such catégories dealing 
with homology theory are the full subcategory of the slice category 
Gp/C (objects: group homomorphisms with codomain the group C, 
morphisms: commutative triangles above C) whose objects are the 
homomorphisms with abelian kernel and, similarly, the full subcate
gory of the slice category Riie/A (objects: Lie-homomorphisms with 
codomain the Lie Algebra A over the ring R) whose objects are the 
Lie-homomorphisms with abelian kernel, i.e. equipped with trivial Lie 
brackets, see [2]. 

The "active" part of a cohomology theory, namely the Baer sums, 
though classically treated in the Barr exact context, is still available 
in the strictly weaker context of effective regularness, see [9]. 

The price to drop of projectives is to investigate the connected 
components of the monoidal catégories Exi^(X, 4̂) which produce the 
abelian groups Ext^X, A). It is shown that two objects X and X' 
are in the same connected component if and only if there are linked 
by a single pair of legs: 

V 
/ X 

X X' 

The absence of an object 0 also has its price. For any object X, the 
terminal map is no longer a split epimorphism and, in gênerai, is not 
even a regular epimorphism (i.e. X may not hâve a global support), 
which is crucial for the development of our theory. Unfortunately, 
the subcategory of objects with global support is not closed under 
pulbacks, thus demanding an amount of work which results in an 
exposition a bit longer than initially expected. 

Still in the absence of 0, we must détermine which notion plays 
the rôle of a chain complex of length n. It appears that the notion 
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of internai n-groupoids is suitable, as previously used in [4]. The tool 
organizing the whole machinery is the, subsequently defined, direction 
of an n-groupoid, see [7], [8] and [20]. 

The direct profit of this approach is mainly two-folded : providing 
some new light on the known classical parallelism in the treatment of 
the cohomology of groups and of the cohomology of Lie algebras; and 
extending the cohomology methods from ordinary abelian groups to 
topological and HausdorfT abelian groups, see Section 6. 

1 General setting 

1.1 Naturally MaPcev catégories 

A ternary opération p \ X x X x X ^ X is Mal'cev when it satisfies 
p(x,y,y) = x and p(x,x,y) = y. A category C is naturally Mal'cev 
[18] when it is finitely complète and admits, for any object X, an 
internai natural Mal'cev opération: 

px : X x X x X — ^ X. 

It was shown in [6] that this is équivalent to saying that, for every 
object X, the following upward left hand side pullback (with the sim-
plicial notations) is actually a pushout: 

the natural Mal'cev opération being given by the induced dotted 
factorization. In a naturally Mal'cev category, any pointed object 
e : 1 —> X is endowed with a canonical structure of internai abelian 
group: 

XxX~XxlxX ^ ¾ X x X x — ^ X. 
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Examples 1.1. Naturally Mal'cev catégories. 

1) Any finitely complète additive category A is naturally Mal'cev. 
Thanks to the previous remark the converse is true: a pointed 
naturally Mal'cev category is necessarily additive. This is why a 
naturally Mal'cev category may be thought as an additive cate
gory without 0. 

2) When C is naturally Mal'cev, any slice category C/X (objects: 
morphisms with codomain X, and morphisms: commutative tri
angles above X) is itself naturally Mal'cev, see 2.4.13 in [2]. Con-
sequently any category PtxC (objects: split epimorphisms above 
X, and morphisms: commutative triangles between them), be-
ing pointed and naturally Mal'cev, is additive. This last point 
is actually another characteristic condition for naturally Mal'cev 
catégories, see Theorem 7 of [6]. 

3) In particular, any slice category A/X of an additive category A 
is an example of a non pointed naturally Mal'cev category. 

4) The two major examples of naturally Mal'cev catégories we hâve 
in mind are the following ones: given any group C, the full 
subcategory Mal(Gp/C) of the slice category Gp/C (objects: 
group homomorphisms with codomain C) whose objects are the 
homomorphisms with abelian kernel is naturally Mal'cev; and, 
given any Z?-Lie algebra A, the full subcategory Mal(Rue/A) 
of the slice category Rne/A (objects: Lie-homomorphisms with 
codomain A) whose objects are the Lie-homomorphisms with 
abelian kernel (i.e. equipped with trivial Lie brackets). 

5) As above, given a topological (resp. Hausdorff) group C, the full 
subcategory of the slice category GpTop/C (resp. GpHaus/C) 
whose objects are the continuous homomorphisms with abelian 
kernel is naturally Mal'cev. 

6) The three previous examples are particular cases of the follow
ing gênerai situation: given any protomodular category C, the 
full subcategory of abelian objects in C is naturally Mal'cev, see 
Corollary 2.7.6 and Proposition 3.1.19 in [2]. 
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7) With any finitely complète category E, we can associate the nat
urally Mal'cev category C = AutME of autonomous Mal'cev 
opérations in E. The objects are pairs (X,p) of an object X 
endowed with an internai Mal'cev opération p which is itself a 
morphism of Mal'cev opérations, i.e. which, in set theoretical 
terms, satisfies: 

p{p{x,x'y),p{y,y',y"),p(z.z',z")) 

= P(P{X, 2/, 2 ) ,P (Z ' , y\ Z'),P{X'\ y", z"))-

Remark then that we hâve AbE = AbC, where AbE is the cat
egory of internai abelian groups in E. Another characterization 
of a naturally Mal'cev category is then C = AutMC 

Any naturally Mal'cev category is Mal'cev [6], meaning that any 
reflexive relation is an équivalence relation [11], [12]. Moreover, in the 
naturally Mal'cev context, any pair of équivalence relations R and T on 
the same object X admits a canonical connector (in the sensé of [10], 
where this situation is denoted by [i?, T] — 0), namely a morphism: 

p : Rxx S —» X, (xRySz) i-> p(x, y, z) 

which, internally speaking, satisfies the identities p(x, y, y) = x and 
p(y> y, z) ~ z- IR a waY> Examples 1.11),2) and 3) emphasized the fact 
that a naturally Mal'cev category is an additive category without an 
object 0; this commutation of any pair of équivalence relations makes 
this point even clearer. More importantly, this connector produces a 
double équivalence relation whose underlying diagram is the following: 

VI 

RxxT IT 
1 (ro-po,p) 

(i) 

PO 

Y Y_ 

R~ 

(pM'jn) 

ro 

to 

2X> 

where any commutative square is a pullback. In set theoretical terms, 
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this means that with any xRyTz we can associate a rectangle: 

p(x,y,z) 
R 

z. 

1.2 Regular naturally Mal'cev catégories 

A fînitely complète category C is regular [1] when the regular epi-
morphisms are stable under pullbacks and the effective équivalence 
relations (i.e. the kernel relations of some map) hâve a quotient. We 
repeatedly use objects with global support, i.e. such that the terminal 
map X —> 1 is a regular epimorphism. We shall need the following 
observation: 

Proposition 1.2. Let C be a regular naturally MaVcev category. In 
any pullback of (downward) split epimorphisms with horizontal regular 
epimorphisms, the upward square is a pushout: 

X^^X' 

Y—*»Y' 
1 y I . 

Accordingly, the change of base functor y* : PtyfC —> PtyC is fully 
faithful. 

Proof Let us complète the diagram with the kernel équivalence rela
tions of the horizontal maps: 

R[x] zri^ x 

»Jt «(/) «(») / 
yi m Y 
yo 

/' 

-Y' 

W 

Let (<t>,ip) be a pair of maps such that ¢- s = xp -y. Actually, the map 
(p coequalizes the pair (XQ,XI), whence the wished factorization. This 
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coequalization can be checked by composing it with the pair (R(s), s0), 
which is jointly strongly epic. This last assertion is a conséquence of 
the fact that the left hand side square indexed by 0 is a pullback 
in C and, therefore, a product in the additive category PtYC, see 
Example 1.1 2). Accordingly, this square is a sum in PtYC, and the 
pair (R(s), s0) is jointly strongly epic. • 

Corollary 1.3. Suppose that X has a global support and that B is 
group object. Then ps ' X x B -» B is the cokernel of X x OB '• X >—* 
X x B: 

XxB^B 
PX\\XX°B \\°B 

X - 1 . 

Notice that pushouts in any category PtyC produce pushouts in 
C since this holds for C/Y. There is an important conséquence: 

Lemma 1.4. Let C be a regular naturally MaVcev category. Consider 
a regular epimorphism f : X -» Y and an équivalence relation R on 
Y. Then the following upper pullback is also a pushout in C: 

R[f\-

f-'R-

f-fo 

n(f) 

*Y 

\(ro,ri) 

XxX-r^-YxY. 
/ x / 

Proof. Consider the following diagram where the downward right hand 
side square is, by définition, a pullback: 

n(f) 

rlR- Rç\ 

R 

PO 

lf}^rx 

R 

/o 

<T0 7"0 

^Y. 

