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EQUIVARIANT GOTTLIEB GROUPS
by Marek GOLASI0144SKI* and Daciberg LIMA GONÇAL VES

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XLII-2 (2001)

R6sum6

Nous d6veloppons le diagramme de groupes de Gottlieb Gn (X) et
Gn (X ), pour n &#x3E; 1, et X un espace de diagrammes et X un espace
equivariant respectivement. Nous donnons quelques-unes de leurs
propri6t6s, 6tendant celles du cas nonequivariant. Ensuite, au moyen
de la G-fibration universelle Poo : Eoo -+ Boo, nous 6tablissons un
lien entre Fn(F) et les homomorphismes de connexion d6termin6s
par une G-fibration E -+ B de fibre F.

Classification A.M.S. : Primary 55P91; secondary 54H15, 57Sl7.
Key words and phrases: complex of groups, diagram of spaces, Got-
tlieb groups, EI-category, G-fibration, G-homotopy, G-CW space,
k-space.

Introduction

The Gottlieb groups Gn(X) of a connected pointed space X were
defined in [7, 8]; first G1(X) and then Gn (X ) for all n &#x3E; 1. As a
result of [7], the group G1 (X ) plays a central role in the study of Jiang
subgroups applied in fixed point theory. In [16], P. Wong considered a
concept of equivariant Jiang subgroups which play a relevant role in the
equivariant Nielsen theory for equivariant maps. The higher Gottlieb
groups Gn (X) are related in [8, 9] to the problem of sectioning fibrations

*This work was initiated during the visit of the first author to the Departamento
de Matematica - USP - Brasil, August 1998. This visit has been supported by
FAPESP-Sao Paulo-Brasil.
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with fibre X. For instance, if the Gottlieb group Gn (X ) is trivial then

there is a homotopy’ section for every fibration over the sphere Sn+,,
with fibre X.

The objectives of this paper include the development of an equivari-
ant concept of Gottlieb groups which will extend the relation with the

Jiang subgroups to the equivariant case as well as allowing analyses of
sectioning for equivariant fibrations. Section 1 serves as an introduc-

tion for the rest of the paper. We recall the definition of Gottlieb groups
and examine the relationship between evaluation subgroups Gn(X) and
Gn (X) for any space X and n &#x3E; 1. In particular, we show that for any
k-space X the Gottlieb group Gn (X) is isomorphic to the evaluation

subgroup Gn (X) for all n &#x3E; 1.

By [4] the homotopy category of G-spaces is equivalent to the homo-
topy category of diagram spaces indexed by the canonical orbits O(G)
and in [3, 11] diagram of spaces indexed by different categories are
studied. Therefore, we have first developed, in Section 2, the diagram
of Gottlieb groups Gn(X) corresponding to an H-diagram of spaces X
and n &#x3E; 1, and present some of their properties extending those in
[7, 8]. We note that if II is an El-category then the diagram Gn(X)
gives rise to a complex of grbups (Remark 2.1). Thus the all results on
complexes of groups presented for instance in [2] can be used to study
these diagrams Gn(X) of groups. Then, we generalize (Proposition 2.4)
the result presented in [8] by relating G1 (X) with the diagram TT1(X)
of fundamental groups for a diagram X of aspherical CW-spaces.

For an equivariant space X, diagrams of Gottlieb groups Gn(X) de-
termining a complex of groups are discussed in Section 3. We present
two equivalent definitions of those diagrams, relate them with the Got-
tlieb groups of some orbit spaces and the equivariant Jiang groups devel-
oped in [16]. The category O(G) of canonical orbits is an EI-category
for any group G. Thus we deduce that the diagram Gn (X) gives rise
to a complex of groups for any G-space X. At the end, some examples
of those diagrams are stated.

Section 4 indicates how to extend Gottlieb’s results presented in

[9, 12] to the equivariant case. We make use of the universal G-fibration
Poo £oo -+ Boo constructed in [15] to enunciate (Theorem 4.1) a relation
between Gn(F) and connecting homomorphisms determined by a G-
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fibration E -&#x3E; B with fibre F. We also investigate the diagram G1 (Boo)
and deduce (Theorem 4.3) that GI(43,,,,) is trivial provided that the fibre
of poo £00 -&#x3E; Boo is an equivariant Eilenberg-MacLane space K(7r, n).

