A note on nuclei of quantale modules
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 43 (2002) no. 1, pp. 19-34.
@article{CTGDC_2002__43_1_19_0,
     author = {Paseka, J.},
     title = {A note on nuclei of quantale modules},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {19--34},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1892106},
     zbl = {1015.06017},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2002__43_1_19_0/}
}
TY  - JOUR
AU  - Paseka, J.
TI  - A note on nuclei of quantale modules
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2002
SP  - 19
EP  - 34
VL  - 43
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_2002__43_1_19_0/
LA  - en
ID  - CTGDC_2002__43_1_19_0
ER  - 
%0 Journal Article
%A Paseka, J.
%T A note on nuclei of quantale modules
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2002
%P 19-34
%V 43
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_2002__43_1_19_0/
%G en
%F CTGDC_2002__43_1_19_0
Paseka, J. A note on nuclei of quantale modules. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 43 (2002) no. 1, pp. 19-34. http://www.numdam.org/item/CTGDC_2002__43_1_19_0/

[1] S. Abramsky, S. Vickers, Quantales, Observational Logic and Process Semantics, Math. Struct. in Comp. Science, 3 (1993) 161-227. | MR | Zbl

[2] B. Banaschewski, Another look at the localic Tychonoff theorem, Comm. Math. Univ. Carolinae, 29 No. 4 (1988) 647-656. | MR | Zbl

[3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, (American Mathematical Society, Providence, 1964).

[4] P.T. Johnstone, Two Notes on Nuclei, Order, 7 (1990) 205-210. | MR | Zbl

[5] A. Joyal, M. Tierney, An extension of the Galois theory of Grothendieck, Amer. Math. Soc. Memoirs No. 309, (1984). | MR | Zbl

[6] D. Kruml, Spatial quantales, Applied Categorical Structures, (in print). | Zbl

[7] I. Kříž, (In Czech), PhD thesis, Dept. of Mathematics, Charles University, (1988).

[8] D.S. Macnab, Modal operators on Heyting algebras, Algebra Universalis, 12 (1981) 5-29. | MR | Zbl

[9] C.J. Mulvey, J.W. Pelletier, On the quantisation of points, Journal of Pure and Applied Algebra, (in print). | Zbl

[10] J. Paseka, Simple quantales, Proceedings of the Eight Prague Topological Symposium 1996, (Topology Atlas 1997) 314-328. | MR | Zbl

[11] J. Paseka, D. Kruml, Embeddings of quantales into simple quantales, Journal of Pure and Applied Algebra, Journal of Pure and Applied Algebra, 148 (2000) pp. 209-216. | MR | Zbl

[12] J.W. Pelletier, J. Rosický, Simple involutive quantales, Journal of Algebra, 195 (1997) 367-386. | MR | Zbl

[13] P. Resende, Quantales, finite observations and strong bisimulation, Theoretical Computer Science, (in print). | Zbl

[14] K.I. Rosenthal, Quantales and their applications, (Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical, Essex, 1990). | MR | Zbl

[15] K.I. Rosenthal, The theory of quantaloids, (Pitman Research Notes in Mathematics Series 348, Longman Scientific & Technical, Essex, 1996). | MR | Zbl