Then by the previous proposition the upward right hand side square 
is a pushout. On the other hand the upward left hand side square is 
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a pushout in the regular additive category PtxC (more precisely 

l x — * / 2 [ / ] ^ / - i f l - ^ j f c — * l x 

is a short exact séquence in PtxC). Accordingly it is also a pushout 
in C. Consequently the whole upward rectangle is a pushout. • 

1.3 Effectively regular catégories 

Our two major examples, Example 1.1 4), are Barr exact catégories, 
and consequently regular ones. Actually we shall need hère a slightly 
richer notion than the one of regular category, see [9]. 

Définition 1.5. A regular category C is said to be effectively regular 
when any équivalence relation T on an object X which is a subobject 
j : T ^ R of an effective équivalence relation R on X by an effective 
monomorphism in C (which means that j is the equalizer of some pair 
of maps in C) is itself effective. 

Examples 1.6. Effectively regular catégories. 

1) The regular catégories GpTop and GpHaus of topological and 
HausdorfT groups are effectively regular. Indeed, in any of thèse 
catégories, an internai équivalence relation R >—> X x X on a 
topological group X is effective if and only if the topology of 
R is induced by the product topology. Now, if j : T >—> R 
is a subobject among the équivalence relations on X, and j is 
effective, then the topology of T is induced by the topology on 
R, and consequently induced by the inclusion T M / J M ^ X I , 

thus effective. 

2) Accordingly, given any topological (resp. HausdorfT) group 
C, the full subcategory of the slice category GpTop/C (resp. 
GpHaus/C) whose objects are the continuous homomorphisms 
with codomain C and abelian kernel is an effectively regular nat
urally Mal'cev category. 

3) The previous two examples also hold in the analogous situation 
concerning a topological or Hausdorff Lie-algebra A. 
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4) When E is an effectively regular category, the catégories AbE and 
GpE of internai abelian groups (resp. internai groups) in E are 
effectively regular. 

5) A regular fînitely complète additive category A is effectively reg
ular if and only if the kernel maps are stable for composition. 
Then A admits pushouts of kernel maps along any map which 
préserve kernel maps, and thèse pushouts are pullbacks, see [9]. 

The main interest of this notion is the following: 

Proposition 1.7. Suppose C is effectively regular. Let R be an équiv
alence relation on an object U which is fibrant above an effective équiv
alence relation R[q] on V: 

R*—-U 
ro 

<?] 
<?i 

<7o 
•y- w. 

Then R is effective. 

Proof. The fact that R is fibrant above R[q] means that any of the 
squares above are pullbacks. Now consider R[q-h] = h~1(R[q]). Then 
there is a natural inclusion j : R >—» R[q • h]. Because R is fibrant, 
then j is split in C, thus an effective monomorphism: 

Accordingly R is effective. • 

And more specifically the following: 

Corollary 1.8. Suppose that C is effectively regular and naturally 
MaVcev. Let g : X —> C be a map and T an équivalence relation 
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on X. Then the following équivalence relation on T induced by the 
double relation associated with the connector p making [R[g],T] = 0 
(see diagram {1)): 

Pi 

R[g]xxTZZZT 
(go-po,p) 

is effective. 

Proof. This is a particular case of the previous proposition since the 
équivalence relation in question is fibrant above R[g\: 

R[g]xxT 

PO 

P2 

R g] 

(0o-po,p) 

9\ 

T 

to 

X. 
90 

• 

2 Metakernels and direction 

2.1 Metakernels and kernels 

From now on we shall suppose that C is an effectively regular natu
rally Mal'cev category. Now let / : X —» Y be any map in C and 
consider the following part of the diagram associated with the central-
ity (namely [Vx,i2[/]] = 0) of the équivalence relation /?[/]: 

x x R[f] ; 

l x / o 

X x X 

PR 

(po-lx/o,p) 

: # [ / ] - - ( / w 
/o 

Pi 

[X -1 

/] 

PO 

Then, according to Corollary 1.8, the upper horizontal équivalence 
relation is effective and admits a quotient map v(f). Moreover, since 
any of the left hand side squares is a pullback, the Barr-Kock theorem 
in the regular category C implies that the right hand side square is a 
pullback, thus R[f] ~Xx N[f}. 
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Définition 2.1. The object N[f] defined in the diagram above (or 
more precisely the pair {N[f],v(f))) will be called the metakernel of 
the map f. 

The reason for this terminology is that, when C is pointed (and thus 
additive), the metakernel N[f] is nothing but the kernel K[f] of / 
(the terminal map rx ' X —> 1, being split, makes N[f] the kernel of 
/o, thus the kernel of / ) . 

We shall study three important particular cases: 

1. X HAS GLOBAL SUPPORT: 

then N[f] G AbC and i/(f) = coker(s0): 

PR 

'I (PO-1X/O,P) 

"(/) N[f] 

lx/o (PJI-PR) /o 

Pi 

XxX 

4 | / i 
"If 
X-

(2) 

°f 

PO 

There is a global élément Of : l —> N[f] induced by the subdiagonal s0 

which makes N[f] an abelian group object in C. Moreover, according 
to Proposition 1.2, the right hand side upward square is a pushout. 
So, v(f) is the cokernel of the subdiagonal s0. Note that, if / is a 
regular epimorphism, then X has a global support if and only Y has 
a global support. 

2 . ( / , s) : X ±=> Y IS A SPLIT EPI, Y HAS GLOBAL SUPPORT 

Proposition 2.2. Any split epimorphism (/, s) : X *=> Y having a 
codomain with global support is a pullback of its metakernel. In other 
words, we necessarily hâve X ~Y x N[f]: 

It" 
^ l . 

Accordingly, when Y has a global support, the change of base functor 
Y* : Pt\C —> PtyC becomes an équivalence of catégories. 

Y-
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Proof. Consider the following rectangle made of two pullbacks: 

X R[f]^N[f] 
f 
Y 

f°\\S0 

•+X- — 1. 

• 
Remark 2.3. The splittings of / : X —> Y are unique up to isomor-
phism when Y has global support. In fact, the global élément o/ is 
produced by s0 (diagram (2)) and is independent of the choice of the 
splitting s. By Proposition 2.2, any pair (s,sf) of splittings of / pro
duces a unique isomorphism 0 : X —» X such that f-$ = f,(j)-s = s' 
a n d Ny{(t)) = lN[f]. 

We also hâve the following: 

Corollary 2.4. Suppose that C is effectively regular and naturally 
MaVcev. Then, for any map h : Z —» Y between objects with global 
support, the change of base functor h* : PtyC —> PtzC is an équiva
lence of catégories. 

Proof Consider the following commutative diagram where X* and Y* 
are équivalences of catégories, according to the previous proposition: 

PtyC r + PtxC 

PtiC. x* 

• 
3 . / IS THE TERMINAL MAP TX : X —> 1 

Définition 2.5. The metakernel of rx will be denoted N[TX] = d(X) 
and is called the direction of the object X 

PI 

XxXxX ! X x X vx •d(X) (3) 

PO 

XxX 

(PO,P) 

Pi 

PO 

PO 
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When X has a global support, we shall dénote by ox : 1 >-* d(X) 
its associated global élément which makes d(X) an abelian group 
object in C. If X has a global élément x : 1 —> X, there is a 
canonical isomorphism X —> d(X) which exchange x and o/, 
according to Proposition 2.2. 

We shall dénote by AbC = Pt\C the category of abelian group 
objects (or equivalently of pointed objects) in C, by C# the full sub
category of C of objects with global support. Notice that C# has 
products and is still naturally Mal'cev but it is no longer fînitely com
plète (objects with global support are not stable under pullbacks in 
gênerai). However it has kernel relations R[f] of any map / and pull
back along regular epimorphisms. So it is still effectively regular. 

The previous définition provides a direction functor d : C# —> 
AbC. On the other hand, Corollary 2.4 says that the category C# is 
essentially affine and thus protomodular, see [6]. 

Examples 2.6. Direction functors. 

1) When A is additive, the direction functor is just 1A : A —> A. 

2) When A is additive, then Ab(Â/Y) is équivalent to A, for any 
object Y. The direction functor dy : A/Y —> A is nothing but 
the kernel functor K : A/Y —> A. 

3) In the slice category Gp/C of groups above C, an object g : G —> 
C has a global support when it is surjective. The direction func
tor d : Mal(Gp/C) —* Ab(Gp/C) associâtes with any extension g 
having an abelian kernel the projection C\x0A •—» C of the semidi-
rect product given by the classical group action (j) : C —> AutA 
associated with the extension g (in other words, the direction of 
g is nothing but its associated C-module). 