We have included certain results interpreted for complexes of groups.
Although these are not central to our principal applications we feel they
are suggestive of a link that deserves further study.

The authors are extremely indebted to T. Porter for his many valu-
able suggestions.

1 Nonequivariant backgrounds
Throughout this section spaces will be connected and pointed. The

n-th Gottlieb group Gn(X) of a space X, defined in [7, 8] for n &#x3E; 1, is

the subgroup of the n-th homotopy group 7rn(X) containing all elements
which can be represented by a map a : Sn - X from the n-sphere Sn
and such that a V idx : S’ V X -&#x3E; X extends (up to homotopy) to
a map F : Sn x X -&#x3E; X. The map F : sn x X --t X is called an

associated map for a : Sn-- X . If CX is the space of all self-maps
of the space X (with the compact-open topology) then the evaluation
map ev : CX -&#x3E; X at the base point is continuous, and one can form
the group Gn(X) = Im (evn : 7rn(CX, idx) - 7rn(X)). Certainly, both
groups are isomorphic if X is locally compact.

Now compare the groups Gn(X) and On(X) for any space X. First,
recall some facts on k-spaces (see e.g. [6, Appendix]). A subset A C
X is said to be compactly closed, if for every compact space C and
map f : C -3 X the preimage f -1 (A) is closed in C. A space is said
to be a k-space whenever all its compactly closed subsets are closed.
The property of being a k-space is preserved by closed subspaces and
identifications. All metric spaces and CW-spaces are k-spaces. For an
arbitrary space X there is a k-ification kX, the space having the same
underlying set as X, but with the topology given by taking as closed
sets the compactly closed sets with respect to the topology of X. Note
that the identity map kX -- X is continuous and a weak homotopy
equivalence. Moreover, if Y is a k-space then a map f : Y -4 X is
continuous if and only if’ the map f : Y - kX is continuous. If X and
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Y are k-spaces then their product X x Y (in the category of k-spaces)
is given by k (X. xc Y), where X x c Y is the Cartesian product (endowed
with the product topology). If at least one of the spaces X or Y is

locally-compact Hausdorff then X’x Y = X x, Y. The category of k-
spaces is both complete and cocomplete, and also has mapping spaces
satisfying the exponential law. More precisely, for any k-spaces X and
Y, the mapping space L(Y, X) = k(C(Y, X)), where C(Y, X) is the

space of all continuous maps Y - X with the compact-open topology.

Proposition 1.1 (1) If X is a k-space then there is an isomorphism

(2) If X is any space then there exist monomorphisms

(3) If X is a Hav,sdorff space then there is a commutative diagram

o f monomorphisms f or any n &#x3E; 1.

Proof: (1) is a direct consequence of the exponential law in the category
of k-spaces.

(2) For a map a : Sn -&#x3E; X there is its lifting a : sn --t kX, since the
sphere S’ is compact. If F : SnXX -&#x3E; X is an associated map for a then

a lifting F : Sn x kX --+ kX of the composite map S’ x kX - S" x X 4
X is an associated map for d. Thus, a map Gn(X) ---+ Gn(kX) has been
defined.

Note that the canonical map kX --+ X yields an isomorphism
7rn (kX) 7fn(X) and the diagram
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commutes, where the vertical maps are given by inclusions. Hence,
the top map Gn(X) -&#x3E; Gn(kX) is a monomorphism. Analogously,
one can define a map Gn (X ) -&#x3E; Gn (kX) and show that this is also a
monomorphism.

(3) If the space X is Hausdorff then an associated map F : Sn x X -a
X for a : Sn -+ X determines an adjoint map F : Sn --t CX and the
rest follows from (2).

