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EPIREFLECTIONS WHICH ARE COMPLETIONS

by G. C. L. BRUMMER, E. GIULI and H. HERRLICH

We dedicate this paper to the

memory of Siegfried Grässer
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ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

VOL. XXXIII-1 (1992)

Resume. Nous axiomatisons la situation ou tout ob jet d’une
categorie X a un complete et ou tout plongement dense dans
un objet complet quelconque est une r6flexion dans la sous-
categorie pleine des objets complets. On dit alors que X

admet une sous-categorie S-fermement E-r6flexive. Ici, S est
une classe de morphismes de X ayant des propri6t6s analogues
aux plongements, et la classe E represente la densite appro-
pri6e. Pour le cas E = EpiX nous relions cette notion avec
celles de fermeture S-absolue, de S-saturation, et de (E n S)-
injectivit6; nous en donnons plusieurs caract6risations, en par-
ticulier la pr6servation des S-morphismes; et nous considerons
beaucoup d’exemples topologiques et alg6briques. Quand X
est une categorie topologique on a un contexte naturel pour
lequel E est plus large que la classe des 6pomorphismes.

0. Introduction

Among the various kinds of extensions that an object can have,
compactifications and completions of spaces exhibit two very different
forms of behaviour. A Tychonoff space, say, can have many mutually
inequivalent Hausdorff compactifications, among which there is the
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Cech-Stone compactification which is the reflection to compact spaces.
On the other hand, a metric space, say, admits, up to isometry, just
one completion, and that completion si the reflection to complete
spaces.

The latter form of behaviour is paradigmatic for the kind of com-
pletion of objects that we study in this paper. When it occurs in a
category X, we say that the "complete" objects form an s-firm E-
reflective subcategory of X. Here S is a class of morphisms in X of
which we like to think as embeddings, and E represents the kind of
density that an object should have in its completion.

Our chosen setting then is an (E, M)-category X with a designated
class S of morphisms. Mild assumptions on the interplay between the
(E, M)-factorization and the class S determine the results. These

become trivial when S coincides with M.

For the sake of clarity, the main body of the paper is developed for
the case that (£, M) = (epi, extremal mono). The category X with
the given S admits at most one S-firmly epireflective subcategory
R. In this case, R consists of those X-objects which are injective
with respect to epimorphisms in S, and R also coincides with the
subcategory of S-saturated objects; under an additional assumption,
R is the subcategory of absolutely S -closed objects. It is clear that

X admits an S-firm epireflection if and only if every X-object admits
an epic s-morphism into an object which is (S n EpiX)-injective. We
show (Theorem 1.6) that this is equivalent to X being s-cogenerated
by a class of (S F1 EpiX)-injectives. The main result (Theorem 2.5)
is that a given S-epireflector in S-firm if and only if it preserves S-
morphisms (equivalently: S-sources) and reflects into the class of S-
saturated objects. We give examples in topology and algebra. The
applications to topological categories also provide a context for firm
E-reflections with E other than epi.

Injectives with respect to epimorphic embeddings were studied by
P.D. Bacsich [2], with results partly of the same intent as the present
paper. R.-E. Hoffmann [38] defined and investigated firm reflections
in topological categories. The latter paper was the first, to our knowl-
edge, which proved the firmness of the sobrification epireflector in the
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To-topological spaces. It may be observed that the precategorical pa-
per [10] by G. Birkhoff can still serve as a source of ideas connected
with the notion of completeness.

1. Firm epireflections
Throughout the paper we consider a category X which is complete

and well-powered and a fixed class S of morphisms of X satisfying the
following properties:

(s1) IsoX C S CMonoX;
(S2) S is closed under composition;
(s3) If me E S and e E EpiX, m E ExMonoX, then e E S.

MorX, EpiX, MonoX, ExMonoX, RegMonoX, IsoX denote the
class of all morphisms, epimorphisms, monomorphisms, extremal mo-
nomorphisms, regular monomorphisms and isomorphisms of X, re-
spectively. If X is concrete then EmbX denotes the class of embed-

dings of X (i.e. initial maps whose underlying maps are mono); it

satisfies conditions (s1)-(s3).
Note that every M which is part of an (&#x26;, M)-factorization struc-

ture of X, with EpiX C &#x26;, has the properties (si)-(s3) and in fact
also satisfies the additional assumptions (s4) and (s5) which we im-
pose later.