4) A similar result holds true for extensions g : B —> A of iî-Lie 
algebras having an abelian kernel. 
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5) Suppose now that C is a topological group. An object g : G —> C 
in the slice category GpTop/C has a global support when it is 
a surjective continuous group homomorphism. The direction of 
such an extension g with abelian kernel A tells us that the semi-
direct product C x 0 A is equipped with a topology which makes 
it a topological group and such that the projection C x A —> C 
is continuous. It is classically known that this topology is the 
product topology, see [3] for instance. This projection is the 
direction of g. The same holds true for HausdorfT groups. 

2.2 Properties of the direction functor d 

We shall suppose throughout this section that C is an effectively reg
ular naturally Mal'cev category. The direction functor préserves the 
terminal object and the product s since the regular epimorphisms are 
stable by products. Moreover: 

Proposition 2.7. Suppose that X has a global support and B is group 
object in C. There is a bijection between the retractions 0 of X x oB : 
X y-> X x B and the group homomorphisms h : B —> d(X). The maps 
X x OB : X y-* X x B are cocartesian with respect to d : C# —> AbC. 

Proof The group homomorphism associated to 0 is the unique h such 
that d(0) = (1,/i) : d(X) x B —> d(X) since d(0) is a retraction of 
Ld(X) '• d(X) >—> d(X) x B. Conversely, the retraction associated with 
a group homomorphism h is determined by the unique factorization 
(po,0) • X x B —> X x X such that vx • (po,</>) = h • PB which is 
induced by the pullback (3) defining d(X). Now to see that X x Oe is 
cocartesian, consider a map / : X —* Y and a factorization (d(/), h) : 
d(X) x d(Y) -> d(Y) of d{f) through id(x) : d(X) ~ d{X) x B. Then 
the factorization of / through X x OB '- X >-^ X x B is nothing but: 

/ X l 5 0 

X x B ^ F x B • r, 

where 0 is the map associated with h : B —> d(Y). D 

Recall also from [7] and [9] the following very powerful resuit, with 
a minor adaptation switching from Barr exact to effectively regular 
catégories: 
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Proposition 2.8. Consider the direction functor d : C# —» AbC. 
Then: 

1) d préserves regular epimorphisms; 

2) any regular epimorphism in C# is cocartesian; 

3) d reflects isomorphisms; 

4) d préserves ail existing pullbacks in C# and in particular any 
pullback along regular or split epimorphisms; 

5) any regular epimorphism 9 : d(X) -» B in AbC produces a co
cartesian map 9 : X -» Y above it; 

6) the cocartesian maps obtained in (5) are stable for products. 

Proof. Point 1) is a conséquence of the fact that, when / : X -» Y is 
a regular epimorphism in C#, it is a regular epimorphism in C, thus 
fxf:XxX-»YxYis& regular epimorphism in C. Point 3) is a 
conséquence of the Barr-Kock Theorem valid in any regular category. 
The proof of point 4) is essentially the proof of Proposition 6 in [7]. 

Next we briefly sketch the main point 5). Let 9 : d(X) -» B be a 
regular epimorphism in AbC Consider the kernel k : K >—> d(X) of 9 
in AbC and the following upper pullback in C: 

ro XxX-^d{X) 
M \P0 j 

X ^ 1 . 

The map j is an effective monomorphism, as a pullback of an effective 
one, and produces a relation (r0, ri) : R =4 X which is reflexive since 
the splitting o/< of the terminal map of K produces a splitting s0 : 
X —» R of TQ. Consequently R is an équivalence relation wThich is 
effective. Moreover, this upper pullback is also a pushout; for this 
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observe that in the following diagram: 

XxX 
"X 4 ro Jn J 

^K-^d(X) 

the two solid leftward diagrams are pullbacks, and that consequently 
the two associated solid rightward diagrams are pushouts (C# is es-
sentially affine). Accordingly, the dashed one is a pushout. Dénote 
by 9 : R =3 X -» Y the quotient of R. It is clear that if X has a 
global support, then this is also the case of Y. We must show that 
d(Y) = B. Consider the following diagram: 

the back face is a pushout by Lemma 1.4 and induces a regular epi
morphism, we call vY. Since the left and front faces are pushouts, 
then the right face is also a pushout and consequently d(Y) = B. The 
proof of the cocartesian universality of 9 is straightforward. 

Finally, point 2) is a conséquence of 5) and point 6) is straightfor
ward. • 

Points 1) and 4) imply that the functor d is regular in the sensé of 
[1]. Then the metakernel is a function of the direction: 

Corollary 2.9. The metakernel N[f] of any map f : X —» Y in C# 
is the kernel of the map d(f) in AbC. 

Proof. Since N[f] is in AbC, then d(N[f]) ~ N[f}. The functor d, 
being exact, préserves the metakernels. So that d(N[f]) = N[d(f)]. 
Moreover AbC is additive and N[d(f)] = K[d(f)]. D 
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2.3 Cofibrations above additive catégories 

In this subsection we focus on two conséquences of Propositions 2.7 
and 2.8: 

1) the direction d is a cofibration; 

2) any fibre of d is endowed with a symmetric monoidal structure. 

Actually, this is a very gênerai process. So, in the following E is a 
category with products and A is a finitely complète additive category. 

Proposition 2.10. Let d : E —> A be a functor preserving products 
such that any split monomorphism and any split epimorphism in A 
admit cocartesian morphisms above them which are stable for prod
ucts. Then d is a cofibration such that cocartesian maps are stable for 
products. 

Proof. This cornes from the fact that any map h : d(X) —• B in 
the additive category A can be written as h = (h, 1B) • td(X)i where 
td(x) • d(X) >—> d(X) x B is a split monomorphism and (h, 1B) : 
d(X) x B —> B is a split epimorphism. D 

We also hâve the following striking resuit [7]: 

Proposition 2.11. Suppose that d : E —» A is a cofibration which 
préserves products and whose cocartesian maps are stable for products. 
Then any fibre d~l(A) of d is endowed with a symmetric monoidal 
structure. 

Proof. Let (X, Y) be any pair of objects in d~1(A). The tensor product 
X ® Y is defined as the codomain of the cocartesian map jixy '• 
X xY ^ X ®Y above the map + : A x A —> A. The codomain of 
the cocartesian map 1(0,4) : 1 —> l(A) above OA : 0 —> A is a unit on 
the left for this tensor product since the map 

X^^I(A)xX-^^I(A)®X 
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is cocartesian above 1^ (the global élément OA being a left unit for the 
internai law on A). The same property holds on the right. This tensor 
product is associative, since the two following cocartesian maps: 

XxY^z
lJl^lXx{Y^Z)^^X®{Y®Z) 

j f X y x z ^ ( J f ® y ) x z ^ i ( X 8 y ) « z 

are sent onto the same map, namely .4 x A x A —> A; (a,b,c) H-> 
a + b + c, thanks to the associativity of the internai law on A. The 
symmetry isomorphism X ®Y —> Y ® X is induced by the twisting 
isomorphism X x Y —> Y x X and the fact that the internai law on 
A is commutative. D 

We hâve the following précision: 

Theorem 2.12. Let us consider the assumptions ofthe previous propo
sition. Suppose, moreover, that E has kernel équivalence relations 
which are preserved by d and that any cocartesian map 9 : X —> Y 
in E admits a cocartesian subdiagonal s0 : X >—> R[9]. Then, for any 
pair (X, Y) of objects in d~l(A), there is an object [X,Y] in d~~l(A) 
such that X (g) [X, Y] and Y are in the same connected component of 
d~\A). 

Proof. Define vxy '• X x Y —> [X, Y] as the cocartesian map above the 
subtraction uA : A x A —• A ; (a, b) \-^ b — a. Then we hâve a natural 
isomorphism [I(A),X] ~ X, since vi(A),x ' H°A) X lx is cocartesian 
above 1.4, thanks to the fact that a — 0 = a for the internai law on 
A. Whence a cocartesian map Çx • Ï(A) x X —* X above z/4. Next, 
we define rjx and vx the cocartesian maps above A —» 0 with domain 
X and above VA • A x A —> A with domain R[r)x]- Then consider the 
following diagram: 

_ PO _P\ 

R[vx)^X A X A ^ A 

ox I ~ *' * ux "A "»*" I 

r(x)f:vi 
TTx 

AZZZlo. 
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The projections p0 and pi produce the same dashed factorization nx 
above the terminal map A —> 0. In the same way, the subdiagonal 
s0 : X >—> R[9] produces a factorization ox above OA- NOW, when s0 is 
cocartesian, this also the case for ax, hence producing a factorization 
Ç in d~l(A): 

T(X) ^ - Vx 

I(A) HOA) 

Accordingly we hâve a map ùx = £ • vx : R[rix] ~* ^{A) above ^4. 
On the other hand we hâve a canonical inclusion i : R[r]x] >_> X x X 
which lies in d~l(A x A). Now consider the following diagram: 

x x x x y'^^'X X [X,Y]"-^X<8> [X,Y] 
ixlY\ I 

R[Vx] xY - Z 

l(A) x Y ^ Y, 

where the dashed arrow représenta the cocartesian map above PA : 
A x A x A —» A; (a,b,c) 1—> a — b-\-c. The upper and lower composites, 
being both mapped to p^, produce the two right hand side vertical 
maps in d~l(A). Accordingly X (g) [ J , 7 ] and Y are in the same 
connected component of d~l{A). D 

Remark. It is clear that the construction V : E —> d~l(0) is a left 
adjoint left inverse of the inclusion d_1(0) >—> E. 