O

For k-spaces X and Y and a map f : X -&#x3E; Y, the evaluation map
ev : L(Y, X) -&#x3E; X at the base point yo in Y induces a homomorphism

for any n &#x3E; 1. The subgroups J(Y, X; f ) = eVl(1rl(L(Y,X),j)), called
the Jiang subgroups of f in L(Y, X), play an important role in fixed
point theory.

If X is a CW-space then by [1] there is a universal fibration

Poo : Eoo e Boo with fibre F 00 homotopy equivalent to X. Let

aoo: 1rn+1(Boo) -+ 7r.(F.) be the connecting homomorphism from the
homotopy exact sequence of the fibration pm. The following result is
presented in [8].
Theorem 1.2 (1) If X and Y are k-spaces there there is an inclusion

for any n &#x3E; 1, a map f in L(Y, X) and the base point yo in Y;
(2) If X is a CW-space then Gn(Foo) = aoo(7rn+1 (Boo)) . Thus, for

any fibration

8(7rn+l(B)) 9 Gn(X), where 8 : 7rn+1{B) -&#x3E; 1fn(X) is the connecting
homomorphism frorri the homotopy exact sequence of this fibration.

Consequently, if Gn (X ) = 0, then every fibration over the sphere Sn+1
with fibre X, has a homotopy section. The group Gn(X) is the intersec-
tion of all subgroups of 1fn(X) which are the image of a homomorphism
induced by an evaluation map. The group Gn(X) is also the union of
all subgroups of 7rn(X) each of them is the image of the connecting ho-
momorphism arising in the homotopy exact sequence of a fibration with
fibre X.
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2 Gottlieb groups of diagrams
If o, : I e X is a path in X with o(0) = xo and u(i) = x, then

by [8] the induced isomorphism of homotopy groups a. : 7rn(X, xl) -+
7r,,(X,xo) restricts to an isomorphism a. : Gn(X, X1) Gn(X, xo).
Unfortunately, as was shown in [8], it is not true that any map f : X -+
Y of spaces induces a map from Gn(X) to Gn(Y).

Let now rl(X) be the fundamental groupoid of the space X and Gpd
the category of groups. Thus, in the light of the result above, one gets
a local coefficient system

such that Gn(X)(x) = Gn (X, x) for all points x in the space X and
n &#x3E; 1.

Let I be a small category with the set Ob (I) as its objects and
X a contravariant functor from R into k-spaces, called an I- diagram
of spaces. The notions of well-pointing, path-connectivity, extension
property and others can be easily extended from spaces into 1-diagrams
of spaces in an obvious way and the homotopy theory of 1-diagrams

. has been developed in [14]. The object-wise product X x Y of two
II-diagrams X and Y forms the categorical product. Observe that, for
these two 1-diagrams, the "hom-set" Nat (Y, X ) in the category of I-
diagrams is contained in the product TIiEob (II) L(Y(i), X (i)) of k-spaces.
Endow Nat (Y, X) with the k-ification of the induced topology from the
product TIiEOb(II) L(Y(i), X (i)). Moreover, any set yields a k-space with
respect to the discrete topology. Define the Tnapping I- diagram L (Y, X)
by taking

for any object i in Ob (1) and in the obvious way on morphisms in I,
where I(-, i) is the Yoneda functor determined by i in Ob (1). Then,
for 1-diagrams X, Y and Z, there is a bijection

natural in X and Y . Consequently, the category of It-diagrams is carte-
sian closed and the evaluation map exp : Y X L(Y, X) -&#x3E; X can be

derived, for any 1-diagrams X and Y.
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Given an 1-diagram X of spaces, one can form the associated funda-
mental category..II(U, X) studied for example in [11, p. 144] for the orbit
category I = O(G) of a group G and then generalized in [14] for any
small category 1. For a map f : X -&#x3E; Y, let rI (f ) : 11 (1, X) -&#x3E; rI (1, Y)
be the induced functor. Our aim is to define a II(II, X)-diagram of
groups