All subcategories will be taken as full and isomorphism-closed.
Since X is complete and well-powered, then (cf. [36, 34A]):

(x1 ) X is an (EpiX, ExMono X)-category.
Definitions 1.1. Let X be an X-object.

(1) X is said to be S-injective if, for each e : Y-&#x3E; Z in S and each
X-morphism f: Y -&#x3E; X, there is an X-morphism g : Z -&#x3E; X

such that ge = f. Then g is called (an) extension of f (to Z).
(2) X is said to be weaklyS-injective if it is (EpiX fl S )-injective.

Inj(S) (WInj(S)) denotes the class of all (weakly) S-injective
objects of X.

(3) X is said to be S-saturated if an X-morphism f : X ---&#x3E; Y is
an isomorphisms whenever f E EpiX n S. Sat(S) denotes the
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clas3 of all S-saturated objects of X.
(4) X is said to be absolutely S-closed if an X-morphism f : X -

Y is a regular monomorphisyn whenever f E S. AC(S) denotes
the class of all absolutely S-closed objects of X.

We refer to [36] and [32] for other categorical terms not defined
here.

Weakly S-injective implies S-saturated and absolutely S-closed im-
plies S-saturated (see Proposition 1.3 below).

For the case X a category of algebras (in particular of rings or
semigroups) and S the class of all monomorphisms, S-saturated and
absolutely S-closed objects were introduced and investigated by Isbell
[42] (see also [39]). It is shown in [42] that an S-saturated algebra need
not be absolutely S-closed.

For the case X an epireflective subcategory of Top and S = EmbX,
S-saturated and absolutely S-closed objects were studied by Dikran-
jan and Giuli in [16] and [19]. It was observed in [16] that absolute S-
closedness coincides with X-closedness whenever the X-epimorphisms
coincide with the dense continuous maps. The latter notion was intro-
duced by Alexandroff and Urysohn [1] for the category of Hausdorff
spaces (H-closedness) and was investigated by many authors (see e.g.
[9] and [51])). In such a case also absolutely S-closed = S-saturated.
It was also proved in [19] that, for X the category of Urysohn spaces
(or, more generally for X the category of S(n)-spaces), an S-saturated
space need not be absolutely S-closed and absolutely S-closed need
not be X-closed.

Weak S-injectivity vanishes in some contexts in which the S-inje-
ctivity is consistent (e.g. in abelian categories X with S =MonoX).
In Unifo, with S = {Embeddings}, S-injectivity is a much stronger
property than weak S-injectivity [41]. The latter notion is equivalent
to completeness. Analogously in Top., with S = {Embeddings}, S-
injective space means retract of a product of Sierpinski spaces [49]
while weakly S-injective space means sober space [38].

S-injectivity with no conditions on X and on S, is investigated by
Herrlich [35] (see also [34]).
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Let X be a topological space and let X be the epireflective hull
of X in Top. Sobral [50] showed that the Eilenberg-Moore factor-
ization of the functor Hom(-, X):Top*P -&#x3E; Set can be obtained via

the corresponding factorization of its restriction to the subcategory
AC(EmbX), provided X satisfies an injectivity condition. This injec-
tivity condition is weaker than the (EmbX)-injectivity notion but it
is not comparable with our weak (EmbX)-injectivity.

If R is an epireflective subcategory of X, R : X -&#x3E; X denotes the

reflection functor, and, for each X-object X, rx : X -+ R(X) denotes
the R-reflection morphism. For each X-morphism f : X -&#x3E; Y, Y E
ObR, f * : R(X) -&#x3E; Y denotes the unique X-morphism such that
f*rx = f.

Deflnitions 1.2. Let R be a reflective subcategory of X.

(1) R is said to be S-epireflective if for each X-object X, rX :
X --&#x3E; R(X) belongs to EpiX n S.

(2) R is said to be an S-firm epireflective subcategory if it is S-
epireflective and, for each f : X -&#x3E; Y, with Y E R, f * is an
isomorphism whenever f E EpiX n S.

Proposition 1.3. Let R be a subcategory of X and for an X-object
X consider the following conditions:

(i) X is S-saturated;
(ii) X belongs to R;
(iii) X is weakly S-injective;
(iv) X is absolutely S-closed.