Finally, the resuit we were aiming at: 

Corollary 2.13. When the assumptions ofthe two previous results are 
satisfied, the set 7r0(d

_1'(A)) of connected components of any fibre ofthe 
cofibration d is canonically endowed with an abelian group structure. 

Proof. The tensor product gives the binary opération, while the com
ponent of [X, I(A)] gives the inverse of the component of X. D 
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2.4 The monoidal closed groupoid H^(i4) 

We shall dénote by Hç(,4) the fibres d~1(A) of our originally defined 
direction functor d : C# —» AbC. The fact that this functor d re-
flects the isomorphisms implies and that any map is cocartesian and 
that any fibre H^(A) is a groupoid. The stability of cocartesian maps 
under products is a conséquence of the fact that, hère, any map is 
cocartesian. This same fact makes any diagonal s0 : X >—> X x X and 
any terminal map cocartesian, so that Vx = 1. As a conséquence, the 
functor X ® — is an équivalence of catégories whose inverse équiva
lence is the functor [X, —]. In other words, the groupoid H^A) has a 
symmetric closed monoidal structure. 

Définition 2.14. We dénote by H^(A) the abelian group of connected 
components ofthe closed symmetric monoidal groupoid H^( A) and call 
it the first cohomology group of C with coefficients in A. 

Examples 2.15. The first cohomology group. 

1) Let Y be an object of an effectively regular additive category A. 
We observed in Example 2.6 2) that the direction functor for the 
category A/Y is nothing but the kernel functor K : A/Y —> A. 
Then the objects of fibre H^(>1) are nothing but the short exact 
séquences in A: 

0 —>- A*-2* G-^Y — - 0. 

The tensor product is given by the Baer sum and the group 
H^iyiA) is the classical Yoneda's Extk(Y,A). 

2) Let C be a group, A an abelian group and 4> : C —• Aut A a group 
action. This produces an abelian group C x^ A —> C in Gp/C; 
we dénote it by A^. Then HQ jC{A^) is nothing but the classical 
Opext(C, A, ¢) of [19] equipped with the Baer sum. See also [9] 
for the extension of this resuit to any effectively regular pointed 
protomodular category C. 
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3) Suppose now that C and A are topological (resp. HausdorfT) 
groups, and 0 : C —> AutA is a group action such that 
the map C x A —> A, associating 4>c(a) to (c,a), is contin
uous. We shall then say that the group action (j> is continu
ous. This détermines an internai abelian group C x^ A —> C 
in GpTop/C (resp. GpHaus/C), again see [3]; we dénote it by 
i V Then Hl

GpTop/c(At) (resp. Hl
GpHauii/c{A^)) is the group of 

TOpext(C, A, ¢) of continuous extensions of A by C with opera-
tors (j). 

4) It is shown in [7] that, in any Barr exact category E with prod
ucts, given an internai group A and an object X, there is a bijec-
tion between the simply transitive left actions of the group A on 
X and the associative MaVcev opérations on X with direction A. 
Actually the same holds true when E is only effectively regular. 
On the other hand, when the group A is abelian, it was shown in 
[1] that the set H^(A) of connected components of the groupoid 
PLO(A) of simply transitive left ^-actions (also called ^4-torsors) 
in E is endowed with an abelian group structure which allows, for 
any short exact séquence of abelian groups, a Yoneda's six term 
long exact séquence, provided one defines H^(A) = Hom^{\, A). 
So, in conclusion: 

• considering the effectively regular and naturally Mal'cev 
category C = AutME of internai autonomous Mal'cev opér
ations in E, the direction functor d : AutME# —> AbE gives 
an alternative way of describing H^(A) as the set of con
nected components oîM^A) which makes H^(A) = HQ(A); 

• any effective regular and naturally Mal'cev category C pro
duces the same six term exact séquence, since in this case 
C = AutMC. 

The previous six term exact séquence, valid when E is Barr exact, 
was completed at any level by Duskin and Glenn in [13] and [14] by 
means of simplicial objects in E, and by the first author in [4] by 
means of internai n-groupoids in E. One of the aims of this work is to 
show that the naturally Mal'cev category AutME gives rise to a new 
homogeneous realization of this completed long exact séquence. 
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2.5 Amenable pullbacks 

We know that the direction functor d préserves ail existing pullbacks. 
Actually, the fact that it is a cofibration says more. Suppose we are 
given a pullback in AbC on the right, and a pair of maps (/', y) above 
the pair (h',j3) which admits the diamond on the left as a pullback in 
C # : 

\ ' • 

s x J . y A ^ B 
X \ 

\ •\ \ . 

*x'-p*Y' A'~irB'' 

Since d préserves pullbacks, then there is an isomorphism g : d(X) —> 
A and also a cocartesian isomorphism 7 : X —> X above it. This 
allows us to complète the commutative solid square (which is certainly 
a pullback) strictly above the right hand side pullback. We call this 
solid square the amenable pullback above the pullback in AbC. 

3 Groupoids and 1-dimensional direction 

The prolongation of the six term exact séquence one step further uses 
the notion of internai groupoids. 

3.1 The Lawvere condition 

In [18] it is shown that a finitely complète category C is naturally 
Mal'cev if and only if it satisfies the: 
Lawvere condition : Any reflexive graph is canonically endowed 
with a unique groupoid structure. 
Of course, this condition makes any morphism of reflexive graphs 
(internally) functorial. Clearly this condition is an extension of the 
Mal ycev condition claiming that any reflexive relation is an équivalence 
relation [11]. 

Let us dénote by GrdC the category of internai groupoids in C, 
which is still naturally Mal'cev. We dénote by ()o : GrdC —> C the 
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forgetful functor associating to any groupoid X i • 

Xl 

\r s0 V 

Xi * A 0 

xo 

its "object of objects" X0. It has a fully faithful right adjoint Vi 
(the indiscrète groupoid functor) and a left adjoint Ai (the discrète 
groupoid functor). Ail together, the functor ()0 is a fibration whose 
cartesian maps are the fully faithful internai functors, namely the in
ternai functors / such that the following square is a pullback in C: 

x, h .y. 
( a r o ^ i ) l I (2/0^2/1 ) 

x°*x°f^f0
Y°*Y°-

If the naturally Mal'cev C is also effectively regular, then GrdC is 
still effectively regular. It is clear that (GrdC)# = Grd(C#). More-
over, the direction functor d has a natural extension into a functor 
dx : GrdC# —» GrdAbC. This functor dx is precisely the direction 
functor of the effectively regular naturally Mal'cev category GrdC, 
since we obviously hâve AbGrdC = GrdAbC. 

Theorem 3.1. The functor dx : GrdC# —> GrdAbC satisfies ail the 
properties of the functor d listed in Propositions 2.7 and 2.8. More-
over, it préserves and reflects the ()0-cartesian maps and the ()o~ 
invertible (i.e. whose image by ()o is an isomorphism) maps. 

Proof. Only the last point has to be checked; it is straightforward 
since d, being left exact and reflecting the isomorphisms, also reflects 
ail existing finite limits. D 

Let us dénote by r) : X_x —> ViX0 the canonical projection with 
respect to the adjunction (()o,Vi). In the effectively regular natu
rally Mal'cev category GrdC the metakernel Ni[rj ] of rj produces an 
abelian group in GrdC when X_i n a s a global support, i.e. when X_x 

is in GrdC#. We already know by Corollary 2.9 that Ni[r] ] is the 
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kernel Ax of dx{ï]\ Thus certainly A0 = l and Ai = A is given by 
the following kernel séquence in AbC: 

0 ^A> ^dixtf^diXo) x d(X0). 

So that this metakernel is completely determined by this object A of 
AbC. Let us introduce the following: 

Définition 3.2. We call A the 1-dimensional direction of X_x. This 
produces the 1-dimensional direction functor di : GrdC# —> AbC. 

According to the previous définition, we hâve diS/iX = 1 and, 
thus, di(rj ) is the terminal map di(X_x) —• 1. Let us set also the 
following [4]: 

Définition 3.3. A groupoid X_x in C is said to be aspherical when X0 

has global support and X_x is connected, i.e. when the map (x0,Xi) : 
Xi —> X0 X XQ is a regular epimorphism in C or, equivalently, when 
77x : X_\ —* ViX0 is a regular epimorphism in GrdC. 