If Sn is the n-sphere with a base-point so and A : Sn x X -3 X a
map of 1-diagrams such that A |S0 X : X -&#x3E; X is homotopic to the
identity idx, then for any object i in Ob (II) and xi in X (i), one gets an
associated map A(i) : Sn x X(i) -+ X(i) for the map ai : Sn -&#x3E; X(i)
given by ai(s) = A(i)(s, Xi) for all s in sn. Let Gn(X(i), Xi) be the
subset of the homotopy group 7rn(X (i), xi) containing all elements which
can be represented by those maps ai : S n -&#x3E; X (i). Say that A is an
I-associated map. It is easy to see that Gn(X (i), xi) is a subgroup
not only of 7rn(X(i), xi) but also of the Gottlieb group Gn(X (i), xi). If

(cp, Q) : (i, xi) --&#x3E; (j, xj) is a map in IT(II, X) then there is an induced map
a) Gn(X(j), Xj) -+ Gn(X(i), Xi). Thus one obtains a H (R, X)-
diagram Gn(X) of groups given by Gn (X) (i, xi) = Gn (X (i), xi) for
any object (i, xi) in Il (1, X).

Recall that a small category is called an EI-category ([11]) if any
endomorphism in I is an isomorphism. Note that for any El-category I
and an I-diagram X of spaces a skeleton IT’ (I, X) of the associated fun-
damental category Il(ll, X) is a category without loops. Then, accord-
ing to [2], the geometric realization Bll’ (I, X) of the nerve of IT’ (I, X)
(called the classifying space of il’ (I, X)) is an ordered simplicial cell
complex. Thus one may easily check

Remark 2.1 If I is an EI-category and X an II-diagram of spaces then
the restriction of the 11(1, X)-diagram

to the skeleton rl’(1, X) gives rise to a complex of groups G’n(BII’(I, X))
(see [2] for the definition) on the ordered simplicial cell complex
Brl’(1, X).
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For an II-diagram Y of spaces, fix yi in Y(i) for any i in Ob (1).
Then the exponential map exp : Y X L(Y, X ) -&#x3E; X gives rise to an
evaluation map

Any map f : Y - X of 1-diagrams composed with the projection
Y x II (-, i) --&#x3E; Y yields an element in L(X, Y)(i) for any i in Ob (1) and
consequently, one gets a base point in the mapping diagram L(X, Y)
denoted also by f . Thus, the induced homomorphism

occurs for any n &#x3E; 1 and i in Ob (I). The arguments given for Propo-
sition 1.1 and the results presented in [8, Proposition 1-4 and Theorem
1-7] generalize without much difficulty to the case of 1-diagrams, for
instance:

Theorem 2.2 (1) If X and Y aTe 1-diagrams of spaces then there is an
inclusion

for any n &#x3E; 1, a map f : Y -&#x3E; X of 1-diagrams and a point yi in Y(i)
with i in Ob (1);

(2) If r : Y - X is a homotopy retract of well-pointed and path
connected II-diagrams then there is a natural transformation

In particular, if f : Y -&#x3E; X is a homotopy equivalence of well-
pointed and path-connected 1-diagrams with g : X - Y a homotopy
inverse then there are equivalences of diagrams

and
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Proof: (1) It is a straightforward extension of Proposition 1.1 to I-
diagrams.

(2) Let ai be in Gn(X (i), xi) with i in 1. By the well-pointness
property of Y, one may assume that the image r * ( ai) of ai is in

7rn(Y(i), r(xi)).
Set A : Sn x X -&#x3E; X for an I-associated map to ai. Then define a

map

by letting A’(s, y) = r A (s, t(y)), where t : Y -&#x3E; X is a right homotopy
inverse to r : X -&#x3E; Y. Then one can mimic the proof of [8, Proposition
1-4] and use the extension homotopy property of the inclusion * x Y -4
Sn x Y to find an associated map for r*(ai) and show that T*(ai) is in
Gn(Y(i), r(xi)). 

The rest of the proof goes over from the nonequivariant case [8,
Theorem 1-7] verbatim.