Then the following hold:

(a) Always (iii)=&#x3E;(i) and (iv)=&#x3E;(i);
(b) (i)=&#x3E;(iv) whenever ExMonoX = RegMonoX;
(c) (i)=&#x3E;(ii) whenever R is S-epireflective;
(d) (ii)=&#x3E;(iii) whenever R is S-firrnly epireflective in X.

Proof.
(a) (iii)=&#x3E;(i): Since X is weakly S-injective, then for each (e : X -
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Z) E EpiX n S, the identity lx has an extension g, so ge = 1x,
consequently e E IsoX. (iv)=&#x3E;(i): Every X-morphism which is both
epi and regular mono is an isomorphism.
(b) If an X-morphism f : X -&#x3E; Y belongs to S then, by property
(S3), in the (epi, extremal mono)-factorization me = f , e E s. If

X E Sat(S) then e is an isomorphism, so f is an extremal mono,
hence, by assumption, it is a regular mono, consequently X E AC(S).
(c) If R is S-epireflective then every R-reflection rx : X -&#x3E; R(X)
belongs to EpiX fl S. If in addition X E Sat (S), then rx must be an
isomorphism, consequently X E R.
(d) Whenever e : Y --&#x3E; Z belongs to EpiXfls, since R is S-epireflective
and since S has property (82), then rze : Y -&#x3E; Z -&#x3E; R(Z) belongs
to EpiX n S. Since R is supposed to be S-firm, then (rZe)* in the
commutative diagram below is an isomorphism.

Thus, for every X-morphism f : Y -+ X, the X-morphism g =

f*((rZe)*)-1rZ is the needed extension of f.
We refer to [2, (Theorem 2.2)] for other conditions under which

Sat(S), AC(S) and WInj(S) coincide.

Corollary 1.4. X admits at most one S-firm epireflective subcategory
R. In such a case R = Sat(S) = WInj(S).
Question A. Prove or disprove that, for each (concrete) category X
(and S = EmbX), Sat(S) = AC(S) holds whenever X admits an
S-firm epireflective subcategory.

Question B. Prove or disprove that, for each (concrete) category X
(and S = EmbX), WInj(S) c AC(S).
Definition 1.5. Let P be a class of X-objects. We say that X is S-
cogenerated by P af every X-object is an S-subobject (X is S-subobject
of Y if there is s : X -+ Y, with s E S) of a product of objects in P.
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The category X admits an S-firm epireflection if and only if each
X-object is the domain of some S n EpiX-morphism into some object
of WInj(S). (This is immediately clear from Proposition 1.3 (d).)

Wlnj(S) is closed for the taking of products in X (again clear,
with no assumptions on X or S other than S C MorX).

WInj(S) is closed for the taking of extremal subobjects in X (this
immediately follows from merely the (EpiX, ExMonoX)-diagonaliza-
tion property).

If X is assumed to be complete, well-powered and co-(well-powered),
it follows by [36, (Theorem 37.1)] that Wlnj(S) is epireflective in
X. Alternatively, it was shown in [6, (Proposition 1 and pp. 157-

158)] that Wlnj(S) is epireflective in X, provided X is an (Epi,
ExMonoSource)-category (cf. [34, (p. 331)].

It is worth noting that the following result does not assume X to
be co-(well-powered).
Theorem 1.6. The category X admits an S-firm epireflective sub-
category R if there exists a cla33 P C Wlnj(S) which S-cogenerates
X. In this case, R is the epireflective hull in X of P.

Proof. Suppose rx : X --&#x3E; R(X) is the firm S-epireflection of X in
X. By definition, rx E S, and by Proposition 1.3, R(X) E WInj(S).
Hence WInj(S) S-cogenerates X. Conversely, suppose there is a

class P C WInj(S) which S-cogenerates X. Let R be the class of all
extremal subobjects of products of P-objects. By the above remarks,
R C Wlnj(S). consider any X-object X. Since X is S-cogenerated
by P, there exists an S-morphism s : X -&#x3E; IIP, for some set of Pj E P.
Let X e -+ Mm -&#x3E; IIP, be the (EpiX, ExMonoX)-factorization of s.
Then e E Epis n S by (S3), and M E R by definition of R. Consider
any f : X --&#x3E; Y with Y E R. The weak S-injectivity of Y then gives
a (unique) f * : M - Y with f * e = f . Thus e : X -&#x3E; M is an

R-reflection of X; we choose an equivalent rX : X --&#x3E; R(X), whence
by (s1) and (S2) rX E EpiX fl S. To see that R is S-firm, consider
g:X-&#x3E;ZinEpiXnSwithZER. We have g* : R(X) -&#x3E; Z with
g*rx = g; the weak S-injectivity of R(X) also gives h : Z - R(X)
with hg = rX, and clearly h is inverse to g*. Finally it is clear that R
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is the epireflective hull of P, also in the sense that R is the smallest
epireflective subcategory of X that contains P.