We shall dénote by AspC the full subcategory of GrdC# whose 
objects are the aspherical groupoids. Note that, the restriction of di 
to AspC can be factored as: 

AspC —> AspAbC —^ AbC 
dy d\ 

and the properties of dx are known from Section 2. In order to obtain 
the properties of di : AspC —> AbC, we shall explore those of the 
simpler additive spécification di : AspAbC —> AbC next. 

3.2 The additive spécification: level 1 

In this subsection we suppose that A is a finitely complète, effectively 
regular and additive category. Given any object A in A, let us consider 
the following short exact séquence in GrdA: 

0 — AiA>—^ Vii4 - ^ KiA — 0. 
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Then KiA is nothing but the following groupoid: 

A^O. 

The induced functor K\ : A—> GrdA détermines a pullback: 

A-^GrdA 
| ( )o 

which makes the category A équivalent to the fibre of ()o above the 
terminal object 1. The inverse équivalence is the restriction of di 
to this fibre. According to the fact that, in any additive category, 
metakernels and kernels coincide, the 1-dimensional direction A of a 
groupoid 2L\ in A is characterized by the following kernel séquence in 
GrdA: 

0 — Ki A>—- Xi — ViX0 . 

Lemma 3.4. For the following pair of functors we hâve: 

n GrdA . 
()o / \ d\ 

1) both functors préserve the terminal object, products and pullbacks; 

2) di has a left exact section Ki : A —* GrdA; 

3) ()o is a fibration and di is a cofibration; 

4) the subdiagonal of a cocartesian map is cocartesian; 

5) the image of a ()0-cartesian map by di is an isomorphism; 

6) the image of a cocartesian map by ()o is an isomorphism. 

Proof. The two first points are straightforward. The functor ()0 : 
GrdA —> A is a fibration thanks to the existence of pullbacks. The 
functor di : GrdA —> A is a cofibration since the category GrdA is 
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effectively regular and additive, and consequently admits pushouts of 
kernel maps along any map (as previously mentioned in Example 1.6 
6)). So, let A be the 1-dimensional direction of X_x and h : A —> B 
any map in A. Then the cocartesian map with domain X_\ above h is 
given by the following diagram: 

KiA> * X i — V i X 0 

KXB>—*Yi, 

where the left hand side square is a pushout. Notice that we can 
choose Y_x with YQ = XQ. The lower horizontal monomorphism is 
necessarily the kernel of the factorization £ . The rest of the statement 
is straightforward. D 

We hâve then the following stricter spécification: 

Theorem 3.5. For the following pair of functors we hâve: 

AspA 
()0 y \ d 

1) both functors préserve the terminal object, products and ail exist-
ing pullbacks in AspA; 

2) ()o is a fibration and di is a cofibration which has Ki as a section; 

3) a map is cartesian with respect to ()0 if and only if its image by 
di is an isomorphism; 

4) a map is cocartesian with respect to di if and only if its image by 
()o is an isomorphism; 

5) the subdiagonal of a cocartesian map is cocartesian; 

As a conséquence: 

6) the cocartesian maps are stable for products and pullbacks along 
split epimorphisms; 
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7) di reflects pullbacks with a pair of parallel cocartesian maps: 

8) the change of base functors with respect to dx reflect isomor-
phisms. 

Proof. Points 1), 2) and 5) were asserted in the previous lemma. Now 
consider any internai functor hx : Xx -> Zi above h : A -> B and the 
associated 1-dimensional direction diagram: 

KXA>—-Xi-^-ViXo 

V 1/7,0 

KlB>—^Yl~^VlY0. 

Then point 3) is a conséquence of a classical resuit about pullbacks 
of short exact séquences in regular additive catégories: hx is cartesian 
if and only if the right hand side square is a pullback, which is the 
case if and only if the left hand side vertical arrow is an isomorphism 
or, equivalently, h is an isomorphism. Point 4) is a conséquence of 
the dual resuit about pushouts of short exact séquences in effectively 
regular additive catégories: hx : Xx -> Yx is cocartesian if and only if 
the above left hand side square is a pushout, which is the case if and 
only if Vi/i0 is an isomorphism or, equivalently, h0 is an isomorphism. 
Point 6) is implied by the previous characterization of the cocartesian 
maps in AspA. For point 7), consider any commutative rectangle in 
AspA: 

L 

*i jf—-n 

whose horizontal arrows are cocartesian and whose image by dx is a 
pullback. So the horizontal maps are ()0-invertible. Then consider the 
pullback in GrdA of (/J, ^ ) with domain P_x. Since ()0-invertible maps 
are stable for pullbacks, then the factorization ¢) is ()0-invertible, 
thus cocartesian. Accordingly, P_x is aspherical because Xx is and the 
pullback in question lies in AspA. This pullback is mapped by dx 
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onto a pullback, implying that di{4> ) is an isomorphism, i.e. <j) is 
cartesian. Being also cocartesian, the map ¢ is itself an isomorphism 
and, consequently, the rectangle is a pullback. Finally, for point 8), 
let us consider any commutative square in AspA: 

whose horizontal arrows are cocartesian above the same map in A and 
the vertical ones are inside fibres of di. Then the horizontal maps 
are made invertible by ()o while the vertical maps are cartesian with 
respect to ()0. Accordingly, this is a pullback in AspA and, if the right 
hand side vertical arrow is an isomorphism, this is also the case for 
the left hand side one. D 

3.3 Properties ofthe 1-dimensional direction func
tor d\ 

We can now extend the previous resuit from any effectively regular ad
ditive category A to any effectively regular naturally Mal'cev category 
C: 

Theorem 3.6. For the following pair of functors we hâve: 

AspC 
O c 1 / v^t/i 

C # AbC 

1) both functors préserve the terminal object, products and ail exist-
ing pullbacks in AspA; 

2) ()o is a fibration and di is a cofibration which has Ki as a section; 

3) a map is cartesian with respect to ()0 if and only if its image by 
di is an isomorphism; 

4) a map is cocartesian with respect to di if and only if its image by 
()o is an isomorphism: 
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5) the subdiagonal of a cocartesian map is cocartesian; 

6) the cocartesian maps are stable for products and pullbacks along 
split epimorphisms; 

7) di reflects pullbacks with a pair of parallel cocartesian maps; 

8) the change of base functors with respect to di reflect isomor-
phisms. 

Proof. Consider the following diagram: 

dx 

AspC —*• AspAbC —+ AbC 

OoJ J()o 
C # —r^ AbC. 

The result follows from Theorem 3.6 and the fact that the functor 
di is a cofibration which préserves and reflects both ()0-cartesian and 
()o-invertible maps (Theorem 3.1). D 

3.4 The monoidal category H^(A) 

We shall dénote by ¢3¾(A) the fibres dïl(A) of the 1-dimensional di
rection functor di : AspC —> AbC By Proposition 2.11, the stability 
of cocartesian maps under products gives any of thèse fibres a sym
metric tensor product. The map 1 —> KXA is clearly ()0-invertible and 
consequently cocartesian, which makes KiA the unit of this tensor 
product. Moreover the subdiagonal of the cocartesian maps are still 
cocartesian so, by Theorem 2.12, the set of connected components of 
this fibre has an abelian group structure. 

Définition 3.7. We dénote by H^(A) the abelian group of connected 
components of the symmetric monoidal category Wç(A) and call it the 
second cohomology group of C with coefficients in A. 

Example 3.8. Let A be an effectively regular additive category. Then 
consider the équivalence of catégories given by the Moore normaliza-
tion functor at level 1, namely the functor Mi : GrdA —> ChiA (see 
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[5] for instance) which associâtes to any groupoid X_i the 1-chain com-
plex (= map) given by the left hand side vertical arrow in the following 
pullback: 

K[x0] -Xx 
x\\ I (a;o,xi) 

(0,lxo) 

This équivalence makes Grd(A/Y) équivalent to the category of chain 
complexes of length 2 in A with codomain Y: 

Ui-^Uo-^Y. 

The "direction" of this chain complex is given by the kernel K[d] of d : 
U\ —> Uo. Such a chain complex corresponds to an aspherical groupoid 
in Grd(A/Y) if and only if d : UQ —> Y is a regular epimorphism and 
the chain complex is exact at U0. So that the Moore équivalence 
at level 1 makes our group H\,Y{A) the same as Yoneda's classical 
Ext\(Y,A). 

3.5 Connected components of M^(A) 

It is clear that the fibres H^(^4) are no longer groupoids and that 
the détermination of its connected components is not straightforward. 
In any category E two objects X and Y are in the same connected 
component when there is a zig-zag: 

Vi v2 ••• vn 
/ \ / \ s \ 

X Ux U2 ••• Un-y Y. 