0

Given 1-diagrams X and Y of spaces the projection maps p :
X X Y - X and q : X x Y -&#x3E; Y determine a functor (II(p), Il(q)) :
11(1, X X Y) -&#x3E; rI (1, X) x rl (1, Y). Therefore, one can conclude

Corollary 2.3 If X and Y are II-diagrams of spaces then there is an
equivalences of diagrams

Gottlieb has shown in [8] that G1(X) 9 3(7Ti(X)), the center of the
group 7f1(X), for any space X and G1 (X) = 3(7ri(X)), if X has the

homotopy type of an aspherical CW-space X. Note that an element a
in 7Ti(X) is in 3(7r1(X)) if and only if the map p : Z x 7rl(X) -+ 7fl(X)
given by cp(n, g) = a"g, for (n, g) in Z x 7r1(X) is a homomorphism of
groups, where Z denotes the integers. Let now 7r1 (X) be the IT(R, X)-
diagram of fundamental groups, for an 1-diagram X of spaces. Thus
one has the following extension of Gottlieb’s result.

Proposition 2.4 (1) If X is an II-diagram of spaces then any H-

associated map A : 81 x X -+ X gives a rise to a map
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of II(II,X)-diagrams restricting to the identity on 7r1 (X);
(2) If X is. an 1-diagram of aspherical CW-spaces then any map

À : Z x 7ri (X) -&#x3E; 7r1 (X) of rl(l, X) -diagrams restricting to the identity
on 7r1 (X) gives a rise to an I-associated map

3 Gottlieb groups of equivariant spaces
Let now G be a finite group and X a G-space. For a subgroup

H C G, let X H be the fixed-point subspace. Then one can form the
following index category O(G, X) (called in [3, p. 72] the orbit category
over X ; the associated discrete category no(G, X ), called the component
category over X, has been studied in [3, p. 73] and [11, p. 99]):

(1) the set Ob(O(G, X)) of objects consists of pairs (G/H, x) with
H a subgroup of G and x in X H,

(2) morphisms (G/H, x) -&#x3E; (G / K, y) are given by G-maps § :
G/H --&#x3E; G/K such that Ø(Y) = x, with § : X K -&#x3E; X H as the induced
map of the fixed-point subspaces.

Consider the O(G, X)-diagram X of spaces such that X(G/H, x) _
Xf with XH as the path-connected component of XH consisting of the
point x. If rI(G, X) denotes the fundamental category rI(O(G, X), X)
studied already in the previous section then, in light of that section, one
gets n(G,X)-systems of Gottlieb groups Gn(X) for all n &#x3E; 1.

On the other hand, if Sn is the n-sphere with a base-point so and
the trivial action of G, and A : Sn x X - X a G-map such that
Alsoxx : X --+ X is G-homotopic to the identity map idx then for
any subgroup H C G and x in X H one gets an associated map AH :
Sn x X H -&#x3E; X H for the map aH : Sn - X H given by oH(S) = A H (S, X)
for all s in S n. Let Gn(X H, x) be the subset of the homotopy group
7rn(X H, Xi) containing all elements which can be represented by those
maps aH : Sn -3 XH. It is easy to see that Gn(XH, X) is a subgroup not
only of 7rn (XH, x) but also of the Gottlieb group Gn(XH,x), and there
is a map Gn(XH,x) --&#x3E; Gn (X, x) determined by the inclusion XH C X.

Let CGX be the space (with the compact-open topology) of all self
G-maps of the G-space X . Given a subgroup H C G and a point x
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in X H consider the evaluation map evH : (CGX, idx) -&#x3E; (X H, x) given
by evH( f ) = f H (x) for any f in CGX, with fH as the induced self
map of the fixed-point subspace XH. Then Gn(XH,x) = Im((evH)* :
7fn(CeX,idx) --Y 7fn(XH,x)) provided that X is a k-space. Observe

that there is an isomorphism 7fn(CeX,idx) = 7rn(auteX,idx) for any
n &#x3E; 0 and the monoid autGX of self G-homotopy equivalences of the
G-space X. Finally, one obtains the II(G, X)-diagram Gn(X) given by
Gn (X) (GIH, x) =Gn(XH,x) for any object (G/H,x) in II(G,X).