Corollary 1.7. Wlnj(S) is S-firmly epireflective in X if and only
if X is S-cogenerated by Wlnj(S).

A result by Bacsich [2, (Theorem 3.1)] partly overlaps with the
content of Theorem 1.6, but under different assumptions. The corre-
sponding results mentioned by Kiss et al. [44, (pp. 94-95)] and given
by Tholen [52, (esp. Lemma 7)] are essentially different.

Example 1.8. In all examples below we assume that S is the class
of embeddings and we drop "S" in all terms in which it previously
appeared.

(1) Firmness becomes trivial in concrete categories X in which
epimorphisms are onto maps (in particular in topological categories
as well as in abelian categories). Indeed in such a case, R = X.

(2) No non-trivial (# Singl = {spaces with at most one point})
epireflective subcategory of Top consisting of Hausdorff spaces admits
a firm epireflection. In fact none of the subcategories above admits
a class of weakly injective cogenerators: if X is as above, then the
two-point discrete space D2(= {O, 1}), the discrete space of natural
numbers N and its Alexandrov compactification N* belong to X.
Let f : N - D2 be the continuous map defined by f (2n) = 0 and
f (2n +1)==1,nEN. Then f cannot be extended to N*, while
the inclusion e : N -&#x3E; N* is a dense, hence X-epi, embedding. We
conclude that no space with more than one point is weakly injective
in X, so, by Theorem 1.6, X does not admit a firm epireflection. The
same proof also establishes that if Y is any epireflective subcategory
of Haus containing N, then Y has no firm epireflective subcategory.

(3) in Topo, the category of To topological space, the Sierpinski
two-point space is a cogenerator of Topo and it is weakly injective
in Top.. The epireflective hull in Topo of the Sierpinski space is
the category Sob of sober spaces, so, in virtue of Theorem 1.6, Sob
is the firm epireflective subcategory of Topo. This restates a result
which Hoffmann [38] established by an internal argument. In virtue
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of Proposition 1.3, sober, weakly injective, saturated and absolutely
closed coincide in Topo.

(4) By Unifo we mean the category of separated (i.e. To, hence
Hausdorff) uniform spaces and uniformly continuous maps. It is well

known [53] that the complete spaces in Umfo form the firm epireflec-
tive subcategory of Unifo.

(5) Proxo denotes the category of separated proximity spaces and
proximity maps [41]. The complete (which are here the same as
compact) spaces in Proxo form the firm epireflective subcategory
of Proxo. This is an instance of Theorem 1.6, the required weakly
injunctive cogenerator being the compact unit interval.

(6) The complete metric spaces form a firm epireflective subcate-
gory of the category of metric spaces and non-expansive maps. (An
interesting extended setting for this classical result is given by Hoff-
mann [38, (p. 321 example 3.4)].)

(7) Qun will denote the category of quasi-uniform spaces and quasi-
uniform maps (see e.g. [15] or [24]). Its subcategory Qun. of sepa-
rated objects consists of those quasi-uniform spaces for which the join
of the two induced topologies is To (hence Tychonoff), or equivalently
the first topology is To, or equivalently the second topology is To (by
the join of two structures we shall always mean the least fine structure
finer than both). Csaszar ([14], [15]) showed that Qun. has a firm
epireflective subcategory whose objects he named "doubly complete".
These are the spaces whose uniform coreflection, formed by joining
a quasi-uniformity with its inverse, is a complete uniform space. A
convenient construction, and proof of the firmness, is given in [24],
where the objects are called "bicomplete" (cf. [13]).