The aim of this subsection is to show that, in the category ¢1^.(A), it 
is always possible to reduce the length of the zig-zag to 1: 

V 
/ \ 

X Y 

When the category E admits pullbacks it is quite clear how to reduce 
the length. Unfortunately, this is neither the case of C# nor of GrdC#. 
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But, for any finitely complète category E, there is, in GrdE, a natural 
construction which will allow us to get round this difficulty. Given a 
groupoid X±, there necessarily exists a ()0-cartesian diagram in GrdE: 

ComiXi~^-Xi 
ai* 

above the following one in E: 

\r s0 v 

A i •<—Xf)-
XQ 

Com\X_x is the groupoid of "commutative squares" of An which uni-
versally classifies the internai natural transformations with codomain 
Ai? see [4]. When C is effectively regular and naturally M al1 ce v, be-
cause the morphism ax is ()0-cartesian and split, the groupoid Comi2Li 
is aspherical whenever Ai is. Furthermore, by using amenable pull
backs we can force the images by d\ of ail maps involved in the défini
tion of ComiX_x to be 1^. Now suppose we are given two morphisms 
(lvil) in the fibre M2

C(A): 

> ^ 

We are going to complète it into a (non commutative) square in the 
same fibre thanks to the following pullback in GrdC: 

Px
 Ùl > ConiiXi 

Ui xVi—^X, xXx. 
— Zix^i — 

The map hx is ()0-cartesian because so is / x gv Since it is ()0-
cartesian and ComiAi is connected, the groupoid P_x is connected. 
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Because Ai is aspherical, the map (XQ,XI) is a regular epimorphism 
in C, so this is also the case of (ipo,$o) : Po —> Uo x V0 and, since 
both UQ and V0 hâve global support, P0 also has a global support. 
Consequently, P t is aspherical and the above pullback actually lies in 
AspC. By switching to the amenable pullback above: 

A l * A 

A >A 

A x A-^ Ax A, 
1.4 x A 

we hâve di(\p ) = 1,4 and d\((j> ) = IA-

3.6 Connected component of 0 

The paradigmatic component is naturally the one of 0. 

Proposition 3.9. A groupoid Ai 0/11^(^4) is in the component of 
0 if and only if there is an object Z with global support and a map 
9_x : ViZ —> Ai- In °ther words, if and only if there is a map with 
codomain Ai coming from the fibre H^(l). 

Proof. Suppose we hâve such a map 9X : ViZ —* A p Consider the 
pullback in GrdC on the right hand side square of diagram (4), which 
produces a ()0-cartesian functor rl. The map 9X : ViZ —> X_\ induces 
the vertical splitting. The groupoid Z_x is aspherical, since Z§ = Z has 
a global support and the dotted splitting assures that Z_x is connected, 
thus this pullback lies in AspC. By switching to an amenable pullback 
above: 

A±A 

\ I 

we obtain the following diagram: 

A U ^ - ' - ^ ^ - X x (4) 
I A 
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So, according to Proposition 2.2, we hâve Z_x = ViZ x Ki(A) and 
a projection ^ : Z t —• K\(A) which is nothing but ^i(C)-li- Ac
cordingly, di(V> ) = &04-S1 = 1^. Consequently, we hâve Tj and ^ 
in the fibre H^ ( J4 ) . Conversely, suppose we hâve a pair of maps 
^ : Zx - • /fi(i4) and T^ : ZL - • Ai in the fibre Ml(A). Then consider 
the following diagram where £ is the cocartesian map above VA which 
produces the isomorphism [Ki(A), A J ~ Ai °f Theorem 2.12: 

Zx ^ — ViZo A 1 

KM) x Xx —-Ai ^Xi4-^A 
Si 

Since 77 , being ()0-invertible, is also cocartesian, there is a unique 
factorization Q_x above OA- And, Z_x being aspherical, implies that Z0 

has a global support. D 

4 n-groupoids and n-dimensional direc
tion 

Thanks to the Lawvere condition an internai n-groupoid in C is noth
ing but a reflexive n-globular object X_n, i.e. a diagram: 

X\ X\ X\ 

X \r s0 \r s0 y \r s0 -%r 
n • A n "* A n _ i •< A n _ 2 ' " A i -e A 0 

>• > - >• 

XQ Xo X.Q 

satisfying, at each level, the condition of a reflexive graph and such 
that: 

Xo • Xo = Xo • Xi Xi • Xo = X\ • X\. 

The n-functors are then the natural transformations between such 
objects. This détermines a category n-GrdC which is still naturally 
Mal'cev. By canceling level n, we get a forgetful functor ()n_i:n-
GrdC —> (n — \)-GrdC which is a fibration. It has both a left and a 
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right adjoint (the discrète and indiscrète groupoid functors), respec-
tively denoted by An and Vn. They are defined by the initial and final 
objects in the fibre: 

1 x\ xi 
>• >• >• 

A \r . y s0 \r s0 \r y S ° V 
nA-n-1 • A n - 1 ^ A n _ i -< A n _ 2 • • • A i -< A o 

1 xo xo 

and 
Pi #1 X\ 

nAn-1 : Ar?-1 "* A n - 1 "* A n-2 • • • Ai -< A0 , 
>• >• >-

Po xo Xo 

where the object X^_x of parallel (n — \)-cells is defined by induction: 
A<7 = A0 x A0 and A^_1 given by the following kernel pair in C: 

pi 
^ SO* v (XO.X!) ^ 

A n-1 "* An-\ > An-2" 
>• 

Po 

Actually an n-groupoid is an internai groupoid inside a fibre of the 
fibration ()n-2'> 

X1 

J X-n* X i -H 
~x^ 

where J X_n is the intégral (n — l)-groupoid of the n-cells of the n-
groupoid Xn: 

X\-X\ X\ 

A_n : A n -< An_2 • • • Ai •< A0 . 

x0-x0 xo 

We shall set J Vn+i(An) = An — ^% ]> which produces the following 
kernel pair in n-GrdC: 

2C^-d-xn-^vnxn^. 
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4.1 The n-dimensional direction functor 

When C is moreover effectively regular. this is still the case of n-
GrdC It is clear that (n-GrdC)# = n-Grd(C#). Moreover, the di
rection functor d extends naturally to a functor dn : n-GrdC# —> n-
GrdAbC. This functor dn is precisely the direction functor of the 
effectively regular naturally Mal'cev category n-GrdC since we hâve 
Ab(n-GrdC) = n-GrdAbC As in level 1, we hâve: 

Theorem 4.1. The functor dn : n-GrdC# —> n-GrdAbC satisfies 
ail the properties of the functor d listed in Propositions 2.7 and 2.8. 
Moreover, it préserves and reflects the ()n-i-cartesian maps and the 
Qn-\-invertible maps. 

Given any n-groupoid X_n in n-GrdC#, the metakernel Afn[r? ] 
of rj produces an abelian group in n-GrdC. We already know by 
Corollary 2.9 that Nn[rj ] is the kernel An of dn(r] ) . Thus, certainly 
An_x = 1 and the last level An = A is given by the following kernel 
séquence in AbC: 

0 - A> d{Xn)
d(^d{X;_x). 

So that this metakernel is just determined by an object of AbC 

Définition 4.2. We call A the n-dimensional direction of X_n. This 
produces the n-dimensional direction functor dn : n-GrdC# —» AbC. 

According to the previous séquence, we hâve dnVn2Ln-i — 1 a n d, 
consequently, dn(r] ) is the terminal map dn(Xn) —> 1. We need now 
the following [4]: 

Définition 4.3. An n-groupoid 2Ln ^s called aspherical when A0 has 
global support and, for each 1 < k < n, the map (xo,^i) : A^ —> XjT_x 

is a regular epimorphism in C, i.e. when X_n-i ^s aspherical and X_n 

is connected (which means that the projection /7 : X_n —» VnX_n_l is 
a regular epimorphism in n-GrdC). 

We dénote by n-AspC the full subcategory of n-GrdC# whose 
objects are the aspherical n-groupoids. As in level 1, the restriction 
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of dn to n-AspC can be factored as: 

dn 

n-AspC — ^ Tir AspAbC —^ AbC 
dn dn 

Next we explore the properties and the properties of the simpler ad
ditive spécification dn : n-AspAbC —> AbC to obtain the properties of 
the functor dn : n-AspC —» AbC, since those of dn are already known 
from Theorem 4.1. 
Remark. Actually the notion of the n-dimensional direction of an 
n-groupoid X_n is valid in any finitely complète, effectively regular 
category E, provided it is aspherical, see [20], and moreover abelian 
when n= \, see [8]. 

4.2 The additive spécification: level n 

In this subsection we suppose that A is a finitely complète, effectively 
regular and additive category; then this is still the case for the category 
n-GrdA. We are going to define a functor Kn : A —> n-GrdA by 
induction. We already defined h\ and suppose K\ is defined as far 
as level n — 1. Given any object A in A, let us consider the following 
short exact séquence in n-GrdA: 

0 — KKn-iA>—- VnKn^A -^t KnA — 0. 