Observe that the category O(G) of canonical orbits is an EI-

category and consequently 0(G,X) is also such a category, for any

G-space X. Hence, Remark 2.1 yields

Remark 3.1 For any G-space X the II(G,X )-diagram Gn (X) gives
rise to a complex of groups G’n(BII’(G,X)) on the classifying space
BIl’ (G, X) of a skeleton II’(G, X) of the category n(l, X).

As may readily be seen, Theorem 2.2 .and Corollary -2.3 can be re-
formulated for G-spaces as well. Moreover, for G-spaces there is an

appropriate version of Proposition 2.4 and one may also state

Proposition 3.2 If X is a G-CW space then there is an isomorphism
of rl (G, X) diagrams Gn(X) = Gn(X) for all n &#x3E; l.

Proof: Let X be a G-CW-space and X the associated O(G, X)-
diagram of spaces. Then any G-map A : S’ x X -&#x3E; X determines,
in an obvious way, an O(G, X)-map A : Sn x X - X . Then

A(G/H, x) (s, x) = AH (s, x) for any s in S’ and x in X H. Consequently,
one gets a natural transformation 

By virtue of the Elmendorf classifying functor [4], an O(G, X)-map
A : S’ x X -&#x3E; X yields a G-map A : S’ x X - X, where A and A are
related as above. Thus, one gets a natural transformation

which is an inverse to (D.
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For a G-space X, a point x in X and the trivial subgroup E C G,
let Gn (X, x) = Gn (X E, x) for all n &#x3E; 1. One can easily mimic the
nonequivariant case to shown that the group G1(X, x) coincides with
the G-Jiang subgroup JG(X, x) (of the identity map on X ) studied by P.
Wong in [16] for X being a connected G-ENR. If H C G is a subgroup
of G then there is an action of the Weyl group WH = NH/H on the
fixed-point subspace XH of a G-space X. If X/G is its orbit space then
the quotient map p : X -&#x3E; X/G restricts to pH : XH --t X H /W H.
Then one can prove the result.

Proposition 3.3 (1) If X is a G-space then for any subgroup H C G
there is an inclusion

for any n &#x3E; 1 and x in X;
(2) If X is a Hausdorff space with a free G-action then

for any n &#x3E; 1 and x in X . Thus there is an isomorphism

for all n &#x3E; 1.

Proof: (1) is straightforward to verify.
To prove (2) one has to check the opposite inclusion. For n &#x3E; 1 it

follows from the fact that the quotient map p : X - X/G is a covering.
For n = 1, take an element a in the group p.7r, (X, x)flG1 (X/G, p(x))

and an associated map F : S’ x X/G -&#x3E; X/G. If F’ : I x X/G - X/G
is the corresponding cyclic homotopy then a lifting F" : I x X -4 X of
the composite map F’ o (id, x p) : I x X -4 X/G is also cyclic, since
the element a is in p* 1f1 (X, x).

To complete the proof one has to show that F" : I x X -&#x3E; X is a

G-map. Take a point (t, x) in X x I, an element 9 in G and a path
Q : I -&#x3E; X such that Q(0) = x and Q(1) = gx. From a lifting of the
composite map F’ o (id | [o,t] x p) o (id | [o,t] x u) : [0, t] x I - X/G the
result follows. D
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Some calculations of G1 (X) for a free G-action on an acyclic space
X and its relation with equivariant fixed point theory were presented
in [5]. At the end of this section, Proposition 3.2 is used to present

Example 3.4 (1) Consider the 2-dimensional torus T2 with a free ac-
tion of the cyclic group Z/2. Its orbit space is the Klein Bottle, K.
Then, as it was shown in [7], G1(K) = 3(7r1(K)) = Z the group of
integers and 7r1 (’f2) n G1 (K) = Z. By virtue of the last proposition one
gets that G1(T2) = Z. On the other hand G1(T2) = Z x Z.

(2) J. Pak and M.H. Woo considered in [13] the generalized lens
spaces L2n+i (p) to prove that

if n = 0, 1, 3,
for any other n.