(8) Qprox denotes the category of quasi-proximity spaces, known
to be isomorphic to the full subcategory of totally bounded spaces
in Qun (cf. [47] or [24]). Qproxo denotes the corresponding sub-
category of separated objects. QproXo has a cogenerator I which is
injective with respect to Qproxo-epi embeddings; I is the closed unit
interval with the quasi-proximity relation 6 given by A6B iff, for each
a &#x3E; 0, there exist x E A and y E B with y &#x3E; x - a. Thus by Theo-
rem 1.6, Qproxo has a firm epireflective subcategory. The spaces in
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this subcategory are those for which the join of the two underlying
topologies is compact; equivalently, they are the bicomplete (in the
sense of (7) above) totally bounded quasi-uniform spaces.

(9) 2Top denotes the category of bitopological spaces (more briefly,
"bispaces") in the sense of [43]. Objects are triples of the form X =
(|X|, O1X, O2X) where IXI is a set and OlX, 02X are topologies
on |X| a morphism f : X -&#x3E; Y is a function with f : (|X|,OiX) -&#x3E;
(|Y|,OiY) continuous for i = 1, 2. The full subcategory 2Topo con-
sists of those X with (|X|, O1X V 02X) E Topo. 2Topo has a
cogenerator Q which is weakly injective in2Topo: This was shown

in [28], where the smallest such object was named "the quad":

Thus by Theorem 1.6 2Topo has a firm epireflective subcategory R
whose objects are precisely the absolutely closed objects and also
precisely the weakly injective objects of 2Topo. (In [28] the coin-
cidence AC(S) = WInj(S) was proved though the firmness was not
observed). It was also shown in [28] that R is contained in, but differs
from, the subcategory of sober bispaces in 2Topo. The sober bispaces
are given by the largest duality between bispaces and biframes [4];
they are those bispaces for which the join of the two topologies is a
sober topological space. It is noteworthy that in Quno and QProxo
the "complete" objects are precisely those whose symmetrization is
"complete" in Unifo and Proxo respectively, a phenomenon which
fails for 2Topo versus Topo.

(10) The category RegNear of regular nearness spaces has a firm
epireflective subcategory [8], whose objects are called complete. In
fact the completion functor in RegNear restricts to the one in Unifo.
In the larger category SepNear of separated nearness spaces, com-
pleteness misbehaves in interesting ways [7], [8].

(11) PTop (PTopo) will denote the category of (To) pretopological
spaces (= Cech spaces). It is shown in [20] that PTopo-epis are onto.
So PTopo trivially admits a firm epireflective subcategory.

If X is a non trivial epireflective subcategory of PTop consisting
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of Hausdorff pretopological spaces, then the argument in (2) can be
used to show that X does not admit a firm epireflection.

Notice that the class of saturated (= absolutely closed = compact)
Hausdorff pretopological spaces does not even form (the object class
of) a reflective subcategory of PTop (cf. [12]).

The negative results above remain valid in other categories of filter
convergence spaces which properly contain Top (e.g. in the category
PsTop of pseudotopological spaces and in the category Lim of limit
spaces).

It is also easy to see that 4qmess becomes trivial in all epireflective
subcategories of both-Worn (the category of bornological spaces [40])
and Simp (the category of abstract simplicial complexes [46]).

(12) The category of normed vector spaces over a fixed subfield K
of C, with non-decreasing K-linear maps, has the Banach spaces over
K as firm epireflective subcategory. This fact is placed in the setting
of topological categories in [38].

(13) TopGrpo denotes the category of topological groups with To-
(hence Hausdorff) topology; the morphisms are continuous homomor-
phisms. Completion with respect to the two-sided uniformity would
provide the firm epireflection if we knew that every epimorphic em-
bedding G -&#x3E; H with H complete in the two-sided uniformity was
dense. Since the epimorphism problem for TopGrpo is unsolved,
we only know that a full subcategory X of TopGrpo admits a firm
epireflection if the epis of the stated kind in X are dense. This is the
case for the subcategory TopAbo of abelian topological groups with
To-topology [11].

(14) Let D be the category of bounded distributive lattices, with
lattice homomorphisms preserving 0 and 1. EmbD =MonoD. The
2-chain is an injective cogenerator of D [5]. Hence by Theorem 1.6
D has a firm epireflective subcategory, the epireflective hull of {2},
consisting of the Boolean algebras. Thus (cf. [2]) the reflection embeds
any object of D in its Boolean envelope.

(15) The category of cancellative abelian monoids, with homomor-
phisms preserving neutral element, has the category of abelian groups
as firm epireflective subcategory, the reflection being the group of dif-