Then KnA is nothing but the following n-groupoid: 

The induced functor Kn : A —> n-GrdA détermines a pullback: 

A Kn > n-GrdA 

J()„-i 
— (n - l)-GrdA, 

which makes the category A équivalent to the fibre of ()n-i above 
the terminal object 1. The inverse équivalence is the restriction of 
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dn to this fibre. According to the fact that, in any additive category, 
metakernels and kernels coincide, the n-dimensional direction A of an 
n-groupoid A n in A is characterized by the following kernel séquence 
in n-GrdA: 

0-^KnA^-^Xn-^VnXn_i. 

For exactly the same reasons as in level 1, we hâve: 

Lemma 4.4. For the following pair of functors we hâve: 

n-GrdA 

(n - lyGrdA A 

1) both functors préserve the terminal object, products and pullbacks; 

2) di has a left exact section Kn : AbC —> n-GrdA; 

3) ()n-i is a fibration and dn is a cofibration; 

4) the subdiagonal of a cocartesian map is cocartesian; 

5) the image of a ()n-i-cartesian map by dn is an isomorphism; 

6) the image of a cocartesian map by ()n-i is an isomorphism. 

Proof. The cocartesian map with domain X_n above h is given by 
the following diagram in n-GrdA, where the left hand side square 
is pushout: 

KnA> >Xn — ^ VnA„_i 

KnB^-+Yn. ~n 

D 

And also: 

Theorem 4.5. For the following pair of functors we hâve: 

n-AspA 
On-l^ . dn 

(n - l)-AspA 
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1) both functors préserve the terminal object, products and ail exist-
ing pullbacks in n-AspA; 

2) ()n-i is a fibration and dn is a cofibration; 

3) a map is cartesian with respect to ()n-i if and only if its image 
by dn is an isomorphism; 

4) a map is cocartesian with respect to dn if and only if its image 
by ()n-i is an isomorphism; 

5) the subdiagonal of a cocartesian map is cocartesian; 

6) the cocartesian maps are stable for products and pullbacks along 
split epimorphisms; 

7) dn reflects pullbacks with a pair of parallel cocartesian maps; 

8) the change of base functors with respect to dn reflect isomor-
phisms. 

4.3 Properties of the n-dimensional direction func
tor dn 

We can now extend the previous resuit from any finitely complète 
effectively regular additive category A to any effectively regular natu
rally Mal'cev category C: 

Theorem 4.6. For the following pair of functor we hâve: 

n-AspC 

(n - \)-AspC AbC 

1) both functors préserve the terminal object, products and ail exist-
ing pullbacks in n-AspA; 

2) ()n-i is a fibration and dn is a cofibration; 

3) a map is cartesian with respect to {)n-\ if and only if its image 
by dn is an isomorphism; 
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4) a map is cocartesian with respect to dn if and only if its image 
by ()n-\ is an isomorphism; 

5) the subdiagonal of a cocartesian map is cocartesian; 

6) the cocartesian maps are stable for products and pullbacks along 
split epimorphisms; 

7) dn reflects pullbacks with a pair of parallel cocartesian maps; 

8) the change of base functors with respect to dn reflect isomor-
phisms. 

Proof. Consider the following diagram: 

dn 

n-AspC ^ n-AspAbC ^ AbC 
d71 dn 

0 - 4 jo«-
(n - \yAspC — ^ (n - Vj-AlC 

The result follows from Theorem 4.6 and the fact that the functor dn 

is a cofibration which préserves and reflects both O^i-cartesian and 
O^-i-invertible maps (Theorem 4.1). D 

4.4 The comprehensive factorization 

The fact that dn : n-AspC —• AbC is a cofibration has a useful inter
prétation at level n + 1, namely in (n + l)-GrdC. First, the diagram 
(5) defining dn{Xn) = A 

2£S*n —V.X.-1 (5) 

Kn(A)^=^l. 

means that there is an (n + l)-functor vn+l : Vn+i2Ln —> Kn+\(A) 
which is an internai discrète fibration. Moreover any (n + l)-functor 
wn + 1 : V n + i A n -+ Kn+i(B) is just given by a map wn+i : X^ - • B 
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in C such that iun+1 • s0 = °B • T : Xn —» 1 —> B. So there is a unique 
group homomorphism h : A —> B such that f wn+l = Kn(h) • ï/n. 
Consequently, there is a cocartesian map hn : X_n —> F n in n-AspC 
above /i, which implies that dn(Y_n) = B and means that the following 
diagram commutes in (n + l)-GrdC the vertical arrows being internai 
discrète fibrations: 

We shall call this double décomposition of wn+i its comprehensive 
factorization. 

4.5 T h e monoidal category H£+1(A) 

We shall dénote by H£+1(.4) the fibres d~l(A) of the n-dimensional 
direction functor dn : n-AspC —> AbC. Again, by Proposition 2.11, the 
stability of cocartesian maps under products gives any of thèse fibres 
a symmetric tensor product. The map 1 —• KnA is clearly ()n-i~ 
invertible and consequently cocartesian, which makes KnA the unit 
of this tensor product. Moreover the subdiagonal of the cocartesian 
maps are still cocartesian so, by Theorem 2.12, the set of connected 
components of this fibre has an abelian group structure. 

Définition 4.7. We dénote by HJ^'j~l(A) the abelian group of connected 
components of the symmetric monoidal category H£+1(A) and call it 
the n + 1-th cohomology group of C with coefficients in A. 

Example 4.8. Let A be an effectively regular additive category. Then 
consider the équivalence of catégories given by the Moore normaliza-
tion functor at level n. namely the functor Mn : n-GrdA —> ChnA, see 
[5]. This équivalence makes n-Grd(A/Y) équivalent to the category 
of chain complexes of length n 4- 1 in A with codomain Y: 

C/„-!^ [/„_!-.. f / o - i . y. 
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The "direction" of this chain complex is given by the kernel K[d] of 
d : Un —» Un-\. Such a chain complex corresponds to an aspherical 
n-groupoid in n-Grd(A/Y) if and only if d : f/0 —> Y is a regular 
epimorphism and the chain complex is exact at each level. So that the 
Moore équivalence at level n makes our group H^1~y(A) the same as 
Yoneda's classical Extn^l(Y,A). 

4.6 Connected components ofW£~l(A) 

As in level 1, the category H^+1(A) has its connectedness length equal 
to 1. For that we shall quickly explicit the natural inductive construc
tion which allows us to get round the difficulty involved by the fact 
that neither C# nor n-GrdC# admit pullbacks in gênerai. When E 
is finitely complète, there is, in n-GrdE, a natural construction which 
détermines a O^i-cartesian diagram, see [4]: 

"n 

CohnX_n ^ - Xn 
— > • 

above the following one in (n — l)-GrdE: 

I A i 

' ^ x° _ ^ ^ 
Cohn-i2Ln

 U „£n-l 
UJ_ i ~ 

*"-' ' X. 

where the inner diamond is a pullback. The object CohnX_n classi-
fies the higher order lax natural transformations with codomain A n . 
When C = A is additive, the Moore équivalence Mn : n-GrdA —> 
ChnA at level n exchanges CohnX_n with the universal classifier of the 
chain homotopies with codomain MnX_n, see [5]. Now, when C is ef
fectively regular and naturally Mal'cev, because an is ()n_i-cartesian 
and split s, the n-groupoid CohnX_n is aspherical whenever X_n is. Fur-
thermore, by using amenable pullbacks, we can force the images by dn 

of ail maps involved in the définition of CohnX_n to be 1^. Suppose we 
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are given two morphisms (/ , g ) in the fibre of W^+l (A) and consider 
the following pullback in n-GrdC: 

Pn-^CohnXn 

( ¢ ^ 

Hn^Vnr^XnxXn. 
—n —n 

The map hn is ()n_i-cartesian because so is / x g . Since it is ()n-i-
cartesian and CohnX_n is connected , then P_n is connected. The fact 
that P_n is aspherical is shown by induction, again see [4]. Then the 
above pullback lies in n-AspC and we can switch to an amenable 
pullback above: 

A l * A 

A >• A 

A x A.—*- A x A. 

We hâve d„(0n) = lA and d n ( 0 j = lA. 
For exactly the same reasons as at level 1, the connected compo

nent of 0 is characterized by the following: 

Proposition 4.9. An n-groupoid X_n ofW^l(A) is in the component 
ofO if and only if there is an aspherical (n — \)-groupoid Z_n-i

 an^ a 

map 9n : VnZn_x —» X_n. In other words, if and only if there is a map 
with codomain A n coming from the fibre H ^ ^ l ) . 