Hence G2n+1(S2n+1) = G2n+1(L2n+1(P))
(3) Consider the product ’d’2 x I with I the unit interval and the map

ø: T2 -+ T 2 given by O(x, y) = (x,00FF) for (x, y) in T2, where 2 is the
conjugation of z as an element in the field of complex numbers. Take the
quotient space X = T2 x I/ -, where the equivalent relation is given by
(x, y, 0) - (x, y,1) for all (x, y) in T2. The involution s : T2 xI -4 T2 x I
given by s(x, y, t) = (x, y,1 - t) for (x, y) in ’Jr2 and t in I determines
a semi-free action of the cyclic group Z2 on the space X. Then XZ2 =
T2 x { 1/2 } U { [ ( 1, 1, 0)] -, [(- 1,1, o)]-, [( 1, -1, 0)], [(-1, -1, 0)] -} and one
gets a fibre sequence

Consequently, the space X is aspherical, the canonical map G1 (XZ2, x) -
G1 (X, x) is a monomorphism and the induced short exact sequence
0 - Z e Z --&#x3E; 7r1 (X, x) - Z -&#x3E; 0 splits with x as a base point in
T 2 x {1/2}. Thus, the group 1fl (X, x) is a semi-direct product of Z ED Z
with the cyclic group Z, where the action of Z on Z fl3 Z is given by
g(m, n) = (- m, - n) for any (m, n) in Z EÐ Z and the generator g of Z.
The presentation
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of the group 7rl(X,X) yields that the cyclic group  (0, 0, g2) &#x3E; is con-

tained in the center 3(7rl (X, x)). On the other hand, if (m,n,gk) is in
3(7fl(X, x)) then, in particular, (0, 0, g - 1) (m, n, gk)(0, 0, g) = (m, n, gk).
Therefore, m = n = 0 and k is even since (0, 0, g) is not in 3(7r1 (X, x))
and, in view of [7], one can say that G1(X,x) - 2Z. Finally,
G1(XZ2,X) = 0 as a subgroup of the trivial group G1(XZ2,X) n
G1(X,x) = 0, since G1(XZ2,x) = Z EÐ Z.

4 Gottlieb groups and equivariant fibra-
tions

For a finite group G, one refers to [15] to recall some notions. An
equivariant fibrations over a G-space B is a G-map p : E -&#x3E; B which

satisfies the G-covering homotopy property. A G-map p : E --+ B is a
G- fibration with fibre F if for each 6 in B there is an action on the space
F of the isotropy subgroup Gb of b such that p-1 (b) is Gb-homotopy
equivalent to F with respect to the given action. For a G-fibration

p : E - B and a subgroup H C G, in virtue of [9, Corollary 1] (cf. also
[12, Theorem 2.2]) there is an inclusion â7rn+l(BGb,b) C Gn(FGb,X) for
all n &#x3E; 1 and x in p-1 (b), where 8 is the connecting homomorphism.
Moreover, if 1rn+1(BGb,b) g 7fn+l(BGb,b) is the preimage of the sub-
group G, (F Gb, X) 9 Gn(FGb,X) by the map 8, then there is also an

inclusion a7rn+1(BGb,b) g Gn(FG6, x).
If F is a compact CW-space with some collection of actions on F of

subgroups of G then, from [15, Section 2], there is a G-fibration Poo :
E00 -&#x3E; Boo with fibre F being universal for all G-fibrations with fibre F
and over a "suitable" base G-space. Moreover, pointed G-fibrations give
rise to a homotopy functor. Then one may apply the same techniques
as in [1] to derive (by means of Brown’s representability result) the
existence of a universal G-fibration Poo : E00 -&#x3E; Boo for G-fibrations
with fibre F being a pointed CW-space. In particular, for pointed G-
fibrations with the trivial G-action on base spaces, the space Boo has the
homotopy type of the classifying space B (autGF) of the monoid autGF
of self G-homotopy equivalences of F.