5 The long exact séquence 

Our aim now is to show that any short exact séquence in AbC: 

0 — A>jL+- B - ^ C — 0 (6) 
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produces a long exact cohomology séquence of abelian groups: 

o—-J/g(>i)= T0fA\^J^ ffO(B) _ ^ JjO(Q 

H&A) H&B) •H&C) 

H£(A) H£(C) 

# c + 1 M ) -z* Hc(B) -r* H£+l(C) 

5.1 The change of base functor 

Let h : B —> C be a map in AbC Then the change of base functor 
/?.* : Hc+1(-B) —> Hc+1(C) with respect to dn is a strong monoidal 
functor since the following commutative square: 

CxC-^C 

B 

I* 

induces a natural isomorphism /i*(An (S H„) — /i*An (g) h*Y_n, and 
consequently a group homomorphism h* : H£+l(B) —> #£+ 1 (C) . The 
following proposition characterizes the kernel of this group homomor
phism when the map h is a regular epimorphism: 

Proposition 5.1. Given any short exact séquence (6) in AbC, the 
following séquence is exact in Ab: 

H£+l(A) - ^ H^\B) - ^ i/£+ 1(C). 

Proo/. It is clear that this composition is trivial. Conversely, let 9n : 
^nZ_n-\ "^ h*X_n t>e the m a P which asserts that h*X_n = 0. Then 
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consider the following diagram where the left hand side square is a 
pullback in n-GrdC: 

wn^v,zn^ 
hKn *„ 

"-» X, 

OC 

-J~*h*£n 
B-ITC. 

Since h is a regular epimorphism, so is the cocartesian (()n,_i-invertible) 
map hn, and consequently p . Accordingly W_n_x — Z_n-\

 a n d W.n *s 

aspherical. Then switch to an amenable pullback above the right hand 
side square. Now the décomposition of x through the cocartesian 
map kn above k gives a map ip in the fibre of Mn+1(B) which makes 
Xn = KWn in the group H^B). D 

5.2 The Connecting homomorphism 

We are going to define a Connecting homomorphism ôn : H£(C) —> 
H£+l(A). In Section 4.4 we noticed that the equality d n - i ( !£ n - i ) = C 
holds if and only if there is a discrète fibration vn : VnWn_1 —* Kn(C) 
in n-GrdC. To define ônW_n_1 we begin with the following pullback in 
n-GrdC: 

ônWn-l-^VnWn_i 

M IE- oc 

Kn{B) 
Kn{h) 

Kn(C) B G. 

Since Kn(h) is ()n_i-invertible, so is the upper horizontal arrow, which 
is consequently 77 . This is a regular epimorphism since Kn(h) is so; 
accordingly ônW_n_i is aspherical. So the pullback in question lies in 
n-AspC and we can switch to an amenable pullback above the right 
hand side one. Hence, the n-direction of ônW_n_i is A. 

We are now going to investigate what the kernel of this Connecting 
homomorphism is: 
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Proposition 5.2. Given any short exact séquence (6) in AbC, 
following séquence is exact in Ab: 

the 

/u Sn H£(B) - ^ - H&C) - ¾ H£+l{A). 

Proof. It is easy to see that this composition is trivial. Now, let 
dn : ^nZ-n-x ~~* ^nW.n-1 be t n e map which asserts that SnWn_l = 0. 
Using the pullback of the définition of SnWn_1, the existence of 9n is 
équivalent to that of a pair (/3 ,ê n - i ) of niaps making the following 
diamond commute: 

VnZ„-l 
Vn«„_, 

^n(B) *->(</) 

J2" 
Kn(B) Kn(h) 

Kn{C). 

Suppose that dn-i(Z_n_x) = B. Consider the maps g : B —» B and 
g determined by the comprehensive factorization of j3n. Let hn_l be 
the induced factorization of 9_n-\ above h. Then there is a factorization 
h*{g*Z_n-i) —> W-n-i which makes h*{g*Z_n_x) = W_n_x in the group 
H£(C). D 

5.3 The last step 

Now we must investigate the kernel of K : H^l(A) —» H^~l(B). 

Proposition 5.3. (%;en any s/ior£ ezacÉ séquence (6) m ^46C, £/ie 
following séquence is exact in Ab: 

H£(Ç) - ^ #£+1(,4) — H£+l(B). 

Proof. It is clear that this composition is trivial. Conversely, let 
(ip ,(j) ) be the pair of maps in W£~l(B) assuring that k*X_n is in 
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the component of 0. Let us consider the following diagram where the 
upper left hand side square is a pullback in n-GrdC: 

2Ln - ^ k*xn 

£ t K t̂ n 

V„Iiln-l 

<WL-1 

Kn(B) 

Kn(h) 

Kn(C) 

^nlln-, 

A-^B 

A^B—*-+B 

OC 

A 
c. 

oc 

The map nn is ()n_i-invertible, so that T n - i = Wn_l is aspherical. 
Moreover, ij/ is ()„_i-cartesian, so that T_n is connected since so is X_n. 
Accordingly Tn is aspherical. Then switch to an amenable pullback 
above the upper right hand side one. Since dn(Kn(h) • 0 • nn) = h- k 
and rj is cocartesian above A —» 1, there is a unique factorization 
7 above oc : 1 —• C niaking the lower rectangle commutative. Since 
kn(h) is cocartesian above h, then this rectangle is a pullback by having 
parallel cocartesian maps. Let U_n-\ the object in the fibre Ifflg(C) de-
termined by the comprehensive factorization of 7 . Now consider the 
pullback, which lies in n-AspC, defining 6nU.n-i formed by the right 
hand side diamond. Then there is a factorization Ç which certainly 
lies in H^+1(i4), k being a monomorphism. This is also the case for 
ip' . Accordingly ônU_n_i is in the component of X_n, and A n = 5nU_n_l 

îïTthe g r o u p e 1 {A). D 

6 Applications 

1. We recalled and drew, in the introduction, the diagram of the long 
exact séquence we were interested in. We already noticed that, thanks 
to the Moore normalization functor Mn, the classical Yoneda's group 
Ext%(Y,A) for an abelian category A is nothing but our H2/Y{A) 
(Examples 2.15 1), 3.8 and 4.8). Our investigation on the connected 
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length of H2/Y(A) shows the classical resuit still holds without any 
assumption on projectives. 
2. The well known Tierney équation says that abelian=additive-hBarr 
exact. We obtained the same result about the long exact séquence in 
the strictly weaker context of effectively regular additive catégories. 
This is the case, for instance, of the category AbTop and AbHaus 
of topological and HausdorfT abelian groups. Thanks to the Moore 
normalization functor associated with the additive category AbTop, 
given two topological abelian groups A and Y, then H7^^ >Y(A) is 
nothing but the group Ext^^ (Y, A) of continuous exact séquences 
of topological abelian groups: 

0 — ^ A — fîn-i — - fîn-2 — * Bo —>Y —*• 0. 

The same description holds for AbHaus. 
3. Suppose C is any arbitrary effectively regular naturally Mal'cev 
category and Y an object with global support. Then, according to 
Corollary 2.4, Ab(C/Y) = AbC. Consequently, for any short exact 
séquence in AbC, there is still a Yoneda's Ext long exact séquence by 
setting Ext£(Y,A) = H£/Y(A). 
4. It is well known that, by a Moore normalization process, the cat
egory GrdGp of internai groupoids in the category Gp of groups is 
équivalent to the category X-Mod of crossed modules. Moreover, the 
category Mal(Gp/C) of group homomorphisms H —» C with abelian 
kernel is naturally Mal'cev, so an internai groupoid in this category 
is just a reflexive graph. This means that, in this context, our coho
mology groups will hâve a simplified description we shall détail in a 
further article. 
5. By the Example 1.1 4), the category Mal(Rue/A), having Lie-
homomorphisms with abelian kernel (i.e. equipped with trivial Lie 
brackets) as objects, is naturally Mal'cev and Barr exact. Conse
quently, our theory also applies to i?-Lie algebras. 
6. The catégories GpTop and GpHaus of topological and Hausdorff 
groups are protomodular, and thus Mal'cev. Consequently the caté
gories Mal(GpTop/C) and Mal(GpHausfC) of continous extensions 
with abelian kernels are naturally Mal'cev. And our results apply hère. 
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We shall give the détails about the description of thèse cohomology 
groups in a further article. 
7. When E is a finitely complète and effectively regular category, it 
is possible to extend, using our approach, the classical six term exact 
séquence of [1]: 

0 — H°(A)>^ H°(B) - ^ ifg(C) 

Hi(A) -r+HHB) -î^Hi(C) 

to any level, since the classical définition of H^(A) in terms of principal 
group actions coïncides with our own in terms of autonomous Mal'cev 
opérations with direction ,4, see [7], namely since H^(A) = H^(A) 
and Hl{A) = H^(A), where C = AutME. 
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