From now, let F be a G-CW-space with the collection of restricted
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actions of all subgroups of G and pm : £00 --&#x3E; Boo the corresponding uni-
versal G-fibration. Then, one has an equivariant version of [9, Theorem
2].
Theorem 4.1 If F is a compact G-CW -space then Gn(PH, x) -
U Im(8 : 7rn+ 1 (BH, p(x)) - 1fn(FH,x)) for any subgroup H C G and a
point x in FH, where the union runs over all G- fi brations F -&#x3E; E -4 B
with B satisfying the properties stated in [15].
Proof: From Section 3, one knows that there is an isomorphism
Gn(FH, x) = Im((evH)* : 1fn(GGP,idF) -&#x3E; 1fn(FH,x) for any n &#x3E; 1,
a subgroup H C G and a point x in F H where CGF is the space
of self G-maps of the G-space F and evH : (CGX, idx) - (X H, x)
the evaluation map at the point x in X H. But, from the construc-
tion of the universal G-fibration Poo : £00 --t Boo it follows that

1fn+1(Boo, Poo(x)) = 1fn(CcF, idF).
Every G-fibration F - E -4 B is obtained by pulling back the

universal G-fibration poo £00 -&#x3E; Boo via a classifying G-map B - Boo.
The pullback provides, in particular, a commutative square

Therefore, any connecting map a factors through the universal one and
the proof is complete.

D

For a subgroup H C G, let p00H : EHoo -&#x3E; BHoo be the fibration given
by fixed-point subspaces and q : E - B the fibration induced from
pHoo : EHoo - L3H via a map cx : B -t BHoo . Follow [9, 10] to generalize
some notations. For k-spaces A and B let L(A, B) be the associated
mapping space studied in Section 1 and L(A, B; Ø) its path component
containing a map A - B. Let L*(E, EHoo, a) be the space of fibre
preserving maps / : E -&#x3E; .6 H which carry each fibre of q into a fibre
of p§Hoo by a homotopy equivalence and cover maps f : B -t L3Hoo are
homotopic to a : B -- BHoo. By [9], there is a continuous map
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Lemma 4.2 If Poo : £00 --&#x3E; Boo is a G-fibration universal for G-
fibrations with fibre F and a: B --&#x3E; L3’ a map with a subgroup H C G
then the homotopy groups 7rn (L* (E, g’; a)) are trivial f or all n &#x3E; 1.

Proof: As in the proof of [9, Lemma 2], let X be a compact CW-

space and g : X -&#x3E; L* (E, EHoo, a) a quasi-continuous map. Then the

commutative triangle

with 0 = 4?g gives rise to the commutative diagram of G-spaces

In the rest, one makes use of the adjointness of the functors (-)H and
- x G/H and then the proof of [9, Lemma 2] goes over to this case
verbatim.

D

Let F(£Hoo) denote the subgroup of homotopy classes of homotopy
equivalences f : F - F which extend to fibre homotopy equivalences
f : £Hoo - £Hoo. Then, one can make use of the previous lemma and
mimic the nonequivariant procedure presented in [9, Section 5] to prove

Theorem 4.3 If Poo : £00 -&#x3E; Boo is a G-fibration universal for G-
fibrations with fibre F then there is an isomorphism G1 (BHoo, b) = 6(£Hoo)
for any subgroup H C G.

Let now 0(G) be the category of canonical orbits associated with
the group G and 7r an 0(G)-diagram of abelian groups. Then, by [4],
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for any positive integer n &#x3E; 1, there is a G-space K((7r, n) such that
the subspace K(7r, n)H of fixed-points is an Eilenberg-Maclane space of
type (7r (G / H), n) .

Let Poo : 6,, - Boo be a universal G-fibration for G-fibrations with
fibre F = K(7r,n). Then, in view of Theorem 4.2 and [9], the Gottlieb
groups G1(BHoo, b) are trivial for all subgroups H C G and b in Bl. On
the other hand, there is an inclusion G1 (B’, b) 9 G1 (B’, b). Thus, one
has shown an equivariant version of [9, Corollary 1 in Section 5].

Corollary 4.4 If Poo : £00 -&#x3E; Boo is a universal G-fibration for G-
fibrations with fibre F = K(7r,n) then the O(G, 8,,0) -system G1(Boo) of
Gottlieb groups is trivial.
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